Curso Básico de Computación Preliminares

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Básico de Computación Preliminares"

Transcripción

1 Curso Básico de Computación Preliminares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) Preliminares / 11

2 1 Preliminares 1.1 Cadenas, alfabetos y lenguajes Un símbolo es un ente abstracto que no se puede definir formalmente. Letras o dígitos son ejemplos que frecuentemente usan símbolos. Una cadena (o palabra) es una secuencia finita de símbolos. Por ejemplo: a, b y c son símbolos y abcb es una cadena. La longitud de una cadena w, denotada por w, es el número de símbolos que componen la cadena. Por ejemplo: abcb tiene longitud 4. La cadena vacía, denotada porǫ, es la cadena que contiene cero símbolos. Así ǫ = 0. Curso Básico de Computación (Matemáticas) Preliminares / 11

3 Un prefijo de una cadenaαes cualquier secuencia con los primeros n símbolos de la cadena (donde 0 n α ), y un sufijo es cualquier secuencia con los últimos n símbolos de la cadena. Por ejemplo: la cadena abc tiene prefijosǫ, a, ab y abc; y los sufijos sonǫ, c, bc y abc. Curso Básico de Computación (Matemáticas) Preliminares / 11

4 La concatenación de dos cadenas es una cadena formada por la primera seguida de la segunda, sin espacio. Es decir, si w y x son cadenas, entonces wx es la concatenación de esas dos cadenas. La cadena vacía es la identidad para el operador concatenación. Es decir, ǫw = wǫ = w para cada cadena w. Curso Básico de Computación (Matemáticas) Preliminares / 11

5 Un albafeto es un conjunto finito de símbolos. Un lenguaje formal es un conjunto de cadenas de símbolos de algún alfabeto. El conjunto vacío,, y el conjunto que contiene a la cadena vacia{ǫ} son lenguajes. El conjunto de palíndromos (cadenas que se leen igual de izquierda a derecha que de derecha a izquierda) sobre el alfabeto {0, 1} es un lenguaje infinito. Otro lenguaje es el conjunto de todas las cadenas sobre un alfabeto fijo Σ. Denotamos a este lenguaje por Σ. Por ejemplo, si Σ ={a}, entonces Σ ={ǫ, a, aa, aaa,...}. Curso Básico de Computación (Matemáticas) Preliminares / 11

6 1.2 Gráficas y árboles Una gráfica, denotada por G = (V,E), consiste de un conjunto finito de vértices (o nodos) V y un conjunto de pares de vértices E llamadas aristas. Una gráfica se muestra en la siguiente figura, donde V ={1, 2, 3, 4, 5} E ={(n, m) n + m = 4 o n + m = 7} Curso Básico de Computación (Matemáticas) Preliminares / 11

7 Un camino en una gráfica es una secuencia de vértices v 1, v 2,..., v k, k 1, tal que existe una arista (v i, v i+1 ) para cada i, 1 i< k. La longitud de un camino es k 1. Por ejemplo, 1,3, 4 es un camino para la gráfica anterior, también lo es 5. Si v i = v k, el camino es un ciclo. Curso Básico de Computación (Matemáticas) Preliminares / 11

8 Gráficas dirigidas Una gráfica dirigida (o digráfica), denotada por G = (V,E), consiste de un conjunto finito de vértices V y un conjunto de pares ordenados de vértices E llamados arcos. Se denota un arco de v a w por v w. Un ejemplo de una digráfica es: Curso Básico de Computación (Matemáticas) Preliminares / 11

9 Un camino en una digráfica es una secuencia de vértices v 1, v 2,..., v k, k 1, tal que v i v i+1 es un arco para cada i, 1 i< k. Y se dice que el camino es de v i a v k. Así, para la digráfica anterior, es un camino de 1 a 4. Si v w es un arco se dice que v es predecesor de w y w es sucesor de v. Curso Básico de Computación (Matemáticas) Preliminares / 11

10 Árboles Un árbol es una digráfica con las siguientes propiedades: 1 Existe un vértice, llamado raíz, que no tiene predecesor y del cual existe un camino para cada vértice. 2 Cada vértice distinto al raíz tiene exactamente un predecesor. 3 Los sucesores de cada vértice son ordenados a partir de la izquierda. Un árbol se dibuja con el nodo raíz en el tope y todos los arcos apuntando hacia abajo. Los sucesores de cada vértice se dibujan ordenados de izquierda a derecha. Curso Básico de Computación (Matemáticas) Preliminares / 11

11 Un sucesor de un vértice es llamado hijo, y el predecesor es llamado padre. Si existe un camino del vértice v 1 al vértice v 2, entonces a v 1 se le llama ancestro de v 2, y v 2 es llamado descendiente de v 1. Un vértice que no tiene hijos es llamado hoja, y los otros vértices son llamados vértices interiores. Tarea: Resolver los ejercicios del Capitulo 1 del libro de Hopcroft. Curso Básico de Computación (Matemáticas) Preliminares / 11

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

CAPITULO 2: LENGUAJES

CAPITULO 2: LENGUAJES CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,

Más detalles

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 Definiciones: conjuntos, grafos, y árboles Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 1 Conjuntos (sets) y Grafos (graphs) Un Conjunto es una colección de objetos distintos. No

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la

Más detalles

Definiciones y ejemplos.

Definiciones y ejemplos. V. Grafos Definiciones y ejemplos. Módulo 5 DEF. Sea V un conjunto finito no vacío, y sea El par (V, E) es llamada entonces grafo dirigido en V, donde V es el conjunto de vértices o nodos y E es su conjunto

Más detalles

Compiladores: Sesión 3. Análisis léxico, expresiones regulares

Compiladores: Sesión 3. Análisis léxico, expresiones regulares Compiladores: Sesión 3. Análisis léxico, expresiones regulares Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 29 de enero de

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que:

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que: Instituto Universitario de Tecnología Industrial Rodolfo Loero Arismendi I.U.T.I.R.L.A. ÁRBOLES Sección 3DA Asignatura: Estructura de Datos Lenguaje (C). Ciudad Bolívar _ abril_ 2006. Introducción El siguiente

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC 1 Curso ásico de Computación 6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de ombeo para LLC El lema de ombeo para LLC nos dice que siempre existe dos subcadenas cortas muy juntas que se

Más detalles

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 20 de septiembre de 2008 Contenido Lenguajes y Gramáticas Gramáticas Gramáticas

Más detalles

Lenguajes Incontextuales

Lenguajes Incontextuales Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía

Más detalles

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 2) 2007 1 Derivaciones El proceso de búsqueda de un árbol sintáctico para una cadena se llama análisis sintáctico. El lenguaje generado

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria

ESTRUCTURA DE DATOS. ABB Arboles de Búsqueda Binaria ESTRUCTURA DE DATOS ABB Arboles de Búsqueda Binaria ÁRBOLES BINARIOS Hasta ahora nos hemos dedicado a estudiar TAD que de una u otra forma eran de naturaleza lineal, o unidimensional. En los tipos abstractos

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

ESPECIFICACIÓN DE SÍMBOLOS

ESPECIFICACIÓN DE SÍMBOLOS 1 UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE COMPUTACIÓN ESPECIFICACIÓN DE SÍMBOLOS Elaborado el Sábado 24 de Julio de 2004 I.- COMPONENTES LÉXICOS, PATRONES Y LEXEMAS (extraído de

Más detalles

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares Curso Básico de Computación 3 Propiedades de los conjuntos regulares 3. Lema de Bombeo para conjuntos regulares El lema de bombeo es una herramienta poderosa para probar que ciertos lenguajes son no regulares.

Más detalles

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es

Más detalles

Estructura de Datos. Estructuras de Datos no lineales : Árboles

Estructura de Datos. Estructuras de Datos no lineales : Árboles Estructura de Datos Estructuras de Datos no lineales : Árboles Definiciones de Árbol En términos matemáticos, un árbol es cualquier conjunto de puntos, llamados vértices, y cualquier conjunto de pares

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Alfabetos, cadenas y lenguajes

Alfabetos, cadenas y lenguajes Capítulo 1 lfabetos, cadenas y lenguajes 1.1. lfabetos y cadenas Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Denotamos un alfabeto arbitrario con la letra Σ. Una cadena

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Introducción a Árboles Árboles Binarios

Introducción a Árboles Árboles Binarios Introducción a Árboles Árboles Binarios Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Introducción a Árboles Estructuras hasta ahora Estructuras

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Gramáticas tipo 0 o Estructura de frase En este tipo de gramáticas no hay restricción en su producciones y tienen la forma siguiente.

