Espectroscopía de emisión molecular
|
|
|
- Manuela Aguilera Quintana
- hace 8 años
- Vistas:
Transcripción
1 Espectroscopía de emisión molecular 1
2 2
3 3
4 4
5 5
6 RELAJACION NO RADIATIVA no se emite luz, sino que el estado excitado decae a traves de mecanismos vibracionales y rotacionales CONVERSION INTERNA de un estado electronico a otro en tiempos del orden del segundos. RELAJACION VIBRACIONAL dentro de un estado electronico en tiempos de a segundos. RELAJACION RADIATIVA: LUMINISCENCIA emisión de luz desde un estado excitado electrónico FLUORESCENCIA Estado excitado singulete, transición permitida, tiempos cortos, del orden de a 10-7 segundos. FOSFORESCENCIA Estado excitado triplete, transición prohibida, tiempos largos, mayores a 10-6 segundos, y hasta horas. QUIMIOLUMINISCENCIA Cualquiera de los anteriores si se alcanza el estado excitado por una reacción química. (Palitos de luz en recitales, Luminol, bichos de luz, Noctiluca, etc.) RENDIMIENTO CUANTICO DE FLUORESCENCIA (Q): fotones emitidos Rendimiento (Q) = <1 fotones absorbidos Aquellas moleculas que decaen rapidamente por relajacion no radiativa tienen menos fluorescencia. Por eso las moleculas mas fluorescentes suelen ser rígidas y/o estericamente impedidas de rotar y vibrar. Si tenemos que: k f k d = constante de velocidad de emisión = constante de velocidad de decaimiento no radiativo entonces Q = k f / (k f + k d ) 6
7 TIEMPO DE VIDA INTRINSECO DE LA FLUORESCENCIA: es el tiempo de vida si sólo volviera al estado basal por fluorescencia = tiempo de vida intrínseca o natural, sin ningún proceso no radiativo τ n = 1 / k d TIEMPO DE VIDA EXPERIMENTAL: tiempo promedio que un fluoróforo pasa en el estado excitado antes de volver al estado basal (por cualquier vía) = tiempo de vida experimental τ = 1 / (k f + k d ) Hay equipos para medir tiempos de vida de fluorescencia, que son muy utiles en análisis químico. Tambien hay microscopios de tiempos de vida de fluorescencia. Fluorómetro de 2 monocromadores 7
8 Fluorómetro de 1 monocromador y detector de matriz de diodos Fluorómetro con fuente de luz monocromática 8
9 Fuentes de luz Lamparas de arco de Xe Lamparas de Xenon, continuas y pulsadas Lamparas de Hg Hg / Xe, fuertes en el UV Lamparas de filamento (malas) LEDs Laseres UV Ozone Free Visible Lamparas de arco de Hg/Xe 9
10 Light Emitting Diodes (LED) 350 nm to 1300 nm nm, UV cercano Laseres Helium-cadmium 325nm 295nm Blu-Ray laser 405 nm 351 nm 364 nm 445nm Nd- YAG doblado 532 nm 576nm Diodo laser rojo Titanium:Sapphire 690 nm 990 nm 650 nm Wavelength (nm) 10
11 Diodos Laser Diodos Laser: 405 nm Violeta (Blu Ray) 445 nm Azul (diodo) 473 nm Azul (Nd-YAG) 532 nm Verde (Nd-YAG) 588 nm Amarillo 635 nm Rojo (diodo) no es un diodo: nm IR (TiSa) Detectores Scallop Eyes From Image courtesy of BioMEDIA ASSOCIATES 11
12 APD El fotomultiplicador (PMT) es voluminoso, rápido y precisa de una fuente de muy alta tension (1000 V). Sirve para contador de fotones y en regimen lineal. Tiene mejor respuesta a cortas longitudes de onda. El fotodiodo de avalancha es muy rapido, chiquito, robusto, sirve para contador de fotones y tambien en régimen lineal (analógico). Tiene buena respuesta en el IR cercano. El PMT clásico fotocátodo Vacío dinodos λ Window e - e e -e- eē- - e anodo Salida de corriente Fuente de 1000 a 2000 Volts divisor de tension hecho con resistencias 12
13 Photon Counting (Digital) y detección analógica time Signal Medición Photon Counting: Discriminator Sets Level Constant High Voltage Supply PMT level TTL Output (1 photon = 1 pulse) Computer Analog: Voltage Supply PMT Anode Current = Pulse averaging Primary Advantages: Sensitivity (high signal/noise) Increased measurement stability Primary Advantage: Broad dynamic range Adjustable range Ocean Optics Red Tide Entrada de fibra óptica 2 - Rendija única (entrada) 3 - filtro de entrada 4 - espejo enfocador red de difracción 6 - espejo enfocador lentecitos (opcionales) 8 - detector de array de diodos 13
14 Ocean Optics Red Tide señales analógicas A/D 12 bits procesador interno USB Detector Sony ILX511 CCD No. of elements 2048 pixels Sensitivity 75 photons per count (at 400 nm) Pixel well depth ~62,500 electrons Signal-to-noise ratio 250:1 (at full signal) A/D resolution 12 bit Dark noise 3.2 RMS counts (RMS = σ) Corrected linearity >99.8% Optical resolution ~2.0 nm FWHM Stray light <0.05% at 600 nm; <0.10% at 435 nm Dynamic range: 2 x 10 8 (system); 1300:1 for a single acquisition Data transfer rate: Full scans into memory every 13 milliseconds with USB 2.0 port Integration time: 10 microseconds to >60 seconds (detector's limit is ~15 sec) Desde la fuente de luz a la medición 14
15 Desde la fuente de luz a la medición E foton = hc/λ λ = 405 nm h = 6.62x10-34 J.s c = 3x10 8 m.s -1 E foton = 4.9x10-19 J I fuente = 0.1 mw de luz = 10-4 W = 10-4 J.s -1 = 2.04x10 14 fotones/s Desde la fuente de luz a la medición de los 2.04x10 14 fot/s, solo el 1% llega al centro de la cubeta, porque el LED lanza luz en un angulo amplio. Quedan 2.04x10 12 fot/s 15
16 Excitacion efectiva: 2.04x10 12 fot/s Desde la fuente de luz a la medición Absorbancia = 0.1 Transmitancia T = 10 -A = = 79.4% Fracción absorbida = 1 - T = = 20.6% absorbió 4.20x10 11 fot/s Desde la fuente de luz a la medición absorbió 4.20x10 11 fot/s eficiencia cuantica de fluorescencia = 0.22 emision = 9.24x10 10 fot/s 16
17 Desde la fuente de luz a la medición emision = 9.24x10 10 fot/s pero solo una minima fracción pasa por el agujero de 2 mm a la entrada del instrumento! distancia al agujero = 3 cm Area esfera de 3cm de radio = 4πR 2 = 113 cm 2 Area agujero = πr 2 = cm 2 fracción de luz que entra = (0.03%) Desde la fuente de luz a la medición emision total = 9.24x10 10 fot/s emision que entra = 2.57x10 7 fot/s 17
18 Desde la fuente de luz a la medición emision que entra = 2.57x10 7 fot/s Ancho de banda de la fluorescencia = 150 nm, se divide entre 150 partes del sensor, aprox fotones por cada una (aunque a los centrales les toca mas que a los bordes) Desde la fuente de luz a la medición fotones por cada parte del sensor correspondiente a un nanometro, a 75 fotones por cuenta (especificacion del sensor del equipo) = 2630 cuentas / nm (si dejamos que la luz se capte durante 1 segundo). 18
19 La absorbancia de la muestra atenúa la entrada de la luz de excitación Efecto de filtro interno Rhodamine B from Jameson et. al., Methods in Enzymology (2002), 360:1 Intensidad de Fluorescencia y concentración del fluoróforo Efecto de filtro interno epsilon [F]/um Abs Abs /2 T 1-T fluorescencia fluorescencia absorbancia absorbancia Se usan concentraciones con absorbancia menor a
20 Geometría de la medición de fluorescencia Tiempos de vida La luminiscencia decae exponencialmente Φ Φ τ L L 0 L (t) Φ L ( t) = Φ 0 L e emision a tiempo = t emision a tiempo = 0 t τ tiempo de vida experimental L τ = 1 / (k f + k d ) 20
21 Midiendo tiempos de vida obtenemos informacion valiosa Quenching estatico (formacion de complejos): El fluoroforo se une a una molecula quencher, y el complejo formado no es emisivo. Solamente el fluoroforo no unido puede emitir luz.. Los tiempos de vida son los mismos, los correspondientes al fluoroforo. Quenching dinámico (colisional): La molecula quencher colisiona con el estado excitado del fluoroforo y le hace perder su energia en forma no radiativa.. El tiempo de fluorescencia se reduce porque k nr aumenta, ya que hay una nuevo paso de desactivacion. Quenching dinamico por mecanismo de Förster (FRET): Un aceptor de energía cerca (pero no tanto) del fluoroforo le come su energia por un mecanismo de acoplamiento dipolo-dipolo dipolo.. Al fluoroforo se lo llama donor y al quencher aceptor aceptor. La constante de energy transfer cae como R -6. Se usa mucho en estudios biológicos. Quenching estatico La emision decae con la concentración de quencher. 21
22 Quenching dinámico que tipo de quenching es? dinámico estático 22
23 Fluorescence Resonance Energy Transfer (FRET) 23
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
Capítulo 24. Emisión y absorción de la luz. Láser
Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E
Espectroscopía Clase integradora
Espectroscopía Clase integradora Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar
PRACTICA 3: ESPECTROSCOPIA DE FLUORESCENCIA
PRACTICA 3: ESPECTROSCOPIA DE FLUORESCENCIA Objetivos. La práctica se divide en dos partes. En la primera, se registran los espectros de absorción, fluorescencia y excitación de un conjunto de colorantes
Espectroscopía de Fluorescencia. Ana Denicola
Espectroscopía de Fluorescencia Ana Denicola DIAGRAMA DE JABLONSKI (1898-1980) relajación vibracional S2 conversión interna IC relajación vibracional cruce intersistemas ISC S1 T1 k NR IC hυ A hυ F k NR
Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H
Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie
INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO. Cap. 13
INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO Cap. 13 Medición de la absorbancia y la transmitancia Recipiente produce pérdidas por: reflexión (aire/pared, pared/solución)
Ejercicio 1. Ejercicio 2. Ejercicio 3.
Ejercicio 1. Suponiendo que la antena de una espacio de radio de 10 [kw] radia ondas electromagnéticas esféricas. Calcular el campo eléctrico máximo a 5 [km] de la antena. Ejercicio 2. La gente realiza
Espectrofotómetros V-10 PLUS, UV-20 y UV-30 SCAN
Espectrofotómetros V-10 PLUS, UV-20 y UV-30 SCAN GARANTÍA AÑOS Características Componentes pre-alineados: Emisor de Luz y la lámpara de deuterio Monocromador : Rejilla con 1200 líneas/mm Dos parámetros
RADIACIÓN ELECTROMAGNÉTICA
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.
Espectro Electromagnético
1 Espectro Electromagnético La luz es radiación electromagnética y está compuesta por una parte eléctrica y otra magnética. Las particulas subatómicas, electrones y fotones, tienen propiedades de partículas
radiación electromagnética
radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de
Problemas de Ondas Electromagnéticas
Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?
Nueva Normatividad ASTM para las Lámparas UV-A utilizadas en PND. Bernardo Ordóñez Esquivel
Nueva Normatividad ASTM para las Lámparas UV-A utilizadas en PND Bernardo Ordóñez Esquivel Alcance Esta presentación detallará la forma en que los fabricantes de lámparas UV-A con tecnología LED deben
Tema 2.- Fundamento físico-químico del Análisis instrumental basado en técnicas espectroscópicas
Tema 2.- Fundamento físico-químico del Análisis instrumental basado en técnicas espectroscópicas Interacción de la radiación electromagnética con entidades atómicas y moleculares de interés analítico:
El espectro electromagnético y los colores
Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas
LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez)
LASER DE HELIO-NEON (Juan Israel Rivas Sánchez) El láser de Helio-Neón fue el primer láser de gas construido y actualmente sigue siendo uno de los láseres más útil y frecuentemente utilizado. Esto a pesar
APLICACIONES LIDAR MEDICIÓN DE CONTAMINANTES Alejandra Sosa Izábal
APLICACIONES LIDAR MEDICIÓN DE CONTAMINANTES Alejandra Sosa Izábal Antecedentes: Las ondas de radio y las microondas se han usado para detectar objetos lejanos a través del uso de RADAR (RAdiowave Detection
TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA
TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford
La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com [email protected]
Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario
DIRECCION DE CRIMINALISTICA CRIMINALÍSTICA REACTIVOS ESPECIALES PARA DETECCION DE ACTOS DESHONESTOS
DIRECCION DE CRIMINALISTICA CRIMINALÍSTICA REACTIVOS ESPECIALES PARA DETECCION DE ACTOS DESHONESTOS SUSANA GUTIERREZ CORNELIO MAYOR S PNP PERITO CRIMINALISTICO PÁGINA Nº 1 PRESENTACION Uno de los problemas
RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS
RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS 1. Pueden ser generadas por la aceleración de cargas eléctricas oscilantes con alta frecuencia. 2. Las ondas se desplazan a través del vacio con: B
LEDs & LENTES LA COMBINACIÓN PERFECTA PARA UNA ILUMINACIÓN MÁS EFICIENTE
LEDs & LENTES LA COMBINACIÓN PERFECTA PARA UNA ILUMINACIÓN MÁS EFICIENTE PREGUNTAS AL EMPEZAR A DISEÑAR UN NUEVO PRODUCTO PROYECTO Distribución de luz? Eficiencia? Grado de protección, IP? Objetivo
Tema 7: Medida del color. Medida del color 7-1
Medida del color 7-1 Sumario Aspectos geométricos de la medición Espectroradiómetros Espectrofotómetros Colorímetros Densitómetros Medida de colores fluorescentes Medida de colores goniocromáticos 7-2
Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e
Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e Contenido: Fenómenos que producen luz (principios físicos). Tipos de las lámparas según su modo
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III Tipos Colorímetro Fotómetro Espectrofotómetro Componentes Fuentes de radiación Selectores de longitud de onda Recipientes para muestras Detectores de radiación
C. Trallero-Giner CINVESTAV-DF (2010)
Dispersión Raman en Sólidos I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales C. Trallero-Giner CINVESTAV-DF (2010) III. Aplicaciones
Espectroscopia ultravioleta-visible (temas complementarios)
1 Espectroscopia ultravioleta-visible (temas complementarios) Ley de Lambert y Beer Cuando se hace incidir radiación electromagnética en un medio, la energía dependerá de la longitud de onda de la radiación
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
EL MODELO ATOMICO DE BOHR
EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra [email protected] Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré
CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de
CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes
Principios básicos de Absorciometría
Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo
LED: Soluciones innovadoras de iluminación
LED: Soluciones innovadoras de iluminación LEDs: información general SIGLAS: LED (Light Emitting Diode) Diodo Emisor de Luz SSL (Solid State Lighting) Iluminación de Estado Sólido LEDs: información general
Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica
Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera
PRACTICO N 1: ESPECTROFOTOMETRIA
UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría
VENTAJAS DE LA ILUMINACIÓN LED
VENTAJAS DE LA ILUMINACIÓN LED Qué es un LED? LED viene de las siglas en inglés Lighting Emitting Diode (Diodo emisor de Luz). El LED es un diodo semiconductor que al ser atravesado por una corriente eléctrica
SENSOR COLORÍMETRO BT29i
SENSOR COLORÍMETRO BT29i GUÍA DE USUARIO CENTRE FOR MICROCOMPUTER APPLICATIONS http://www.cma-science.nl Breve Descripción El sensor Colorímetro BT29i CMA mide la cantidad de luz transmitida a través de
Tutoría 2: Experimentos de difracción
Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en
Radiología Digital. Radiología. Juan Pablo Graffigna. Flat Pannel
Radiología Digital Juan Pablo Graffigna Radiología. Conceptos Básicos. Radiología Convencional. Ambiente Digital Radiología Computada. Radiología Digital. CCD Flat Pannel Calidad en Radiología 1 Características
Radiación. La radiación electromagnética
Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética
CIRCUITOS ELECTRÓNICOS, DIODO LED
Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico
ELEMENTOS TRAZA TÉCNICAS ANALÍTICAS. Elena M. Trasobares Iglesias MIR 4 Bioquímica Clínica Hospital Clínico San Carlos
ELEMENTOS TRAZA TÉCNICAS ANALÍTICAS Elena M. Trasobares Iglesias MIR 4 Bioquímica Clínica Hospital Clínico San Carlos ELEMENTOS TRAZA TÉCNICAS ANALÍTICAS Espectroscopía atómica ICP-MS Espectroscopía atómica
Técnicas analíticas para la determinación de arsénico: Espectrometría atómica Proyecto Arsénico II
Problemática y alternativas tecnológicas para la remoción de arsénico en la obtención de agua potable Técnicas analíticas para la determinación de arsénico: Proyecto Arsénico II Espectroscopía La espectroscopía
EMISORES y DETECTORES
EMISORES y DETECTORES Los dispositivos utilizados como emisores y detectores de radiación luminosa en los sistemas de comunicaciones ópticas son el láser de semiconductores (diodo láser) y el LED (diodo
SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ
SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ A. Cuenca y A. Pulzara Universidad Nacional de Colombia, Sede Manizales, A. A. 127 e-mail: [email protected]. RESUMEN Para
El Espectro Electromagnético
El Espectro Electromagnético ONDAS ELECTROMAGNETICAS Se componen de un campo eléctrico y un campo magnético, ambos variando en el tiempo Su energía aumenta con la frecuencia Se distinguen ondas ionizantes
ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén
ESPECTROFOTOMETRÍA UV-VISIBLE 1. Propiedades de la luz 2. Absorción de luz 2.1. Fenómeno de la absorción 2.2. Espectros de absorción molecular 2.3. Tipos de transiciones electrónicas 3. Ley de Lambert-Beer
Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo
Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo Double-click MARCIA Double-click BALAGUERA-GELVES here here to to edit edit text. text. Gisela León Colón Ph. D. UPR-Bayamón Espectroscopia y el
CAPITULO I: La Luz CAPITULO I: LA LUZ 1
CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción
Detector de Mercurio por Fluorescencia Modelo 2500
Detector de Mercurio por Fluorescencia Modelo 2500 El Modelo 2500 es un detector de mercurio elemental por Espectrometría de Fluorescencia Atómica de Vapor Frío (CVAFS). Las ventajas de la fluorescencia
6. Fundamentos de la microscopía confocal espectral
6. Fundamentos de la microscopía confocal espectral Microscopio confocal Microscopio confocal La distinción fundamental entre la microscopía óptica convencional y la microscopía óptica confocal es la manera
Introducción a la Ciencia del Color
Introducción a la Ciencia del Color 1-1 Sumario Introducción Elementos condicionantes de la Colorimetría Color psicofísico y color psicológico Las causas del color 1-2 Introducción Objetivo: Analizar y
Técnicas Espectroscópicas. Dr. Jorge A. Palermo
Técnicas Espectroscópicas Dr. Jorge A. Palermo Espectro Electromagnético E = hν ν = c/λ Espctroscopía UV: cromóforos Espectroscopía IR: grupos funcionales rayos γ rayos x UV VIS IR µ-ondas radio 10-10
13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,
PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,
Tema 2: Propiedades y medición de la radiación electromagnética
Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial
ESPECTROFOTÓMETROS UV- VISIBLE COMPONENTES
ESPECTROFOTÓMETROS UV- VISIBLE COMPONENTES INSTRUMENTAL EL INSTRUMENTO QUE NORMALMENTE SE UTILIZA PARA MEDIR LA TRANSMITANCIA Y ABSORBANCIA ES EL ESPECTROFOTÓMETRO LOS COMPONENTES BÁSICOS DE UN ESPECTROFOTÓMETRO
Química Biológica TP 1: ESPECTROFOTOMETRIA.
TP 1: ESPECTROFOTOMETRIA. Introducción Al observar una solución acuosa de un colorante a trasluz, observamos una leve coloración, la cual se debe a la interacción entre las moléculas del colorante y la
Optical detection PCBs Zaragoza & DAQs
Optical detection PCBs Zaragoza & DAQs El sistema de detección óptica de Zaragoza consta de 3 componentes: DAQ (Data acquisition) Placa PCB, donde se encuentran las componentes ópticas Programa de interfase
NORMATIVAS APLICABLES A LA TECNOLOGIA LEDS
S APLICABLES A LA TECNOLOGIA LEDS Módulos Led para alumbrado general. Requisitos de seguridad. UNE EN 62031 Dispositivos de control de lámparas UNE EN 61347 Seguridad fotobiológica UNE EN 62471 Ensayo
Ejercicios de Física cuántica y nuclear. PAU (PAEG)
1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones
INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA
INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA Objetivos Al finalizar el trabajo práctico los estudiantes estarán en capacidad de: - Conocer el principio que rige la espectrofotometría. - Interpretar el basamento
Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN
Implementación de un sistema básico para Espectroscopia de gases atómicos Heriberto Peña Pedraza Facultad de Ciencias Básicas. Departamento de Física Universidad de Pamplona Grupo de Investigaciones Ópticas
Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s
Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de
PROBLEMARIO DE QUÍMICA ANALÍTICA II. Espectrometría UV-Visible
UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS DEPARTAMENT DE QUIMICA UNIDAD ACADÉMICA DE QUÍMICA ANALÍTICA MATERIA: QUÍMICA ANALÍTICA II PRBLEMARI DE QUÍMICA ANALÍTICA II Espectrometría UV-Visible
FICHA TECNICA DE ESPECIFICACIONES PARA PROCESOS DE SUBASTA INVERSA FORMATO N 5 ESPECIFICACIONES TECNICAS
FICHA TECNICA DE ESPECIFICACIONES PARA PROCESOS DE SUBASTA INVERSA Código FBS 047 Versión 0 Fecha 2009-0-23 FORMATO N 5 Centro de Laboratorios y Direccion de FECHA Julio de 203. DEPENDENCIA: Investigaciones
Sensor de Polea Inteligente
Sensor de Polea Inteligente DT122A El sensor de polea inteligente puede conectarse a los recolectores de datos ITP-C, Multilog Pro o TriLink. Éste consiste en una polea y en un sensor foto puente, y se
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
Preguntas a responder
Propiedades ópticas Preguntas a responder Qué pasa cuando la luz brilla sobre los materiales? Por qué los materiales tienen colores característicos? Por qué algunos materiales son transparentes y otros
LOS OBJETOS. Textos y fotos Fernando Moltini
LOS OBJETOS Textos y fotos Fernando Moltini Como son percibidos los colores de los objetos. Un cuerpo opaco, es decir no transparente absorbe gran parte de la luz que lo ilumina y refleja una parte más
Barrido Ambiental. Características y posibilidades.
Microscopía electrónica de Barrido Ambiental. Características y posibilidades. 1 I.Historia de la Microscopía. 1.Invención. Microscopio de Anthony Van Leeuvenhoek (1632-1723) 2 I.Historia de la Microscopía.
CATALOGO CRUCES Y GAFAS DE LED
CATALOGO DE Y GAFAS DE LED MODELO: Cruz 8 Colores (100 cm.) - Bajo.. 100 cm. (Alto) X 100 cm. (Ancho) 6410 cm². Mejor distancia de visualización Legibilidad: 100 mts. Visibilidad: 500 mts. Máximo: 550
(febrero 4) Diario Oficial No de 4 de febrero de 2015 SUPERINTENDENCIA DE INDUSTRIA Y COMERCIO
RESOLUCIÓN 3846 DE 2015 (febrero 4) Diario Oficial No. 49.415 de 4 de febrero de 2015 SUPERINTENDENCIA DE INDUSTRIA Y COMERCIO Por la cual se oficializa el Patrón Nacional de Medición de Espectrofotometría
Transmisión de una señal por fibra óptica
PRÁCTICA 6 Transmisión de una señal por fibra óptica 1º INTRODUCCIÓN. En esta práctica haremos uso diversos tipos de fibra óptica para transmitir luz entre un fotoemisor y un fotodetector. Con este fin
Por qué hay diferentes colores?
Qué son los LEDs? Los LEDs son dispositivos semiconductores de estado sólido que pueden convertir la energía eléctrica directamente en luz al aplicarle una pequeña corriente. El hecho de ser sólidos los
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED 1 Agilent es una empresa comprometida con la comunidad educativa y no duda en ofrecer acceso a materiales
Astronomía fuera del visible Beatriz García, Ricardo Moreno, Rosa M. Ros
Astronomía fuera del visible Beatriz García, Ricardo Moreno, Rosa M. Ros International Astronomical Union Universidad Tecnológica Nacional, Argentina Colegio Retamar de Madrid, España Universidad Politécnica
Diapositivas del curso de Seminario Interdisciplinario I (Maestría): Plasmas binarios de alcohol etílico con gases inertes.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Seminario Interdisciplinario I (Maestría) Diapositivas del curso de Seminario Interdisciplinario I (Maestría):
DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS
Seminario Departamento de Electrónica (Universidad de Alcalá) DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS CNY-70: Sensor reflectivo de infrarrojos (www.vishay.com) ALUMNO: VÍCTOR MANUEL LÓPEZ MANZANO 5º curso
Prueba experimental. Constante de Planck y comportamiento de un LED
Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante
FOTOGRAFÍA La cámara fotográfica
FOTOGRAFÍA La cámara fotográfica 1 Índice Que es la fotografía? El elemento fundamental de la fotografía. El fotógrafo. Relación entre la fotografía química y la digital. La cámara digital. Sensor, transformación
Comunicaciones ópticas II. Colección de Problemas
Comunicaciones ópticas II. Colección de Problemas ROCÍO J. PÉREZ DE PRADO 1 COLECCIÓN DE PROBLEMAS. COMUNICACIONES ÓPTICAS 2012-2013 Departamento Ingeniería de Telecomunicación. Área de Teoría de la Señal
Espectros Atómicos. Química General I 2012
Espectros Atómicos Química General I 2012 Estudios de las ondas Que es una onda? Es una alteración vibracional a través de la cual se transmite energía. Existen muchos tipos de ondas, por ejemplo, las
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de
Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )
CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.
CS-1 Lector de Documentos y Sistema de Analisis Forense [All-In-one]
CS-1 Lector de Documentos y Sistema de Analisis Forense [All-In-one] SPC_CS-1 es 1/6 CS-1 Lector de Documentos y Sistema de Analisis Forense (All-In-One) El Sistema CS-1 es un sistema integral All-in-One
CONSTRUCCIÓN DE UN ESPECTRÓGRAFO
ASTROPALMA OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera CONSTRUCCIÓN DE UN ESPECTRÓGRAFO Descripción: Un espectroscopio es un instrumento analizador de la luz, en el cual, el ojo del observador es
Del LASER I Principio de funcionamiento del láser
Del LASER I Principio de funcionamiento del láser Gilberto Basilio Sánchez La palabra láser proviene del acrónimo en inglés Ligth Amplification by Stimulated Emission of Radiation; en español, láser(1)
Caracterización de un diodo LED
Práctica 5 Caracterización de un diodo LED OBJETIVOS Observar el funcionamiento y conocer algunas propiedades del LED, como una de las fuentes utilizadas en sistemas de comunicaciones vía fibra óptica.
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y
FIBRA ÓPTICA INTRODUCCIÓN
FIBRA ÓPTICA 1 INTRODUCCIÓN Sin duda, todos los tipos de redes que emplean algún tipo de cableado, apuntan hacia la fibra óptica, en cualquiera de sus aplicaciones prácticas, llámese FDDI, ATM, o inclusive
DIODOS EMISORES DE LUZ (LED)
DIODOS EMISORES DE LUZ (LED) El hecho de que las uniones pn puedan absorber luz y producir una corriente eléctrica, se estudió anteriormente. Lo contrario también es posible; es decir, un diodo de unión
Última modificación: 1 de agosto de 2010. www.coimbraweb.com
TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será
5. Microscopía de fluorescencia y epifluorescencia
y epifluorescencia Fluorescencia Espectro de luz visible: La longitud de onda determina el color Fluorescencia Qué es? Es un proceso de interacción entre la radiación y la materia en el cual un material
