Fuerza Centrípeta. Objetivos
|
|
|
- Veronica Gutiérrez Henríquez
- hace 8 años
- Vistas:
Transcripción
1 Fuerza Centrípeta 1 Fuerza Centrípeta Objetivos El objetivo es ilustrar el concepto de fuerza centrípeta mediante el estudio de un objeto que describe una trayectoria circular. El experimento a realizar consta de dos partes en las que se analiza la influencia sobre la rotación del radio de la trayectoria y de la fuerza centrípeta. Material 1 Plataforma de rotación con accesorios 1 Cronómetro 1 Carrete de hilo 1 Balanza 1 Juego de masas Dispositivo experimental El dispositivo experimental empleado en esta práctica es el mostrado en la Figura 1. Se trata de un carril horizontal giratorio montado sobre una base en forma de A. En el carril hay dos columnas verticales y una masa cuadrada de 300 g. Una de estas columnas se encuentra en una posición lateral (a la izquierda de la figura 1) y en ella hay suspendido un objeto cilíndrico. Cuando hacemos girar al carril (alrededor de un eje vertical que pasa por su centro), el objeto cilíndrico describe una trayectoria circular y, por tanto, está sometido a una fuerza centrípeta. La otra columna se encuentra en el centro del carril, coincidiendo con el eje de rotación del sistema, y contiene un muelle cuyo estiramiento se utilizará en lo sucesivo para compensar la fuerza centrípeta ejercida sobre el objeto cilíndrico. Para poder apreciar el estiramiento del muelle durante la rotación, la columna central también dispone de un soporte indicador de aluminio sujeto a ella, y Figura 1
2 Fuerza Centrípeta un anillo rojo unido al extremo inferior del muelle. Puesta a nivel de la base Antes de comenzar a realizar los distintos experimentos de esta práctica, es necesario ajustar el sistema de rotación para conseguir que éste se encuentre perfectamente horizontal. Para poner a nivel el sistema de rotación, sitúe el carril giratorio en la posición de la figura 3a, y compruebe que éste permanece en esa posición sin girar. Si no es así, ajuste el tornillo de nivel situado en el pie opuesto de la base hasta conseguirlo. Gire ahora el carril un ángulo de 90 grados (figura 3b) y compruebe que éste permanece en esa posición. Si es necesario, ajuste el tornillo de nivel situado en el otro pie de la base. Normalmente, el carril debe quedar ahora estable en cualquier posición. Una vez nivelada la base, procure que ésta no se mueva durante toda la práctica. Figura Figura 3 Fundamento teórico Cuando un objeto de masa m describe una trayectoria circular (horizontal) de radio r, la fuerza centrípeta ejercida sobre él viene dada por mv F = = mrω r siendo v la velocidad tangencial, y ω la velocidad angular (v=rω). (1) Para medir la velocidad, basta medir el tiempo empleado por el objeto en recorrer un círculo completo (es decir, el periodo T). Entonces πr v = T Sustituyendo () en la primera igualdad de (1), la fuerza centrípeta puede expresarse como 4π mr F = T () (3)
3 Fuerza Centrípeta 3 Método Experimental 1. Dependencia de F con T En esta primera parte de la práctica mantendremos constante la masa m del objeto y el radio r de su trayectoria. a) Pese el objeto cilíndrico y anote la masa. b) Cuelgue el objeto en la columna lateral A y ate la cuerda que une al objeto con el resorte central B, así como la cuerda que une al objeto con el portamasas suspendido (figura 4). c) Cuelgue una masa de unos 50 g en el hilo que pasa por la polea lateral y anote su valor. La fuerza ejercida sobre el objeto por el peso suspendido en el portamasas simula una fuerza de inercia constante. Figura 4 d) Desplace la columna A hasta situarla en un radio cualquiera (movimiento 1 de la figura 5). Apriete el tornillo de la columna para fijarla en esa posición (procure que la columna siga vertical). Anote el valor de este radio. Este valor del radio debe mantenerse fijo en toda esta parte de la práctica. e) Desplace verticalmente el soporte superior del muelle en la columna B hasta conseguir que la cuerda que sujeta a la masa cilíndrica m quede vertical y alineada con la columna A (movimiento de la Fig. 5). f) Desplace ahora el soporte inferior indicador de la columna B hasta situarlo a la misma altura que el anillo rojo unido al extremo inferior del muelle (movimiento 3 de la Fig. 5). Figura 5 g) Retire la masa y el hilo suspendido de la polea lateral. Esto modificará la posición del objeto m, que ya no estará suspendido verticalmente. h) Haga girar con la mano el aparato aumentando progresivamente la velocidad (véase figura 6) hasta que el indicador rojo quede de nuevo alineado con el soporte indicador de la columna B. Esto indica que el estiramiento del muelle es el necesario para que el objeto m se encuentre de nuevo alineado verticalmente en la columna A.
4 Fuerza Centrípeta 4 i) Manteniendo esa velocidad constante (aplicando rotación con la mano), mida el tiempo empleado por el sistema en recorrer 10 vueltas completas. Divida ese tiempo por 10 y anote el periodo (figura 6). Haga varias repeticiones. El indicador rojo debe estar siempre alineado con el soporte indicador. j) Repita todo el procedimiento anterior (excepto el apartado d) pero cambiando en cada caso la masa suspendida en la polea lateral. Utilice al menos 5 masas distintas (50g, 70g, 100g, 10g y 150g). k) El peso de la masa suspendida en la polea lateral es igual a la fuerza centrípeta ejercida en cada caso. Calcule el valor de dicha fuerza y anote los resultados en una tabla. Figura 6 l) Calcule el inverso del cuadrado del periodo (1/T ) para cada caso y anote el valor. m) Dibuje la gráfica de F frente a (1/T ) y calcule, por mínimos cuadrados, el valor de la pendiente junto con su error. n) Calcule la masa del objeto cilíndrico con su error a partir de la pendiente y la ecuación (3), y compárela con el valor obtenido directamente (pesando el objeto en una balanza)..- Dependencia de r con T En esta segunda parte de la práctica, mantendremos constantes tanto la fuerza centrípeta (F) como la masa del objeto cilíndrico (m). Despejando de (3), el radio de la trayectoria del objeto viene dado por F r = T 4π m (4) a) El procedimiento a seguir es idéntico al realizado en la parte anterior de esta práctica (desde el paso a hasta el paso i). Repita varias veces dicho procedimiento, pero ahora situando en cada caso la columna A en un total de al menos 4 distancias radiales distintas. Cerciorarse, para cada radio utilizado, de que el muelle mantiene alguna tensión cuando el sistema está en reposo y sin peso colgado. La masa suspendida del hilo debe permanecer constante (50g). Construya una tabla con los resultados. b) Calcule el cuadrado del periodo correspondiente a cada distancia radial y anote los resultados en la tabla.
5 Fuerza Centrípeta 5 c) Dibuje la gráfica de r frente a T y calcule, por mínimos cuadrados, el valor de la pendiente junto con su error d) Calcule el valor de la fuerza centrípeta F a partir de la pendiente y compararla con el valor del peso del objeto suspendido de la polea. NOTA : Incluya el detalle de los cálculos efectuados para obtener los distintos resultados experimentales (junto con sus errores) de esta práctica.
UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA
FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.
ESTUDIO DE LA FUERZA CENTRÍPETA
Laboratorio de Física General Primer Curso (ecánica) ESTUDIO DE LA FUERZA CENTRÍPETA Fecha: 07/02/05 1. Objetivo de la práctica Verificación experimental de la fuerza centrípeta que hay que aplicar a una
Departamento de Física Laboratorio de Mecánica FUERZA CENTRÍFUGA
Departamento de Física Laboratorio de Mecánica FUERZA CENTRÍFUGA 1. Objetivos El objetivo de esta práctica es la determinación de la fuerza centrífuga a que es sometido un objeto en trayectoria curvilínea
Pontificia Universidad Católica de Chile Facultad de Física. Giróscopo
Pontificia Universidad Católica de Chile Facultad de Física Giróscopo A un giróscopo inicialmente balanceado en posición horizontal, ϴ = π/2, se le aplica un torque al colgar una masa m en el extremo de
DINÁMICA DE ROTACIÓN DE UN SÓLIDO
Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor
Práctica Módulo de torsión
Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas
Inercia Rotacional. Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos.
Objetivo. Inercia Rotacional Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos. Introducción. La inercia rotacional (o de rotación) de
MOMENTO DE INERCIA 1. I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico
1 MOMENTO DE INERCIA 1 I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico II TEORIA: Un cuerpo rígido es un sistema constituido por muchas partículas de masa m i tal que
LABORATORIO DE MECANICA INERCIA ROTACIONAL
No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
LABORATORIO DE MECANICA FUERZA CENTRÍPETA
8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta
Movimiento armónico. Péndulos físico y de torsión.
Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante
Docente: Angel Arrieta Jiménez
CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.
Física: Movimiento circular uniforme y velocidad relativa
Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11
NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia
Districte universitari de Catalunya
SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
Dinámica en dos o tres dimensiones
7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el
OSCILACIONES ACOPLADAS
OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.
Mecánica del Cuerpo Rígido
Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.
C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas
C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas Repaso general Física Mecánica ( I. Caminos Canales y Puertos) 1. El esquema de la figura representa
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.
EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido
FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO
4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión
Departamento de Física TALLER DE MECÁNICA
TALLER DE MECÁNICA 1. Usted esta de pie sobre un asiento de una silla, y luego salta de ella. Durante el tiempo que usted esta en el aire y cae al piso, la Tierra hacia arriba con usted, (a) con una aceleración
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.
EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido
FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO
8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa
COLISIONES EN DOS DIMENSIONES
Objetivo COLISIONES EN DOS DIMENSIONES Estudiar las leyes de conservación del momento lineal y la energía mecánica en colisiones elásticas en dos dimensiones. Equipo Plano inclinado con canal de aluminio,
EXPRESION MATEMATICA
TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales
DETERMINACIÓN EXPERIMENTAL DE LA EXISTENCIA DE LA FUERZA CENTRÍPETA
Resumen DETERMINACIÓN EXPERIMENTAL DE LA EXISTENCIA DE LA FUERZA CENTRÍPETA José Luis Greco [email protected] en colaboración con alumnos del 1º año, Polimodal en Ciencias Naturales Colegio San Lucas [email protected]
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
RIZO EN EL PLANO VERTICAL
IZO EN EL PLANO VETICAL Una pequeña masa está colgada de un hilo fino de longitud L. Apartamos dicha masa 90º de su posición de equilibrio de manera que el hilo queda tenso y horizontal, y la soltamos.
Fig. 1. P Exp. Campo magnético de un imán y campo magnético terrestre.
P Exp. Campo magnético de un imán y campo magnético terrestre. Objetivos Como bien sabe, el campo gravitatorio creado por una partícula decrece con el cuadrado de la distancia. Pero, sabe con qué potencia
Guía realizada por: Pimentel Yender.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR
INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3
INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
Aplicaciones de los Principios de la Dinámica. 1 Bachillerato
Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.
7. PÉNDULO DE TORSIÓN
7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento
Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante
Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se
Unidad: Momento Angular
Unidad: Momento Angular Has visto alguna vez una bailarina de ballet que gira muy rápido cuando cierra sus brazos? Este fenómeno puede describirse usando una variable física conocida como momento angular,
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.
1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición
PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)
FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL
1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.
Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.
Experiencia P13: Principio de Arquímedes Sensor de fuerza
Experiencia P13: Principio de Arquímedes Sensor de fuerza Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Principio de P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Arquímedes Equipo
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA
Experiencia P14: Movimiento armónico simple Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento armónico P14 SHM.DS P19 SHM Mass on a Spring P19_MASS.SWS
Prácticas de Electromagnetismo
Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII UPM Guión práctica 2.- Medida del campo magnético terrestre. Coordinador: Profesores: Dª Sara Lauzurica Santiago D. Miguel Castro
Movimiento Circular. Matías Enrique Puello Chamorro 27 de enero de 2014
Movimiento Circular Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 27 de enero de 2014 Índice 1. Introducción 3 2. Movimiento circular uniforme 4 3. Cinemática del movimiento circular 5
Ejercicios Dinámica. R. Tovar.
Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los
LEY DE HOOKE Y OSCILADOR MASA-RESORTE
PRÁCTICA DE LABORATORIO I-06 LEY DE HOOKE Y OSCILADOR MASA-RESORTE "... Ut tensio, sic vis..." (tal como la extensión asi es la fuerza) Robert Hooke, 1676 OBJETIVOS Verificar la ley de Hooke y determinar
Péndulo de torsión y momentos de inercia
Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar
Magnetismo e inducción electromagnética. Ejercicios PAEG
1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se
PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE
INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple
1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de
1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
Guía de Materia Movimiento circular
Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura
DPTO. FISICA APLICADA II - EUAT
Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema
PRÁCTICA NÚMERO 1 ESTUDIO DE LOS IMANES
PRÁCTICA NÚMERO 1 ESTUDIO DE LOS IMANES I. Objetivos. 1. Identificar los polos de un imán. 2. Estudiar la interacción que existe entre los polos de los imanes. 3. Medir la fuerza que se ejercen dos imanes
Campo eléctrico. Fig. 1. Problema número 1.
Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO
Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio
Movimiento y Dinámica circular
SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
PRÁCTICA NÚMERO 7 ESTUDIO DE LOS IMANES
PRÁCTICA NÚMERO 7 ESTUDIO DE LOS IMANES I. Objetivos. 1. Identificar los polos de un imán. 2. Estudiar la forma como interactuan los polos de los imanes. 3. Medir la fuerza que se ejercen dos imanes entre
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 5. Construcción de un voltímetro y un óhmetro 5.1. Objeto de la práctica El objeto
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática
1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un
LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?
LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
MOVIMIENTO CIRCULAR UNIFORME (MCU) = t
U S O: FÍSIA Mención MATEIAL: FM-08 MOVIMIENTO IULA UNIFOME (MU) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria descrita
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA
Problemas de Física 1º Bachillerato 2011
Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
NIVEL ÓPTICO X 32 MANUAL DE USO REF. 5330
www.medid.es MEDID PRECISION SA C/ Rec Comtal, 9 08003 Barcelona (Spain) VENTAS Tels. : 933.190.966 / 681 Fax: 933.199.502 E-mail: [email protected] EXPORT Tel. (+34) 933.190.450 Fax. (+34) 933. 190. 558
TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012
TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple
PRÁCTICA 4 ESTUDIO DEL RESORTE
INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos
MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1
MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. 1 Introducción. La dinámica de cuerpos rígidos constituye el caso especial, en que un sistema de partículas
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P09 Push Pull.ds P12 Push-Pull a Cart P12_PUSH.SWS
PROBLEMAS COMPLEMENTARIOS
Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =
2. ONDAS TRANSVERSALES EN UNA CUERDA
2. ONDAS RANSVERSALES EN UNA CUERDA 2.1 OBJEIVOS Analizar el fenómeno de onda estacionaria en una cuerda tensa. Determinar la densidad lineal de masa de una cuerda. Estudiar la dependencia entre la frecuencia
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
CERTAMEN GLOBAL FIS110 FORMA R (Jueves 7 de diciembre 2006) FORMULARIO
AEIDO ATENO, ATENO, NOBES O US CETAEN GOBA FIS11 FOA (Jueves 7 de diciembre 6) DESAOO O FUNDAENTACIÓN O ESCITO. alas y omitidas NO dan puntaje arcar las OITIDAS en Hoja de espuestas FOUAIO g 1 [m/s dy
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
