Análisis Multivariante de Datos
|
|
|
- Alfredo Villalba Valverde
- hace 8 años
- Vistas:
Transcripción
1 Análisis Multivariante de Datos Curso
2 Por qué es importante realizar inferencia sobre los parámetros de la normal? La estimación máximo-verosímil (MV) de la distribución Normal son la media y la varianza poblacionales. El estimador MV es insesgado: E[ˆθ] = θ El estimador MV es consistente: Lim n Pr( θ ˆθ > c) = 0 La estimación puntual ˆθ se aproxima al verdadero valor del parámetro θ a medida que el tamaño de muestra es mayor. Se trata de una estimación puntual que no necesariamente coincide con el verdadero valor del parámetro, especialmente en muestras pequeñas.
3 Por qué es importante realizar inferencia sobre los parámetros de la normal? Histogram of mu5 Histogram of sd5 Frequency Frequency mu sd5 Histogram of mu50 Histogram of sd50 Frequency Frequency mu sd50 Histogram of mu500 Histogram of sd500 Frequency Frequency Análisis Multivariante de Datos Curso mu500 sd500
4 Teorema Central del Límite Supongamos que tenemos una muestra aleatoria de tamaño n x 1,..., x n IID con media µ y varianza σ 2, entonces Z n = X µ N(0, 1). σ 2 n Es decir, µ N( X, σ2 n ). De modo que el intervalo ] de confianza para media vendrá dado por: σ µ [ x ± z α/2 n. El Teorema Central del Límite se cumple para muestras grandes cuando se conoce la varianza poblacional. [ ] S En caso de varianza desconocida: µ x ± t n 1,α/2 n 1
5 Teorema Central del Límite Qué puedo hacer en muestras pequeñas? Simulación del intervalo de confianza mediante el método de Monte Carlo. n=5 n=50 n=500 Simulado ( , ) ( , ) ( , ) Exacto ( , ) ( , ) ( )
6 Estimación máximo-verosímil de la distribución NMV ˆµ = Los estimadores maximoverosímiles de la distribución Normal multivariada son el vector de medias muestrales y la matriz de varianzas y covarianzas muestral. µ 1. µ p = X 1. X p σ 11 σ 1,p ˆΣ =..... σ p1 σ p,p = S 11 S 1,p..... S p1 S p,p
7 Estimación máximo-verosímil de la distribución NMV Zvec X Y
8 TCL (multivariante) Supongamos que tenemos una muestra aleatoria de tamaño n, X 1,.., X n IID como ) una N p (µ, Σ). Σ X N p (µ, n 1 n (n 1)S = (X i X) (X i X) W p (n 1, Σ) i=n W p es la distribución Wishart. Esta distribución es la generalización al contexto multivariante de la distribución Chi-cuadrado.
9 Inferencia multivariante sobre el vector de medias Tres tipos de intervalos: 1 Intervalos independientes para cada variable. 2 Método de Bonferroni. 3 Región de confianza conjunta.
10 Inferencia multivariante sobre el vector de medias Intervalo de confianza individual para cada variable Es realmente representativo calcular un intervalo de confianza para cada variable? Definamos una nueva variable U: {número de estimaciones fuera del intervalo de confianza}. U BN(P, α). Por tanto la probabilidad de que las estimaciones estén dentro del intervalo es (1 α) Si las variables son independientes, Prob(todas las variables estén dentro del intervalo)= (1 α) P Ejemplo: α = 0.05, P = 20; Prob(todas las variables estén dentro del intervalo)= = La probabilidad de que las 20 estimaciones estén dentro del intervalo de confianza es de α conjunto = (1 α individual ) P α individual = 1 (1 α conjunto ) 1/P
11 Inferencia multivariante sobre el vector de medias Método de Bonferroni Las variables rara vez son independientes. Cuando las variables no son independientes se cumple la desigualdad de Bonferroni: ( ) P ) Pr P j=1 A j 1 PR(A c j ( ) Pr P j=1 A j = j=1 (( ) c ) ( ) P 1 Pr P j=1 A j = 1 Pr P j=1 Ac j 1 Pr(A c j ) j=i A nosotros ( ) nos interesa fijar el nivel de confianza conjunto Pr P j=1 A j = 1 α conjunto que sabemos que es al menos 1 Pα individual 1 α conjunto = 1 Pα individual α individual = α conjunto P El método de Bonferroni no es más que recalcular los intervalos de confianza para el error anterior.
12 Inferencia multivariante sobre el vector de medias Regiones de confianza Considera una muestra de datos bivariados que siguen una distribución normal bivariada con vector de medias µ = [µ 1, µ 2 ] Si consideramos las variables de forma independiente, nuestra región de confianza es un rectángulo. Cuando existe dependencia entre las variables esa región de confianza no es adecuada. Existirán combinaciones de µ 1 y µ 2 que caigan fuera de dicho rectángulo y aún así sean plausibles. Existirán combinaciones de µ 1 y µ 2 dentro del área del rectángulo y que no sean plausibles al nivel de confianza 1 α. La región de confianza para el vector de medias viene dado por: n( x µ) S 1 ( x µ) < c 0, (n 1)p donde c 0 = (n p) F p,n p.
13 7 5 Inferencia multivariante sobre el vector de medias
14 Inferencia sobre la correlación Dado que el coeficiente de correlación está acotado enrte -1 y 1 no sigue una distribución normal. Pasos para calcular el intervalo de confianza: 1 Calcular la transformación de Fisher. w jk = 1 2 log 1 + r ( jk 1 N 1 r jk 2 log 1 + ρ ) jk 1, 1 ρ jk n 3 2 Calcular el intervalo de confianza para la transformación de Fisher aplicada al coeficiente de correlación. ( w jk z 1 α/2, w jk + z ) 1 α/2 n 3 n 3 3 Transformamos el intervalo anterior para obtener el intervalo sobre el coeficiente ( de correlación. ) e 2W L 1 e 2W, e2wu 1 L + 1 e 2W U + 1 donde W L y W U son el extremo inferior y superior del intervalo calculado en el segundo paso.
15 Referencias Bajorski, P. (2012). Statistics for Imaging, Optics, and Photonics (Vol. 808). New York, United States: John Wiley & Sons. Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). (2a ed) New York, United States: John Wiley & Sons.
Tema 7: Introducción a la Teoría sobre Estimación
Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación
Tema 6. Estimación puntual
Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
b. Universidad Nacional-Sede Medellín
Comparación de Intervalos de Confianza para el Coeficiente de Correlación Juan Carlos Correa a, Liliana Vanessa Pacheco b Email: [email protected] a. Universidad Nacional-Sede Medellín b. Universidad
TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07
TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES
Revista Colombiana de Estadística Volumen 24 (2001) N o 1, páginas 27 a 32 UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES CARLOS
Tema 3: Estimación estadística de modelos probabilistas. (primera parte)
Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Estructura de este tema: 1. 2 Estimación por intervalos de confianza. 3 Contrastes de hipótesis. Planteamiento del problema Inconveniente:
Muestreo e intervalos de confianza
Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
TEMA 2: Propiedades de los estimadores MCO
TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso
Resumen. Recordemos que una cópula es una función C : I 2 I tal que: C(u 2, v 2 ) C(u 2, v 1 ) C(u 1, v 2 ) + C(u 1, v 1 ) 0. (2)
Contenido 1 2 3 Cópula Empírica Cópula Kernel Resumen Recordemos que una cópula es una función C : I 2 I tal que: 1 Para cualesquiera u, v en I := [0, 1] C(u, 0) = 0 = C(0, v), C(u, 1) = u, C(1, v) = v.
Planificaciones Probabilidad y Estadística B. Docente responsable: GRYNBERG SEBASTIAN PABLO. 1 de 6
Planificaciones 6109 - Probabilidad y Estadística B Docente responsable: GRYNBERG SEBASTIAN PABLO 1 de 6 OBJETIVOS 1) Que los estudiantes aprendan los elementos básicos del método probabilístico y de la
Estadística I Tema 7: Estimación por intervalos
Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones
Selección de distribuciones de probabilidad
Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación
Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA
Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA Typeset by FoilTEX 5.1 MÉTODO DE LA CANTIDAD PIVOTAL X
Intervalos de Confianza
Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de
ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio
ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Técnicas de Muestreo Métodos
Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad
Ejercicio 1. Ejercicio 2
Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función
Estimación por intervalos
Capítulo 9 Estimación por intervalos 9.1. Introducción En este capítulo se desarrolla la estimación por intervalos donde el proceso de inferencia se realiza de la forma θ C, donde C = Cx) es un conjunto
Tema 4: Estimación por intervalo (Intervalos de Confianza)
Tema 4: Estimación por intervalo (Intervalos de Confianza (a partir del material de A. Jach (http://www.est.uc3m.es/ajach/ y A. Alonso (http://www.est.uc3m.es/amalonso/ 1 Planteamiento del problema: IC
Tema 8: Regresión y Correlación
Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice
Tema 3: Estimación estadística de modelos probabilistas. (segunda parte)
Tema 3: Estimación estadística de modelos probabilistas. (segunda parte) Estructura de este tema: 1 Técnicas de muestreo y estimación puntual. 2. 3 Contrastes de hipótesis. Planteamiento del problema Sea
ESTADISTICA APLICADA: PROGRAMA
Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación
Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media
LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS
DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
Diseño de experimentos Hugo Alexer Pérez Vicente
Diseño de experimentos Hugo Alexer Pérez Vicente Recuerdo que Conceptos estadísticos Población y muestra Población es una colección de posibles individuos, especímenes, objetos o medidas de interés sobre
Cuál es el campo de estudio de la prueba de hipótesis?
ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de
ESTADÍSTICA I Tema 3: Estimación puntual paramétrica
ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud
INFERENCIA ESTADÍSTICA
MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. INFERENCIA ESTADÍSTICA
Estadística Económica y Estadística Empresarial
Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Estadística y Econometría Licenciatura en Ciencias Económicas Sin docencia. Plan a extinguir Proyecto docente de:
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza
ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido
Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:
Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso
Fundamentos para la inferencia Estadísca 017 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una
Tema 6: Introducción a la Inferencia Bayesiana
Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid [email protected] CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de
Tema 3 Normalidad multivariante
Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad
Probabilidad y Estadística
Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
ACTIVIDAD 2: La distribución Normal
Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:
Estadística Inferencial. Sesión 2. Distribuciones muestrales
Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que
ESTADÍSTICA I Tema 3: Estimación puntual paramétrica
ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud
PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje
Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo
Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO
ESTIMACIÓN POR INTERVALO Muchas veces queremos obtener información a través de una muestra para poder hacer inferencias de cómo se comportarían distintos parámetros en la población. Al hacer una encuesta
Estimación de Máxima Verosimilitud Utilizando la Función optim en R
Estimación de Máxima Verosimilitud Utilizando la Función optim en R Juan F. Olivares-Pacheco * 15 de diciembre de 2006 Resumen En este trabajo se muestra el método de verosimilitud para la estimación de
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
Distribuciones multivariadas
Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =
Análisis de la Varianza (ANOVA) y Correlación
Universidad de Chile Rodrigo Assar FCFM MA34B Andrés Iturriaga DIM Víctor Riquelme Análisis de la Varianza (ANOVA) y Correlación Resumen El test ANOVA analiza la relación entre una variable numérica y
Econometría II. Hoja de Problemas 1
Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 5 (QUINTO) MODALIDAD
Notas de clase Estadística R. Urbán R.
Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención
Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación
Revista Colombiana de Estadística Volumen 30 No. 1. pp. 69 a 75. Junio 2007 Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación Interval Estimation for the Poisson
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra
GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.
ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
PROGRAMA ACADEMICO Ingeniería Industrial
1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional
Tema 4. Análisis multivariante de la varianza
Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias
ESTIMACION INFERENCIA ESTADISTICA
P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información
El Movimiento Browniano en la modelización del par EUR/USD
MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Tema 6: Introducción a la inferencia estadística
Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13
Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.
Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del
Tema 2: Modelos probabilísticos de series
Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,
Experimentos de Monte Carlo. Walter Sosa-Escudero
Introduccion Test de Breusch-Pagan de heterocedasticidad: LM = 1 2 SCE g,z χ 2 (p 1) g = residuos al cuadrado, z, variables explicativas de la heterocedasticidad. Esta es una aseveracion asintotica. Que
Tema 5. Muestreo y distribuciones muestrales
Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:
6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid
6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de
Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas
Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito
Revista Colombiana de Estadística Volumen 27 N o 2. Págs. 99 a 107. Diciembre 2004 Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito Juan Carlos Correa
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004
Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras
Principios de reducción de la data
Capítulo 6 Principios de reducción de la data 6.1. Introducción Un experimentador usa la información en una muestra X 1,, X n para realizar el proceso de inferencia sobre algun parámetro desconocido θ.
CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32
PROBABILIDAD Y ESTADISTICA OBJETIVOS: 1. Extraer y sintetizar información de un conjunto de datos. 2. Aprehender los conceptos de aleatoriedad y probabilidad. 3. Estudiar los modelos más importantes de
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como
