CORRIENTE ELECTRICA Y RESISTENCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CORRIENTE ELECTRICA Y RESISTENCIA"

Transcripción

1 COIENTE ELECTICA Y ESISTENCIA Corriente eléctrica Si se conecta una batería en los extremos de un conductor de longitud L y se mantiene una diferencia de potencial, se forma un campo eléctrico de magnitud / L en el conductor. Este campo eléctrico E actúa sobre los electrones y les da un movimiento neto en el sentido opuesto a E. Si se mantuviera esta diferencia de potencial, las cargas circularían indefinidamente. Pero una batería puede mantener la corriente mientras pueda convertir energía química en energía eléctrica, y con el tiempo se agota, por lo cual no puede mantener la diferencia de potencial. Si a través de cualquier superficie pasa una carga neta dq en un intervalo de tiempo dt, se establece una corriente eléctrica i i dq / dt Unidad (SI): Ampere (A) Coulomb Ampére s La carga neta que pasa a través de un conductor (un plano transversal) en cualquier intervalo se halla al integrar la corriente: q i dt Si la corriente es constante en el tiempo, la carga q que fluye en el tiempo t determina la corriente i q / t La corriente eléctrica i es la misma en todas las secciones transversales de un conductor, aun cuando el área de la sección transversal sea diferente en diferentes puntos. Convención para designar en sentido de la corriente Las cargas de signo opuesto se mueven en sentidos opuestos en un campo dado. Una carga positiva que se mueve en determinada dirección es equivalente en casi todos los efectos externos a una carga negativa que se mueve en la dirección opuesta.

2 La dirección de la corriente es la dirección en que se mueven las cargas positivas, aun cuando los mismos portadores de carga sean negativos. Los circuitos se analizan sin tomar en cuenta si los portadores de carga son positivos o negativos. Las corrientes se suman como escalares, no como vectores. Densidad de corriente La corriente es una característica de un conductor en particular. Es una cantidad macroscópica (como la masa, el volumen o la longitud). Una cantidad microscópica relacionada es la densidad de corriente J. J es un vector característico de un punto dentro de un conductor. Si la corriente i se distribuye uniformemente en un conductor de sección transversal A, J para todos los puntos de esa sección es: J i / A J se orienta en la dirección en que se movería un portador de carga positiva en ese punto. (Un electrón en ese punto se mueve en dirección J). En general, para una superficie en particular que corte un conductor (no necesariamente plana), i es el flujo del vector J sobre esa superficie. I J da d J / ne d es la velocidad de arrastre de los electrones esistencia, resistividad y conductividad Aplicando la misma diferencia de potencial entre los extremos de barras de distinto material pero geométricamente similares, se obtienen corrientes resultantes muy diferentes. Determinamos la resistencia de un conductor entre dos puntos aplicando una diferencia de potencial entre dichos puntos y midiendo la corriente i que resulta / i Unidad (SI): Ohm( ) olt Ampére

3 Un conductor cuya función en un circuito es proporcionar determinada resistencia se llama resistor Símbolo: elacionada con la resistencia está la resistividad que es característica de cada material en particular. / m E / J m A/ m E y J son vectores E J Estas ecuaciones son válidas para materiales isotrópicos (sus propiedades eléctricas son las mismas en todas direcciones). Algunas sustancias no se pueden clasificar fácilmente como conductores o aisladores. Los plásticos tienen resistividades grandes (aisladores en el alambrado eléctrico doméstico), pero si están contaminados su conductividad puede ser igual a la del cobre. La conductividad de un material es la recíproca de la resistividad Unidad (SI): m / La ecuación E. J se puede escribir J E Si conocemos la resistividad de un material, deberíamos poder calcular la resistencia de un pedazo en particular del material. Para un conductor cilíndrico, con un área de sección transversal A y longitud L por el cual fluye una corriente estable i con una diferencia de potencial entre sus extremos, si las secciones transversales del cilindro son superficies equipotenciales, el campo eléctrico y la densidad de corriente son constantes para todos los puntos en el cilindro. E / L y J i / A / L E / J pero / i i / A A L L A Esta ecuación solo se aplica a un conductor homogéneo e isotrópico de sección transversal uniforme sometido a un campo eléctrico uniforme. ariación de la resistividad con la temperatura La resistividad de los conductores metálicos, en general aumenta con el aumento de la temperatura. Esto se debe a que al aumentar el estado de agitación térmica 3

4 de las partículas del material, aumenta la proporción de choques de los electrones con los iones. Cada vez que un electrón choca con un ión, es desviado al azar y pierde su tendencia a moverse según la fuerza eléctrica. Esto reduce la corriente. La resistividad de un metal se expresa: = coeficiente medio de temperaturas ( T) T T 0 0 ( T 0) 0 0 T Para el cobre la variación de la resistividad con la temperatura tiene una relación casi lineal dentro de ciertos límites: (-00º a 400º) Ley de Ohm d dt Un dispositivo conductor obedece la ley de Ohm si la resistencia entre cualquier par de puntos es independiente de la magnitud y polaridad de la diferencia de potencial aplicada. Su gráfica contra i es lineal. La relación i no es un enunciado de la ley de Ohm. / i es una definición general de la resistencia de un conductor ya sea que obedezca la ley de Ohm o no. La validez de la ecuación que denominamos ley de Ohm es bastante limitado; es una expresión empírica que describe con precisión el comportamiento de numerosos materiales en el rango de valores de típicamente utilizados en los circuitos eléctricos. Los materiales que responden a esta expresión se denominan óhmicos y los que no no óhmicos. El equivalente microscópico de la relación i es E J Transferencias de energía en un circuito eléctrico La batería B está conectada a una caja negra. La energía potencial de una carga dq que se mueve a través de la caja de a hasta b disminuye en dq ab. Por el principio de la conservación de la energía, hay una transferencia de energía eléctrica a alguna otra forma dentro de la caja, que dependerá de lo que haya en la caja. du dq i dt ab ab 4

5 La cantidad de energía transferida o potencia es P du dt Si la caja es un motor, la energía aparece en gran parte como trabajo mecánico realizado por el motor. Si el dispositivo es un acumulador que está siendo cargado, la energía aparece en gran parte como energía química almacenada en esta segunda batería. Si el dispositivo es un resistor, aparece como energía interna (asociada con el movimiento atómico, y observada quizás, como un aumento en la temperatura). El recorrido de un electrón a través de un resistor es muy parecido al de una piedra en el agua. En promedio los electrones viajan con una velocidad de arrastre d constante, no ganan energía cinética. Pierden energía eléctrica en las colisiones con los átomos del resistor. De esto resulta que las amplitudes de las vibraciones atómicas aumentan, lo que en escala macroscópica corresponde a un aumento de la temperatura. i a b Sabiendo que Obtenemos / i y P i a Ley de Joule b i / P / Calentamiento de Joule i P i Unidad (SI): P [ olt Ampere] Joule Coulomb Coulomb s Joule s Watt Combinación de resistencias en serie y en paralelo A) esistencias en serie: Dos o más resistencias conectadas en serie no acumulan Q en ningún punto. I I I ( ) eq B) esistencias en paralelo: Cuando dos o más resistencias están conectadas en paralelo se establece entre ellas la misma diferencia de potencial. I I I I I eq / I eq I / eq I I 5

6 De interés para estudiantes de Ciencias Naturales Electroforesis La electroforesis es una técnica eficaz de separación y análisis de las mezclas de proteínas halladas en la sangre humana y en otros materiales biológicos. Se basa en el hecho de que las velocidades de arrastre de las moléculas en un campo eléctrico dependen de sus masas. Cuando se coloca una disolución en un campo eléctrico, las moléculas grandes de proteínas con una carga eléctrica de unas pocas veces la carga del electrón, pero con masas de miles de uma, experimentan pequeñas aceleraciones. Así, su velocidad de arrastre es mucho menor que la de los pequeños iones tales como Na + o Cl -. En la técnica electroforética más corriente en los diagnósticos médicos se coloca un extremo de una tira de papel de filtro humedecido en la disolución de proteínas. Se aplica una diferencia de potencial entre los extremos de la cinta y las moléculas de proteínas de diversos tamaños emigran por la tira a diferentes velocidades. Si el proceso se detiene al cabo de un rato, las distintas proteínas habrán recorrido distancias diferentes, y separado en varios componentes. Al comprobar con configuraciones electroforéticas patrones, se puede determinar si hay o no anomalías en la disolución estudiada. Técnicas electroforéticas más elaboradas pueden separar hasta unas 40 proteínas distintas del plasma de la sangre humana. La estructura de las células nerviosas Conducción nerviosa Una célula nerviosa está separada del medio que la rodea por una membrana que restringe el flujo de materiales. Sin embargo, su forma es muy particular. Del cuerpo central de la célula o cuerpo celular, irradian unas protuberancias llamadas dendritas, así como una estructura larga y fina denominada axón. Los axones, usualmente tienen un diámetro entre y 0 μm y pueden ser bastante largos. Por ejemplo, los nervios que controlan los músculos tienen sus cuerpos celulares en la columna vertebral. Como algunos axones llegan hasta el pie, pueden llegar a medir un metro. Las dendritas son en general más cortas y más estrechas, pero como el axón, pueden tener diversas ramificaciones. Una célula nerviosa puede influir sobre otra en puntos denominados sinapsis, donde las dendritas entran en contacto funcional. Enrolladas alrededor de algunos axones de animales superiores hay células de Schwann, que forman una vaina de mielina de varias capas y reducen la capacidad eléctrica de la membrana, al tiempo que aumentan su resistencia eléctrica. Esta vaina permite que un pulso nervioso se propague más largo trecho sin amplificación, reduciendo así la energía metabólica que necesita la célula nerviosa. 6

7 Cada célula de Schwann tiene aproximadamente mm de longitud, pero la distancia entre células de Schwann sucesivas es sólo de μm. En estos cortos espacios entre células sucesivas, denominados nodos de anvier, el axón está en contacto directo con el líquido intersticial circundante. Precisamente en estos nodos se lleva a cabo la amplificación de los pulsos nerviosos en un nervio revestido de mielina. Así, un axón revestido de mielina se parece a un cable submarino intercontinental, con amplificadores periódicos que evitan que las señales lleguen a ser demasiado débiles. Por el contrario, en los axones sin mielina, las señales se debilitan en distancias muy cortas y se necesita una amplificación casi continua. esistencia y capacidad eléctrica de un axón Podemos comprender muchas de las propiedades eléctricas de un axón con la ayuda de un modelo que lo asimila a un cable eléctrico recubierto con un aislante defectuoso, de tal forma que se pierde corriente hacia los alrededores en muchos puntos. Para ser más precisos, supongamos que el axón consiste en una membrana cilíndrica que contiene un líquido conductor, el axoplasma. La corriente puede viajar a lo largo del axón en este fluido y también puede escapar a través de la membrana. Las propiedades eléctricas del axón vienen determinadas por ciertas magnitudes. La resistencia de corriente i axón a lo largo del axón es proporcional a la resistividad del axoplasma ρ a. La resistencia por unidad de área de membrana a la corriente de pérdida i pérd se denomina m. La membrana también tiene capacidad eléctrica, ya que a ambos lados de la misma se acumulan cargas eléctricas de signo opuesto. La carga por unidad de superficie dividida por la diferencia de potencial resultante es la capacidad eléctrica por unidad de área, C m. esumiendo: Flujo de carga La corriente eléctrica caracteriza la carga que fluye a través de un elemento de dq circuito I dt Densidad de corriente J I / A 7

8 esistencia I A Ley de Ohm I La ley es válida sólo para conductores cuya gráfica contra I es lineal. esistividad y conductividad Potencia P I I Ley de Joule o Calentamiento de Joule esistencias en serie eq... n esistencias en paralelo... eq n Ejemplos ) Un alambre de cobre tiene una sección transversal cuadrada de,3 mm por lado. El alambre mide 4 m de largo y transporta una corriente de 3,6 A. Averiguá la magnitud de: (a) la densidad de corriente en el alambre y (b) el campo eléctrico en el alambre. espuestas: (a) 0,68 X 0 6 A/m, (b),7 X 0 - /m. ) La máxima corriente recomendada para un alambre de cobre de,03 mm de radio (A = 3,3 X 0-6 m ) de los que se utiliza en las viviendas es de 0 A. (a) Qué resistencia tendrá un trozo de longitud l =,0 m de este alambre? (b) Qué diferencia de potencial habrá que aplicar entre sus extremos para que pase una corriente de 0 A? espuestas: (a) 5,05 ma; (b) 00 m 8

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la ngeniería Primer curso de ngeniería ndustrial Curso 2009/2010 Dpto. Física plicada 1 Índice ntroducción Corriente eléctrica Sentido de la corriente

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Introducción. Corriente y movimiento de cargas

Introducción. Corriente y movimiento de cargas Introducción Cuando se enciende una luz, conectamos el filamento metálico de la bombilla a través de una diferencia de potencial, lo cual hace fluir la carga eléctrica por el filamento de un modo parecido

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

Introducción a los circuitos eléctricos

Introducción a los circuitos eléctricos Introducción a los circuitos eléctricos La materia está compuesta por moléculas y éstas por átomos. Los átomos, a su vez, están formados por un núcleo y una corteza. El núcleo consta de partículas con

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de

Más detalles

Bolilla 9: Corriente Eléctrica

Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

TEMA 10 Corriente eléctrica y magnetismo

TEMA 10 Corriente eléctrica y magnetismo ases Físicas y Químicas del Medio Ambiente Corriente eléctrica Alambre metálico TEMA 10 Corriente eléctrica y magnetismo iones positivos En un metal las cargas negativas se mueven libremente alrededor

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Tema 3. Introducción a los circuitos eléctricos.

Tema 3. Introducción a los circuitos eléctricos. Tema 3. Introducción a los circuitos eléctricos. Objetivo: El alumno analizará el comportamiento de circuitos eléctricos resistivos, en particular, calculará las transformaciones de energías asociadas

Más detalles

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere

Más detalles

Consideremos la siguiente situación:

Consideremos la siguiente situación: Consideremos la siguiente situación: E Cuando un campo eléctrico se establece en un conducto cualquiera, las cargas libres ahí presentes entran en movimiento debido en la acción de este campo. Se entiende

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 10.Corriente eléctrica y Resistencia. i. El movimiento de la carga eléctrica. ii.

Más detalles

Resistencia eléctrica

Resistencia eléctrica CAPÍTUO 12 148 Capítulo 12 ETENCA EÉCTCA interacciones campos y ondas / física 1º b.d. esistencia eléctrica Una batería genera entre sus bornes una ddp aproximadamente constante. (Fig.1) i conectamos diferentes

Más detalles

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor. Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de

Más detalles

Unidad 4. Circuitos eléctricos

Unidad 4. Circuitos eléctricos Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

ASIGNATURA: FÍSICA III

ASIGNATURA: FÍSICA III UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 7 (SEMANA 7) TEMA: ELECTRODINÁMICA.

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

I = t C. La intensidad de corriente eléctrica se mide en Amperios, esto es,. s

I = t C. La intensidad de corriente eléctrica se mide en Amperios, esto es,. s 4. ELECTOMAGNETISMO 4.. CICUITOS DE COIENTE ELÉCTICA CONTINUA En este apartado nos ocuparemos de la fenomenología relacionada con las cargas eléctricas en movimiento, es decir, con la corriente eléctrica

Más detalles

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS 1. Tres resistencias de 10, 20 y 30 ohm se conectan en serie a una fuente de 25 volts, encuentra: a) La resistencia total del circuito. b) La corriente que fluye por

Más detalles

Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas

Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas Objetivos Interpretar el código de colores de una serie de resistencias. Medir la resistencia eléctrica de

Más detalles

Producida por. Cargas eléctricas

Producida por. Cargas eléctricas Electricidad Producida por Cargas eléctricas Hay de dos tipos Positivas Negativas Un cuerpo las adquiere por Frotamiento Contacto Inducción LEY DE COULOMB La fuerza de atracción o repulsión entre dos objetos

Más detalles

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.

Más detalles

Física 3 - Turno : Mañana

Física 3 - Turno : Mañana Física 3 - Turno : Mañana Guía N 3 - Primer cuatrimestre de 2010 Corrientes estacionarias, ley de Ohm, teorema de Thevenin, transferencia de potencia, conexiones de resistencias. 1. Calcular la resistencia

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

* Energía en circuitos eléctricos. Ley de Joule.

* Energía en circuitos eléctricos. Ley de Joule. Tema 2: Electrocinética * Intensidad de corriente eléctrica. * esistencia. Ley de Ohm. * Energía en circuitos eléctricos. Ley de Joule. * Generadores y fem. * Leyes de Kirchhoff. Aplicaciones - Conexiones

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Física Electricidad 1

Física Electricidad 1 CARGA Y CORRIENTE ELÉCTRICA Tipos de cargas Conductores y aisladores Interacciones eléctricas Métodos de electrización Voltaje Corriente eléctrica Ley de Ohm Potencia y ley de Joule Circuitos Eléctricos

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

Conceptualizando en torno a los circuitos

Conceptualizando en torno a los circuitos Conceptualizando en torno a los circuitos Es tan común la aplicación del circuito eléctrico en nuestros días que tal vez no le damos la importancia que tiene. El automóvil, la televisión, la radio, el

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Capítulo 27 Corriente y Resistencia

Capítulo 27 Corriente y Resistencia Capítulo 27 Corriente y Resistencia Es como movimiento a Través de un Fluido La fuerza original (en este ejemplo, gravedad) causa movimiento pero eventualmente es cancelada por la fuerza de fricción. Cuando

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias.

Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias. Física 3 Guia 3 - Corrientes estacionarias 1 cuat. 2014 Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias. 1. Calcular la resistencia eléctrica de una plancha, una estufa de cuarzo, una

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Capítulo 4: Circuitos de corriente continua

Capítulo 4: Circuitos de corriente continua Capítulo 4: Circuitos de corriente continua Corriente promedio: carga que pasa por A por unidad de tiempo Corriente Instantánea [ I ] = C/s = A (Ampere) J = q n v d Ley de Ohm George Simon Ohm (1789-1854)

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica 1(8) Ejercicio nº 1 Un alambre de aluminio está recorrido por una corriente eléctrica de 30 ma. Calcula la carga eléctrica que atraviesa una sección recta del alambre cada media hora. Ejercicio nº 2 Una

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA CORRIENTE Y DENSIDAD DE CORRIENTE. La corriente eléctrica se define como la circulación o movimiento ordenado de cargas,

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

3. Al conectar a un tomacorriente de 220 V una estufa cuya resistencia es R = 30 Ω. Qué intensidad de corriente circula por ella?

3. Al conectar a un tomacorriente de 220 V una estufa cuya resistencia es R = 30 Ω. Qué intensidad de corriente circula por ella? 3. CIRCUITOS ELÉCTRICOS PROBLEMAS 1. Una corriente uniforme de 0,5 A fluye durante 2 minutos. a) Cuánta carga pasa a través del área transversal de uno de sus cables de conexión durante ese tiempo? b)

Más detalles

Física. Campo Eléctrico. El Generador de Van de Graaff

Física. Campo Eléctrico. El Generador de Van de Graaff Física Campo Eléctrico El Generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

FÍSICA II PRÁCTICO 5 Corriente continua

FÍSICA II PRÁCTICO 5 Corriente continua FÍSICA II PRÁCTICO 5 Corriente continua Ejercicio 1 Se considera un cable de plata de 1 mm 2 de sección que lleva una corriente de intensidad 30A. Calcule: a) La velocidad promedio de los electrones suponiendo

Más detalles

Test de Electricidad - Copia #1. Parte 1. Nombre: Nota: / Test de Electricidad. Curso º Grado Biología

Test de Electricidad - Copia #1. Parte 1. Nombre: Nota: / Test de Electricidad. Curso º Grado Biología Nombre: Nota: / Test de Electricidad - Copia #1 Test de Electricidad. Curso 2012-13. 1º Grado Biología Parte 1 1 Una carga de valor q= 1.0 nc se encuentra situada en el plano x-y en el punto ( 1,0). Consideremos

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

Nombre: Fecha: Grupo: Grado:

Nombre: Fecha: Grupo: Grado: SECRETARÍA DE EDUCACIÓN PÚBLICA ADMINISTRACIÓN FEDERAL DE SERVICIOS EDUCATIVOS EN EL D.F. DIRECCIÓN GENERAL ESC SEC TEC 66 FRANCISCO J. MUJICA 2015-2016 PROFESORA: MA. DELOS ÁNGELES COCOLETZI G. TURNO

Más detalles

Bloque 1. Las magnitudes físicas y su medida

Bloque 1. Las magnitudes físicas y su medida Bloque 1. Las magnitudes físicas y su medida El sistema métrico decimal El sistema internacional de unidades Conversiones de unidades con factores de conversión. Unidades compuestas Magnitudes escalares

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1 Nº GUÍA PRÁCTICA Electricidad II: circuitos eléctricos Ejercicios PSU 1. La corriente continua es generada por I) pilas. II) baterías. III) alternadores. Es (son) correcta(s) A) solo I. B) solo II. C)

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

Unidad 2: Electricidad. Departamento de Tecnoloxía do IES de Pastoriza

Unidad 2: Electricidad. Departamento de Tecnoloxía do IES de Pastoriza Unidad 2: Electricidad Departamento de Tecnoloxía do IES de Pastoriza Qué vamos a aprender? 1. Qué es la electricidad? 2.Magnitudes eléctricas 3.Ley de Ohm 4.Circuíto eléctrico: elementos 1. Generadores

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

FES. Electrones libres en los metales. Modelo de Sommerfeld.

FES. Electrones libres en los metales. Modelo de Sommerfeld. . Suponemos que el sólido metálico se puede modelizar de acuerdo a las siguientes hipótesis: 1. En el metal existen los denominados electrones de conducción que están constituidos por todos los electrones

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua Circuitos de corriente continua Capítulo 28 28 Física Sexta edición Paul Paul.. Tippens Circuitos simples; resistores en serie esistores en paralelo fem y diferencia de potencial terminal Medición n de

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Corriente Directa. La batería se define como fuente de fem

Corriente Directa. La batería se define como fuente de fem Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

DISEÑO CURRICULAR FÍSICA II

DISEÑO CURRICULAR FÍSICA II DISEÑO CURRICULAR FÍSICA II FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE PRE-REQUISITO 123343 02 02 03 III FÍSICA I ELABORADO

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de

Más detalles

Corriente eléctrica. Ley de Ohm.

Corriente eléctrica. Ley de Ohm. Corriente eléctrica. Ley de Ohm. Un conductor en un campo eléctrico: condiciones dinámicas Un conductor en un campo eléctrico: condiciones dinámicas E 0 dentro del conductor. El ciclo continuo de electrones

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica

FISICA III. Departamento de Física y Química Escuela de Formación Básica : FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 4 - INTERACCIÓN MAGNÉTICA Temas: Movimiento de cargas en un campo magnético. Fuerzas sobre conductores. Torque

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

MEDIDA DE RESISTENCIAS Puente de Wheatstone

MEDIDA DE RESISTENCIAS Puente de Wheatstone MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA FS0310 FISICA GENERAL II Créditos: 3 Correquisito: FS-311 Requisitos: FS-210, FS-211, MA-1002 ó MA-2210 Horas por semana: 4 JUSTIFICACION

Más detalles

El término magnetismo

El término magnetismo El término magnetismo tiene su origen en el nombre que en Grecia clásica recibía una región del Asia Menor, entonces denominada Magnesia (abundaba una piedra negra o piedra imán capaz de atraer objetos

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles