Introducción a la lógica digital
|
|
|
- Consuelo Barbero Sánchez
- hace 8 años
- Vistas:
Transcripción
1 Organización del Computador I Verano Introducción a la lógica digital Basado en el Apéndice B del libro de Patterson y Hennessy Verano 24 Profesora Borensztejn
2 Señales Digitales Los transistores operan con dos niveles de voltajes: alto y bajo Puede haber otros niveles entre esos dos, pero son transitoriosè ocurren cuando se pasa de un valor alto a bajo (o viceversa) Hay varias y distintas familias lógicas (TTL, CMOS) y cada una define sus valores de voltajes, por ello, en lugar de hablar de niveles de voltajes hablamos de señales. Señales que son: Verdaderas, o valen o están activas (asserted) Falsas, o valen o están inactivas (deasserted) Los valores y decimos que son inversos entre sí
3 Señales. Verilog En el diseño de sistemas digitales (procesadores, etc) se utilizan Lenguajes de Descripción de Hardware (HDL). Se utilizan: Para simular circuitos con una descripción abstracta del hardware Para sintetizar circuitos, es decir para implementarlos en hardware Verilog es un HDL ampliamente utilizado El tipo básico en Verilog son las señales (wire). Estas pueden ser de un bit o de varios bits.
4 Bloques Lógicos Se dividen en dos grupos Los que no utilizan memoria, llamados Combinacionales: Las salidas dependen únicamente de los valores presentes en las entradas Los que utilizan memoria, llamados Secuenciales: Las salidas dependen de las entradas y tambien del valor almacenado en su memoria. En esta clase nos concentramos en los bloques sin memoria: lógica combinacional
5 Tablas de Verdad Dado que un bloque lógico combinacional no tiene memoria, puede ser descrito completamente definiendo el valor de las salidas para cada uno de los posibles valores de la entrada. Por ej: si tenemos n entradas, tendremos 2 n combinaciones, o sea, 2 n entradas de la Tabla de Verdad
6 Tablas de Verdad Tabla de Verdad para la función igualdad b b a a eq i i eq
7 Algebra de Boole Las Tablas de Verdad crecen muy rápidamente al aumentar el número de entradas. Otra manera de describir las funciones lógicas es mediante al algebra de Boole. En el año 854, George Boole, matemático inglés, escribió un tratado sobre como usar técnicas algebraicas aplicadas a la lógica. Nadie supo que hacer con eso, hasta que cien años mas tarde, Claude Shannon, ingeniero electrónico y matemático americano, desempolvó el libro de Boole y le pareció adecuado para describir circuitos electrónicos.
8 Algebra de Boole En el Algebra de Boole todas las variables tienen los valores o, y existen 3 operadores: OR: se escribe con el símbolo + (suma lógica) AND: se escribe con el símbolo * (producto lógico) NOT: se escribe con el símbolo A. Es la inversión.
9 Algebra de Boole: Leyes y Teoremas Leyes de Morgan
10 De Tabla de Verdad a Expresión Lógica
11 De Tabla de Verdad a expresión lógica Expresamos la función como SUMA de PRODUCTOS: Suma de términos producto Una función en forma de suma de productos (o producto de sumas) puede ser minimizada. (Mapas de Karnaugh, Simplificaciones algebraicas) Las minimizaciones y simplificaciones son procesos mecánicos que hoy realizan herramientas automáticamente
12 Puertas Lógicas Los bloques lógicos se construyen con puertas (gates) que implementan la función AND, OR y NOT. Las funciones AND y OR son conmutativas y asociativas è las puertas pueden tener múltiples entradas La función NOT siempre tiene una única entrada.
13 Puertas Lógicas Las puertas NOT se representan mediante una burbujita simplificada
14 Verilog: assign i i eq La sentencia assign funciona como la lógica combinacional: la salida es continuamente asignada, y un cambio en las entradas produce un cambio en la salida
15 Verilog. Descripción de un circuito combinacional b b a a eq
16 Bloques Combinacionales: Decodificador
17 Bloques Combinacionales: Multiplexor Multiplexor de dos entradas
18 Arrays de Bloques Lógicos FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-bit inputs. Note that there is still only one data selection signal used for all 32 -bit multiplexors. Copyright 24 Elsevier Inc. All rights reserved. 8
19 Verilog: construcción Cuando la lógica combinacional es compleja, usar assign es tediosoè Verilog provee una construcción que permite especificar estructuras de control : if then else, case
20 Verilog: MIPS ALU Es lo que vamos a hacer poco a poco.
21 FIN Lógica Digital
5.3. Álgebras de Boole y de conmutación. Funciones lógicas
5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2
Electrónica Digital - Guión
Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento
IEE 2712 Sistemas Digitales
IEE 2712 Sistemas Digitales Clase 6 Objetivos educacionales: 1. Saber aplicar el método de mapas de Karnaugh para 5 o más variables y para situaciones no-importa. 2. Conocer la implementación práctica
Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas
Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1
IES PALAS ATENEA. DEPARTAMENTO DE TECNOLOGÍA. 4º ESO ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL 1.- La Información Cuando una señal eléctrica (Tensión o Intensidad), varía de forma continua a lo largo del tiempo, y puede tomar cualquier valor en un instante determinado, se la
Tema 3. Operaciones aritméticas y lógicas
Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 28 Índice Operaciones lógicas: OR, AND, XOR y NOT Operaciones
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Unidad Didáctica 6 Electrónica Digital 4º ESO
Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
Unidad 3: Circuitos digitales.
A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción
INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
UNIDAD 4. Algebra de Boole
UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Dispositivos Digitales. EL-611 Complemento de Diseño Lógico y. Dispositivos Digitales
EL-611 Complemento de Diseño Lógico y Objetivos y Evaluación Segundo Curso de Sistemas Digitales Complementar Materia Enfoque Diseños de Mayor Envergadura 1 Control + Examen y 6 Ejercicios (aprox.) Tareas
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
Sistemas Digitales. Diseño lógico con Verilog. Sinopsis. Prólogo.
1 Sistemas Digitales. Diseño lógico con Verilog. Sinopsis. El texto está orientado a un primer curso de diseño lógico en programas de estudios de ingenieros eléctricos, electrónicos, telemáticos y de ciencias
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
2. Números naturales: sistema de numeración y operaciones básicas
INTRODUCCIÓN A LOS COMPUTADORES 2003-2004 Objetivos Formativos Que el alumno sea capaz de: Comprender el funcionamiento y saber diseñar los circuitos digitales combinacionales y secuenciales que se utilizan
Electrónica II. Carrera. Electromecánica EMM UBICACIÓN DE LA ASIGNATURA a) Relación con otras asignaturas del plan de estudios.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica II Electromecánica EMM-0516 3-2-8 2. HISTORIA DEL PROGRAMA Lugar y fecha
INDICE Capítulo 1. Introducción Capítulo 2. Circuitos lógicos básicos Capítulo 3. Sistemas numéricos Capítulo 4. Codificación
INDICE Capítulo 1. Introducción 1.1. Cantidades analógicas y digitales 1.2. Sistemas electrónico digitales 16 1.3. Circuitos integrados 17 1.4. Disipación de potencia y velocidad de operación 1.5. Aplicación
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Circuitos Secuenciales
EL - 337 Página Agenda EL - 337 Página 2 Introducción El biestable de flip flops de flip flops tipo D de flip flops tipo T de flip flops tipo S-R de flip flops tipo J-K de circuitos Conclusiones Introducción
George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723
George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
Autómatas programables
Autómatas programables Autómatas programables INNOVACIÓN Y CUALIFICACIÓN, S.L. De la edición INNOVA 2004 INNOVACIÓN Y CUALIFICACIÓN, S.L ha puesto el máximo empeño en ofrecer una información completa y
Conocer, diseñar y aplicar los circuitos digitales para el control de los diferentes sistemas mecatrónicos.
Nombre de la asignatura: Electrónica Digital Créditos: 2-4-6 Aportación al perfil Conocer y analizar la diferencia entre circuitos analógicos y digitales y la relación existente entre ellos. Analizar sistemas
INDICE Capitulo 1. Sistemas y Códigos de Numeración Capitulo 2. Álgebra de Boole Capitulo 3. Sistema Combinacionales
INDICE Prólogo XIII Introducción a la Secta Edición XV Introducción a la Séptima Edición XVII Capitulo 1. Sistemas y Códigos de Numeración 1 1.1. Generalidades 1 1.2. Representación de los números. Sistemas
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
Pontificia Universidad Católica del Ecuador
DATOS INFORMATIVOS: MATERIA O MÓDULO: ELECTROLOGIA Y CIRCUITOS LOGICOS CÓDIGO: CARRERA: NIVEL: INGENIERIA DE SISTEMAS SEGUNDO No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 4 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Sistemas Digitales Introducción. Por: Carlos A. Fajardo [email protected]
Sistemas Digitales Introducción Por: Carlos A. Fajardo [email protected] Sistemas Digitales Profesor: Carlos Fajardo 2 Objetivo de la Asignatura Comprender el funcionamiento de un sistema digital, como
Tabla de contenidos. 1 Lógica directa
Tabla de contenidos 1 Lógica directa o 1.1 Puerta SI (YES) o 1.2 Puerta Y (AND) o 1.3 Puerta O (OR) o 1.4 Puerta OR-exclusiva (XOR) 2 Lógica negada o 2.1 Puerta NO (NOT) o 2.2 Puerta NO-Y (NAND) o 2.3
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
Capítulo 5. Álgebra booleana. Continuar
Capítulo 5. Álgebra booleana Continuar Introducción El álgebra booleana fue desarrollada por George Boole a partir del análisis intuición y deducción. En su libro An investigation of the laws of Thought,
INDICE Control de dispositivos específicos Diseño asistido por computadora Simulación Cálculos científicos
INDICE Parte I. La computadora digital: organización, operaciones, periféricos, lenguajes y sistemas operativos 1 Capitulo 1. La computadora digital 1.1. Introducción 3 1.2. Aplicaciones de las computadoras
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación
ING. WILDER ENRIQUE ROMÁN MUNIVE
TEMA CURSO: CÓDIGO: ALUMNO: CIRCUITOS LOGICOS DIBUJO ELECTRÓNICO I 1J3025 LÉVANO PINTO CHRISTIAN ENRIQUE CÓDIGO U: 20112281 AÑO: CICLO: SECCIÓN: GRUPO: DOCENTE: PRIMERO SEGUNDO DOS A ING. WILDER ENRIQUE
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Discusión. Modelo de una compuerta. Arquitecturas de Computadores Prof. Mauricio Solar. Temario. ...Introducción
0-06-200 Temario Arquitecturas de Computadores Prof. Mauricio Solar 5 Componentes igitales Estructurados Introducción 2 Registros 3 Multiplexores 4 Codificadores y ecodificadores 5 Archivos de Registros
Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola
Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL
UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL Profesor: Carlos
Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente:
Departamento de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Antioquia Arquitectura de Computadores y Laboratorio ISI355 (2011 2) Práctica No. 1 Diseño e implementación de una unidad aritmético
ELO211: Sistemas Digitales. Tomás Arredondo Vidal
ELO211: Sistemas Digitales Tomás Arredondo Vidal Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz. Prentice Hall,
SIMPLIFICACIÓN DE FUNCIONES LÓGICAS
LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas
circuitos digitales números binario.
CIRCUITOS DIGITALES Vamos a volver a los circuitos digitales. Recordemos que son circuitos electrónicos que trabajan con números, y que con la tecnología con la que están realizados, estos números están
ELECTRÓNICA DIGITAL 4.1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
4.. 4.1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales que utilice. Llamamos
TEMA 5. ELECTRÓNICA DIGITAL
TEMA 5. ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN Los ordenadores están compuestos de elementos electrónicos cuyas señales, en principio, son analógicas. Pero las señales que entiende el ordenador son digitales.
ANEXO - D LOGICA BINARIA Aplicada a diagramas en escalera y de bloques para la programación de un mini PLC
ANEXO - D LOGICA BINARIA Aplicada a diagramas en escalera y de bloques para la programación de un mini PLC La lógica binaria fue desarrollada a principios del siglo XIX por el matemático George Boole para
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
10 más ! Análisis de sistemas digitales básicos
IF - EHU Prácticas de laboratorio en la universidad, 2009 2 10 más 10... 100! nálisis de sistemas digitales básicos INTRODUCCIÓN Uno de los componentes principales de un procesador es la unidad aritmético/lógica;
FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico
U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números
ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON
ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,
Sistemas Electrónicos Digitales Curso de adaptación al Grado
Práctica Práctica 2 Sistemas Electrónicos Digitales Curso de adaptación al Grado Sistemas combinacionales con VHDL Universidad de Alicante Ángel Grediaga 2 Índice INTRODUCCIÓN... 3 2 CIRCUITOS COMBINACIONALES...
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
INDICE. XVII 0 Introducción 0.1. Historia de la computación
INDICE Prefacio XVII 0 Introducción 0.1. Historia de la computación 1 0.1.1. Los inicios: computadoras mecánicas 0.1.2. Primeras computadoras electrónicas 0.1.3. Las primeras cuatro generaciones de computadoras
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
Fundamentos de Computadores. Tema 5. Circuitos Aritméticos
Fundamentos de Computadores Tema 5 Circuitos Aritméticos OBJETIVOS Conceptuales: Suma y resta binaria Implementaciones hardware/software Circuito sumador y semi-sumador básico Sumadores/restadores de n
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
PROGRAMA DE CURSO Modelo 2009
REQUISITOS: HORAS: 3 Horas a la semana CRÉDITOS: PROGRAMA(S) EDUCATIVO(S) QUE LA RECIBE(N): IETRO PLAN: 2009 FECHA DE REVISIÓN: Mayo de 2011 Competencia a la que contribuye el curso. DEPARTAMENTO: Departamento
Naturaleza binaria. Conversión decimal a binario
Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,
Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b
Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).