Gramáticas tipo 0 o Estructura de frase En este tipo de gramáticas no hay restricción en su producciones y tienen la forma siguiente. Gramáticas Libres de Contexto 1. Gramáticas. Como vimos en el capítulo anterior una gramática es un conjunto finito de reglas que describen todas las secuencias de símbolos que pertenecen a un lenguaje.

Más detalles

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS. INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8

Más detalles

GRAMÁTICAS LIBRES DE CONTEXTO

GRAMÁTICAS LIBRES DE CONTEXTO GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto

Más detalles

Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013

Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013 Compiladores Análisis Sintáctico Ascendente Adrian Ulises Mercado Martínez Facultad de Ingeniería, UNAM 5 de septiembre de 2013 Adrian Ulises Mercado Martínez (FI,UNAM) Compiladores 5/07/2013 1 / 34 Índice

Más detalles

Clase 03: Alfabetos, símbolos y cadenas

Clase 03: Alfabetos, símbolos y cadenas Solicitado: Ejercicios 01: Cadenas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Alfabetos, símbolos y cadenas Operaciones

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

Definición 1: Un grafo G es una terna ordenada (V(G), E(G), Ψ

Definición 1: Un grafo G es una terna ordenada (V(G), E(G), Ψ Título: Un Arbol Natural Autor: Luis R. Morera onzález Resumen En este artículo se crea un modelo para representar los números naturales mediante un grafo, el cual consiste de de un árbol binario completo

Más detalles

Autómata de Pila (AP, PDA) Tema 18

Autómata de Pila (AP, PDA) Tema 18 Tema Autómata de Pila (Pushdown Automata Autómata de Pila (AP, PDA Un AP es una máquina que acepta el lenguage generado por una GLC Consiste en un NFA- aumentado con una pila (stack. Dr. Luis A. Pineda

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Teoría de Autómatas y Lenguajes Formales Equivalencia de Conjuntos Pruebas por Inducción

Teoría de Autómatas y Lenguajes Formales Equivalencia de Conjuntos Pruebas por Inducción y Lenguajes INAOE y (INAOE) 1 / 40 Contenido y 1 2 3 4 5 6 y (INAOE) 2 / 40 Objetivo General Proporcionar al estudiante los fundamentos de la teoría de autómatas así como los de lenguajes formales. También

Más detalles

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt [email protected] Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Introducción a los árboles. Lección 11

Introducción a los árboles. Lección 11 Introducción a los árboles Lección 11 Árbol: Conjunto de elementos de un mismo tipo, denominados nodos, que pueden representarse en un grafo no orientado, conexo y acíclico, en el que existe un vértice

Más detalles

Tema 2: Los Autómatas y su Comportamiento

Tema 2: Los Autómatas y su Comportamiento Departamento de Computación Universidade da Coruña Bisimulación y procesos concurrentes Tema 2: Los Autómatas y su Comportamiento Carmen Alonso Montes [email protected] Noelia Barreira Rodríguez [email protected]

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES 1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Recordatorio Basico de Álgebra para Lógica

Recordatorio Basico de Álgebra para Lógica Recordatorio Basico de Álgebra para Lógica Guido Sciavicco 1 Conjuntos Definición 1 Un conjunto es una colleccion, finita o infinita, de elementos. Ejemplo 2 La colleccion de los elementos a, b, c, denotada

Más detalles

Conceptos básicos sobre gramáticas

Conceptos básicos sobre gramáticas Procesamiento de Lenguajes (PL) Curso 2014/2015 Conceptos básicos sobre gramáticas Gramáticas y lenguajes Gramáticas Dado un alfabeto Σ, un lenguaje es un conjunto (finito o infinito) de cadenas de símbolos

Más detalles

PRACTICA 5: Autómatas Finitos Deterministas

PRACTICA 5: Autómatas Finitos Deterministas E. T. S. DE INGENIERÍA INFORMÁTICA Departamento de Estadística, I.O. y Computación Teoría de Autómatas y Lenguajes Formales PRACTICA 5: Autómatas Finitos Deterministas 5.1. Requisito de codificación Cada

Más detalles

Introducción a la Teoría de Autómatas, Lenguajes y Computación

Introducción a la Teoría de Autómatas, Lenguajes y Computación Introducción a la Teoría de Autómatas, Lenguajes y Computación Gustavo Rodríguez Gómez y Aurelio López López INAOE Propedéutico 2010 1 / 53 Capítulo 2 Autómatas Finitos 2 / 53 1 Autómatas Finitos Autómatas

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Lenguajes y Compiladores Aspectos Formales (Parte 1) Compiladores

Lenguajes y Compiladores Aspectos Formales (Parte 1) Compiladores Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 1) 1 Aspectos Formales Los compiladores traducen lenguajes que están formalmente definidos a través de reglas que permiten escribir

Más detalles

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez 2 Contenido Autómata Definición formal de autómata Representación de un autómata Mediante tablas de transiciones Mediante diagramas de estados Autómata finito Definición formal de autómata finito Lenguaje

Más detalles

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3 INTRODUCCION GRAFOS La Teoria de Grafos nace del análisis sobre una inquietud presentada en la isla Kueiphof en Koenigsberg (Pomerania) ya que el río que la rodea se divide en dos brazos. Sobre los brazos

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

Autómatas de Estados Finitos

Autómatas de Estados Finitos Asignatura: Teoría de la Computación Unidad 1: Lenguajes Regulares Tema 1: Autómatas de Estados Finitos Autómatas de Estados Finitos Definición de Autómatas de estados finitos: Tipo Lenguaje Máquina Gramática

Más detalles

Estructura de Datos Unidad 6: ARBOLES

Estructura de Datos Unidad 6: ARBOLES Estructura de Datos Unidad 6: ARBOLES A. CONCEPTO DE ARBOL B. TIPOS DE ARBOL C. ARBOL BINARIO D. IMPLEMENTACION DE UN ARBOL BINARIO E. PROYECTO Introducción En ciencias de la informática, un árbol es una

Más detalles

INAOE. Expresiones Regulares. Operadores y Operandos. Equivalencia de Lenguajes de FA y Lenguajes RE. Leyes Algebraicas de las. Expresiones Regulares

INAOE. Expresiones Regulares. Operadores y Operandos. Equivalencia de Lenguajes de FA y Lenguajes RE. Leyes Algebraicas de las. Expresiones Regulares INAOE (INAOE) 1 / 52 Contenido 1 2 3 4 (INAOE) 2 / 52 Es un equivalente algebraico para un autómata. Utilizado en muchos lugares como un lenguaje para describir patrones en texto que son sencillos pero

Más detalles

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} } Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN:

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN: Tema 3 Expresiones y Lenguajes Regulares Dr Luis A Pineda ISBN: 970-32-2972-7 Sintaxis y Semántica En us uso normal, las expresiones lingüística hacen referencia a objetos individuales, así como a sus

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

Algoritmos glotones 2 (código de Huffman) mat-151

Algoritmos glotones 2 (código de Huffman) mat-151 Algoritmos glotones 2 (código de Huffman) mat-151 Alonso Ramírez Manzanares Computación y Algoritmos 05.06.2009 Son técnicas muy efectivas para comprimir datos. Alcanzan una compresión de entre 20% y 90%

Más detalles

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Tema: Autómatas de Estado Finitos

Tema: Autómatas de Estado Finitos Compiladores. Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores Tema: Autómatas de Estado Finitos Contenido En esta guía se aborda la aplicación de los autómatas en el campo de

Más detalles

Las Gramáticas Formales

Las Gramáticas Formales Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON. Humberto Robles Guzmán 1

DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON. Humberto Robles Guzmán 1 DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON Humberto Robles Guzmán 1 RESUMEN En este artículo se describen las diversas representaciones

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

UNIDAD 9. DATOS COMPLEJOS PILAS

UNIDAD 9. DATOS COMPLEJOS PILAS UNI 9. TOS OMPLEJOS PILS Una pila es una lista de elementos en la que se pueden insertar y eliminar elementos sólo por uno de los extremos. omo consecuencia, los elementos de una pila serán eliminados

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles