Capítulo 31B: Corrientes transitorias e inductancia. Paul E. Tippens

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 31B: Corrientes transitorias e inductancia. Paul E. Tippens"

Transcripción

1 Capítulo 31B: Corrientes transitorias e inductancia Paul. Tippens 017

2 Autoinductancia Considere una bobina conectada a una resistencia y voltaje V. Cuando se cierra el interruptor, el aumento de corriente I aumenta el flujo, lo que produce una fuerza contraelectromotriz interna en la bobina. l interruptor abierto invierte la fem. I creciente Ley de Lenz: La fcem (flecha roja) debe oponerse al cambio en flujo: I decreciente

3 Inductancia La fuerza contraelectromotriz (fcem) inducida en una bobina es proporcional a la tasa de cambio de la corriente DI/Dt. L Di Dt ; L inductance inductancia Di/ Dt creciente Una inductancia de un henry (H) significa que el cambio de corriente a la tasa de un ampere por segundo inducirá una fcem de un volt. 1 V 1 H 1 A/s

4 jemplo 1: Una bobina de 0 vueltas tiene una fem inducida de 4 mv cuando la corriente cambia a la tasa de A/s. Cuál es la inductancia? Di/ Dt = A/s 4 mv L Di L ; L Dt Di / Dt ( V) A/s L =.00 mh Nota: Se sigue la práctica de usar i minúscula para corriente variable o transitoria e I mayúscula para corriente estacionaria.

5 Cálculo de inductancia ecuerde dos formas de encontrar : N D D t L Di Dt Al igualar estos términos se obtiene: N D Dt L Di Dt Por tanto, la inductancia L se puede encontrar de: Di/ Dt creciente Inductancia L N L I

6 B Inductancia de un solenoide Solenoide l Inductancia L l campo B que crea una corriente I para longitud l es: B NI 0 Al combinar las últimas dos ecuaciones se obtiene: NIA 0 y = BA L L N A 0 N I

7 jemplo : Un solenoide de 0.00 m de área y 30 cm de longitud tiene 100 vueltas. Si la corriente aumenta de 0 a A en 0.1 s, cuál es la inductancia del solenoide? Primero se encuentra la inductancia del solenoide: L N A (4 x 10 )(100) (0.00 m ) -7 Tm 0 A l A m L = 8.38 x 10-5 H Nota: L NO depende de la corriente, sino de parámetros físicos de la bobina.

8 jemplo (Cont.): Si la corriente en el solenoide de 83.8 H aumentó de 0 a A en 0.1 s, cuál es la fem inducida? l A L = 8.38 x 10-5 H Di L Dt -5 (8.38 x 10 H)( A - 0) s 1.68 mv

9 nergía almacenada en un inductor n un instante cuando la corriente cambia a Di/Dt, se tiene: Di L ; P i Li Dt Dado que la potencia P = trabajo/t, Trabajo = P Dt. Además, el valor promedio de Li es Li/ durante el aumento a la corriente final I. Por tanto, la energía total almacenada es: Di Dt nergía potencial almacenada en inductor: U 1 Li

10 jemplo 3: Cuál es la energía potencial almacenada en un inductor de 0.3 H si la corriente se eleva de 0 a un valor final de A? L = 0.3 H U 1 Li U 1 (0.3 H)( A) J I = A U = J sta energía es igual al trabajo realizado al llegar a la corriente final I; se devuelve cuando la corriente disminuye a cero.

11 Densidad de energía (opcional) l A La densidad de energía u es la energía U por unidad de volumen V N A L U LI V A 0 1 ; ; Al sustituir se obtiene u = U/V : N AI 0 1 0N A U ; U I u V A u NI 0

12 Densidad de energía (continúa) l A Densidad de energía: u NI 0 ecuerde la fórmula para el campo B: NI NI B 0 B 0 u 0 NI 0 B 0 u B 0

13 jemplo 4: La corriente estacionaria final en un solenoide de 40 vueltas y 0 cm de longitud es 5 A. Cuál es la densidad de energía? NI B u -7 0 (4 x 10 )(40)(5 A) B = 1.6 mt 0.00 m -3 B (1.6 x 10 T) (4 x 10 ) -7 Tm 0 A u = 0.68 J/m 3 l A La densidad de energía es importante para el estudio de las ondas electromagnéticas.

14 l circuito -L Un inductor L y un resistor se conectan en serie y el interruptor 1 se cierra: Di V = i L Dt Di V L i Dt S 1 S V L i Inicialmente, Di/Dt es grande, lo que hace grande la fcem y la corriente i pequeña. La corriente aumenta a su valor máximo I cuando la tasa de cambio es cero.

15 Aumento de corriente en L i V ( / L) t (1 e ) i I n t = 0, I = 0 n t =, I = V/ Constante de tiempo t: t L 0.63 I t Aumento de corriente Tiempo, t n un inductor, la corriente subirá a 63% de su valor máximo en una constante de tiempo t = L/.

16 educción -L Ahora suponga que S se cierra después de que hay energía en el inductor: = i Para reducción de corriente en L: Di L Dt Di L i Dt S 1 S V L i Inicialmente, Di/Dt es grande y la fem que activa la corriente está en su valor máximo I. la corriente se reduce a cero cuando la fem se quita.

17 educción de corriente en L i V e ( / L) t i I n t = 0, i = V/ n t =, i = I educción de corriente Constante de tiempo t: t L t Tiempo, t n un inductor, la corriente se reducirá a 37% de su valor máximo en una constante de tiempo t.

18 jemplo 5: l circuito siguiente tiene un inductor de 40 mh conectado a un resistor de 5 W y una batería de 16 V. Cuál es la constante de tiempo y la corriente después de una constante de tiempo? 16 V L H t 5 W 5 W Constante de tiempo: t = 8 ms L = 0.04 H Después del tiempo t: i = 0.63(V/) i i 16V W V ( / L) t (1 e ) i =.0 A

19 l circuito -C V Cierre S 1. ntonces, conforme la carga Q se acumula en el capacitor C, resulta una fcem : S 1 V = i Q V C i Q C S C i Inicialmente, Q/C es pequeño, lo que hace pequeña la fcem y la corriente i es un máximo I. Conforme la carga Q se acumula, la corriente se reduce a cero cuando b = V.

20 Aumento de carga V Q C i t = 0, Q = 0, I = V/ t =, i = 0, Q m = C V Q CV e t / C (1 ) Q max q 0.63 I t Capacitor Aumento de carga Tiempo, t Constante de tiempo t: t C n un capacitor, la carga Q aumentará a 63% de su valor máximo en una constante de tiempo t. Desde luego, conforme la carga aumenta, la corriente i se reducirá.

21 educción de corriente en C V i e t / C n t = 0, i = V/ n t =, i = 0 Constante de tiempo t: t C i I 0.37 I t Capacitor educción de corriente Tiempo, t Conforme aumenta la carga Q La corriente se reducirá a 37% de su valor máximo en una constante de tiempo t; la carga aumenta.

22 Descarga -C V Ahora suponga que se cierra S y se permite la descarga de C: = i Para reducción de corriente en L: Q C Q i C S 1 S C i Inicialmente, Q es grande y la fem que activa la corriente está en su valor máximo I. La corriente se reduce a cero cuando la fem se quita.

23 educción de corriente i V e t / C n t = 0, I = V/ n t =, I = 0 t C 0.37 I I i t Capacitor Current Decay educción de corriente Tiempo, t Conforme la corriente se reduce, la carga también se reduce: Q CVe t / C n un capacitor que se descarga, tanto corriente como carga se reducen a 37% de sus valores máximos en una constante de tiempo t = C.

24 jemplo 6: l circuito siguiente tiene un capacitor de 4 F conectado a un resistor de 3 W y una batería de 1 V. l interruptor está abierto. Cuál es la corriente después de una constante de tiempo t? 1 V 3 W C = 4 F t = C = (3 W)(4 F) Constante de tiempo: t = 1 s V i t / C (1 e ) Después del tiempo t: i = 0.63(V/) i 1V W i =.5 A

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

CIRCUITO RL EN CORRIENTE CONTINUA

CIRCUITO RL EN CORRIENTE CONTINUA Autoinducción CIRCUITO RL EN CORRIENTE CONTINUA En un circuito existe una corriente que produce un campo magnético ligado al propio circuito y que varía cuando lo hace la intensidad. Por tanto, cualquier

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

Inducción n electromagnética. tica. Física Sexta edición. Capítulo 31 31

Inducción n electromagnética. tica. Física Sexta edición. Capítulo 31 31 Inducción n electromagnética tica Capítulo 31 31 Física Sexta edición Paul PaulE. E. Tippens Ley de Faraday Fem inducida por un conductor en movimiento Ley de Lenz El generador de ca El generador de cc

Más detalles

Capacitores e Inductores

Capacitores e Inductores Capacitores e Inductores Introducción Resistor: es un elemento lineal pasio que disipa energía únicamente. Existen otros dos elementos lineales pasios: Capacitor Inductor Tanto el capacitor como el inductor

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Unidad 2 - Corriente Alterna Conceptos:

Unidad 2 - Corriente Alterna Conceptos: Unidad 2 - Corriente Alterna Conceptos: 1. Campo Magnético 2. Ley de inducción de Faraday 3. Inductor Campo Magnético (B) carga eléctrica E carga eléctrica Cargas eléctricas generan un campo eléctrico

Más detalles

Problema 1 El campo magnético en una cierta región del espacio es

Problema 1 El campo magnético en una cierta región del espacio es Dpto de Física UNS Electromagnetismo y Física B 2do Cuat. 2011 Guía N 5 (Faraday - Inducción Electromagnética) Prof. C Carletti Asist. W. Reimers Problema 1 El campo magnético en una cierta región del

Más detalles

Guía de Preguntas de Inducción Electromagnética 2012-II

Guía de Preguntas de Inducción Electromagnética 2012-II UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Instrucciones:

Más detalles

Elementos almacenadotes de energía

Elementos almacenadotes de energía V Elementos almacenadotes de energía Objetivos: o Describir uno de los elementos importantes almacenadores de energía muy comúnmente utilizado en los circuitos eléctricos como es el Capacitor o Calcular

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

3) El campo magnético entre los polos del electroimán de la figura es uniforme en cualquier momento, pero su magnitud se incrementa a razón de 0.

3) El campo magnético entre los polos del electroimán de la figura es uniforme en cualquier momento, pero su magnitud se incrementa a razón de 0. 1) Una espira cuadrada de alambre encierra una área A1, como se indica en la figura. Un campo magnético uniforme perpendicular a la espira se extiende sobre el área A2. Cuál es el flujo magnético a través

Más detalles

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD - 24.11.15 NOMBRE: GRUPO: INSTRUCCIONES: Este examen consta de de cuatro componentes: Componente conceptual de 10

Más detalles

Tema Fuerza electromotriz inducida

Tema Fuerza electromotriz inducida Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES

CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES Las redes de ayuda a la conmutación sirven para proteger a los transistores mediante la mejora de su trayectoria de conmutación. Hay tres tipos básicos

Más detalles

Inductancia y Circuítos LRC

Inductancia y Circuítos LRC Inductancia Mutua Inductancia y Circuítos LRC un campo magnético en la bobina 2, creando un flujo magnético en 2 Φ B2 = M 21 i 1. De la ley de Faraday se tiene la fem inducida en 2 debido al cambio temporal

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Circuitos RC y RL. Circuitos de Segundo Orden. Capacitores y Circuitos RC. El Capacitor. El capacitor es un elemento pasivo capaz de almacenar y suministrar cantidades finitas

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS Av. Dr. Salvador Nava Mtz. S/N Zona Universitaria Teléfono 8-26-23-17, Fax 8-26-23-21 web www.fciencias.uaslp.mx, email escolar@fc.uaslp.mx

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONARIO GUÍAS ELECTIVO Electricidad IV: campo magnético, fuerza magnética SGUICEL013FS11-A16V1 Solucionario guía Electricidad IV: campo magnético, fuerza magnética Ítem Alternativa Habilidad 1 E Aplicación

Más detalles

Guía de Ejercicios de Inducción Electromagnética

Guía de Ejercicios de Inducción Electromagnética UNIVERSIDAD PEDAGÓGICA EXPERIMENTA IBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO UIS BETRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURAES PROGRAMA DE FÍSICA EECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple Física de PSI - Inducción electromagnética Preguntas de opción múltiple 1. Una espira de alambre se coloca en un campo magnético comienza a aumentar, Cuál es la dirección de la corriente 2. Una espira

Más detalles

FISI 3172 Examen Final Dic Sección u hora de clases

FISI 3172 Examen Final Dic Sección u hora de clases FISI 3172 Examen Final Dic. 2007 Nombre Sección u hora de clases Número Estud. Profesor Conteste cualesquiera 20 preguntas, pero solamente 20, de las siguientes preguntas. Escriba letras mayúsculas en

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 3. Inductancia Objetivo de la actividad Al finalizar la actividad serás capaz de: Definir los conceptos más importantes que definen a un inductor, y presentarlos en el uso de circuitos eléctricos.

Más detalles

Campo magnetico e inductores

Campo magnetico e inductores Campo magnetico e inductores Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos Campo Magnético Ley de inducción de Faraday Inductor Asociacion de inductores Circuitos RL

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

Corriente Directa. La batería se define como fuente de fem

Corriente Directa. La batería se define como fuente de fem Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA FISICA III SÍLABO CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y TELECOMUNICACIONES CODIGO CARRERA PRO.

FACULTAD DE INGENIERÍAS Y ARQUITECTURA FISICA III SÍLABO CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y TELECOMUNICACIONES CODIGO CARRERA PRO. FISICA III SÍLABO I.- DATOS GENERALES CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y CODIGO CARRERA PRO. : 29 ASIGNATURA : FÍSICA III CODIGO DE ASIGNATURA : 2902-29210 CÓDIGO DE SÍLABO : 2921030072014

Más detalles

Circuitos Eléctricos RL RC y RLC

Circuitos Eléctricos RL RC y RLC Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Reyes - Instrucciones -Tiene dos horas para resolver los

Más detalles

Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia

Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia Sensor de Voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuitos P51 LR Circuit.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario Cant.

Más detalles

4.5-Ecuaciones Exponenciales y Logarítmicas

4.5-Ecuaciones Exponenciales y Logarítmicas 4.5-Ecuaciones Exponenciales y Logarítmicas Instructor: Roberto C. Toro Rodríguez Curso: Precálculo I (MATE 3171) Semestre: Agosto-Diciembre Año: 2012-2013 Contenido Ecuaciones Exponenciales Ecuaciones

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna Corriente alterna A Conceptos 1 Corriente alterna y corriente directa En la corriente directa, o continua, la intensidad de la corriente puede disminuir, pero su polaridad, esto es, el sentido de circulación

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

Slide 1 / 48. Inducción electromagnética y la Ley de Faraday

Slide 1 / 48. Inducción electromagnética y la Ley de Faraday Slide 1 / 48 Inducción electromagnética y la Ley de Faraday Slide 2 / 48 Inducción electromagnética y la Ley de Faraday FEM inducida Ley de inducción de Faraday Ley de Lenz FEM inducida en un conductor

Más detalles

LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY ACOSTA TORRES JESID YESNEIDER CALDERON USECHE RICARDO GALIANO GUTIERREZ LUZ ESTHER JAIMES LEAL LUIS ANGEL PAVA MORALES HECTOR ANTONIO UNIVERSIDAD

Más detalles

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía

Más detalles

Capítulo 4. (Respuesta Natural de circuitos RL y RC) Circuitos RL y RC sin fuentes conectadas para t>0

Capítulo 4. (Respuesta Natural de circuitos RL y RC) Circuitos RL y RC sin fuentes conectadas para t>0 Capítulo 4 (Respuesta Natural de circuitos R y RC) Circuitos R y RC sin fuentes conectadas para t>0 En este capítulo se analizan circuitos Resistivos-inductivos (R-) y circuitos resistivos-capacitivos

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua Circuitos de corriente continua Capítulo 28 28 Física Sexta edición Paul Paul.. Tippens Circuitos simples; resistores en serie esistores en paralelo fem y diferencia de potencial terminal Medición n de

Más detalles

Inducción electromagnética. Electromagnetismo. Fuente de fem. Corrientes inducidas. Introducción El campo electromotor.

Inducción electromagnética. Electromagnetismo. Fuente de fem. Corrientes inducidas. Introducción El campo electromotor. nducción electromagnética Electromagnetismo Andrés Cantarero Grupo C. Curso 2005-2006 ntroducción El campo electromotor. Definición de fuerza electromotriz -Lenz de la inducción electromagnética nducción

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB

5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB A) CURSO Clave Asignatura 5692 Electrotecnia para Ingeniería I Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos Horas Totales 4 1 4 9 64 teoría 16 práctica

Más detalles

Electricidad y Magnetismo

Electricidad y Magnetismo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: Electricidad y Magnetismo IDENTIFICACIÓN

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012)

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012) UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012) I. CONTENIDO 1. DEFINICION DE MODELO DE SISTEMA 2. BLOQUES FUNCIONALES PARA

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Transformadores y Máquinas Síncronas (1131074)

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

Bases Físicas del Medio Ambiente. Inducción Magnética y Corriente de Circuitos de Corriente Alterna

Bases Físicas del Medio Ambiente. Inducción Magnética y Corriente de Circuitos de Corriente Alterna Bases Físicas del Medio Ambiente Inducción Magnética y Corriente de Circuitos de Corriente Alterna Programa XI. INDUCCIÓN EECTOMAGNÉTICA Y CICUITOS DE COIENTE ATENA (h) ey de inducción de Faraday. ey de

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

Capacitores y capacitancia

Capacitores y capacitancia Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica

Más detalles

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden APÍTULO 5 Aplicaciones de ED de segundo orden 5.3.3 ircuito de corriente continua V I L onsideremos ahora un circuito formado por un resistor, un capacitor y un inductor L conectados en serie con una fuente

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 (93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Capacitores y dieléctricos

Capacitores y dieléctricos Capacitores y dieléctricos Ejercicio 1: los capacitores del circuito de la figura valen C1=4 F; C2=6 F; C3=12,6 F; C4=2 F; C5=8 F. En régimen estacionario, calcule: a) la capacidad equivalente de la configuración;

Más detalles

10. La figura muestra un circuito para el que se conoce que:

10. La figura muestra un circuito para el que se conoce que: CORRIENTE ELÉCTRICA 1. Un alambre de Aluminio de 10m de longitud tiene un diámetro de 1.5 mm. El alambre lleva una corriente de 12 Amperios. Encuentre a) La Densidad de corriente b) La velocidad de deriva,

Más detalles

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado. Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Más detalles

Asignatura: Electromagnetismo Programa por objetivos

Asignatura: Electromagnetismo Programa por objetivos Asignatura: Electromagnetismo Programa por objetivos PRESENTACION Y ENCUADRE CARGA Y CAMPO ELÉCTRICO...3......3..4......3.3..3..3.3.3.4 CARGA ELECTRICA Evolución del concepto de carga eléctrica. Estructura

Más detalles

Elementos almacenadores de energía

Elementos almacenadores de energía Elementos almacenadores de energía Objetivos. Explicar los conceptos esenciales sobre capacitores e inductores, utilizando los criterios dados en el texto. 2. Ampliar los conocimientos sobre dualidad,

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

MICRODISEÑO CURRICULAR Nombre del Programa Académico

MICRODISEÑO CURRICULAR Nombre del Programa Académico 1. IDENTIFICACIÓN Asignatura Física de Campos Área Ciencias Básicas Nivel IV Código FCX 44 Pensum Correquisito(s) Prerrequisito(s) FMX23, CIX23 Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN. El

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO NIVEL: LICENCIATURA CRÉDITOS: 6 CLAVE: ICAB23000610 HORAS TEORÍA: 3 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

Fenómenos transitorios en circuitos de corriente continua.

Fenómenos transitorios en circuitos de corriente continua. R. Bürgesser, G. Farrher, E. Anoardo, M. Chesta CAPITULO 4 Fenómenos transitorios en circuitos de corriente continua. En electrodinámica un circuito RLC serie es un circuito lineal que contiene una resistencia

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles