Análisis Multivariante de Datos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis Multivariante de Datos"

Transcripción

1 Análisis Multivariante de Datos Curso

2 Por qué es importante realizar inferencia sobre los parámetros de la normal? La estimación máximo-verosímil (MV) de la distribución Normal son la media y la varianza poblacionales. El estimador MV es insesgado: E[ˆθ] = θ El estimador MV es consistente: Lim n Pr( θ ˆθ > c) = 0 La estimación puntual ˆθ se aproxima al verdadero valor del parámetro θ a medida que el tamaño de muestra es mayor. Se trata de una estimación puntual que no necesariamente coincide con el verdadero valor del parámetro, especialmente en muestras pequeñas.

3 Por qué es importante realizar inferencia sobre los parámetros de la normal? Histogram of mu5 Histogram of sd5 Frequency Frequency mu sd5 Histogram of mu50 Histogram of sd50 Frequency Frequency mu sd50 Histogram of mu500 Histogram of sd500 Frequency Frequency Análisis Multivariante de Datos Curso mu500 sd500

4 Teorema Central del Límite Supongamos que tenemos una muestra aleatoria de tamaño n x 1,..., x n IID con media µ y varianza σ 2, entonces Z n = X µ N(0, 1). σ 2 n Es decir, µ N( X, σ2 n ). De modo que el intervalo ] de confianza para media vendrá dado por: σ µ [ x ± z α/2 n. El Teorema Central del Límite se cumple para muestras grandes cuando se conoce la varianza poblacional. [ ] S En caso de varianza desconocida: µ x ± t n 1,α/2 n 1

5 Teorema Central del Límite Qué puedo hacer en muestras pequeñas? Simulación del intervalo de confianza mediante el método de Monte Carlo. n=5 n=50 n=500 Simulado ( , ) ( , ) ( , ) Exacto ( , ) ( , ) ( )

6 Estimación máximo-verosímil de la distribución NMV ˆµ = Los estimadores maximoverosímiles de la distribución Normal multivariada son el vector de medias muestrales y la matriz de varianzas y covarianzas muestral. µ 1. µ p = X 1. X p σ 11 σ 1,p ˆΣ =..... σ p1 σ p,p = S 11 S 1,p..... S p1 S p,p

7 Estimación máximo-verosímil de la distribución NMV Zvec X Y

8 TCL (multivariante) Supongamos que tenemos una muestra aleatoria de tamaño n, X 1,.., X n IID como ) una N p (µ, Σ). Σ X N p (µ, n 1 n (n 1)S = (X i X) (X i X) W p (n 1, Σ) i=n W p es la distribución Wishart. Esta distribución es la generalización al contexto multivariante de la distribución Chi-cuadrado.

9 Inferencia multivariante sobre el vector de medias Tres tipos de intervalos: 1 Intervalos independientes para cada variable. 2 Método de Bonferroni. 3 Región de confianza conjunta.

10 Inferencia multivariante sobre el vector de medias Intervalo de confianza individual para cada variable Es realmente representativo calcular un intervalo de confianza para cada variable? Definamos una nueva variable U: {número de estimaciones fuera del intervalo de confianza}. U BN(P, α). Por tanto la probabilidad de que las estimaciones estén dentro del intervalo es (1 α) Si las variables son independientes, Prob(todas las variables estén dentro del intervalo)= (1 α) P Ejemplo: α = 0.05, P = 20; Prob(todas las variables estén dentro del intervalo)= = La probabilidad de que las 20 estimaciones estén dentro del intervalo de confianza es de α conjunto = (1 α individual ) P α individual = 1 (1 α conjunto ) 1/P

11 Inferencia multivariante sobre el vector de medias Método de Bonferroni Las variables rara vez son independientes. Cuando las variables no son independientes se cumple la desigualdad de Bonferroni: ( ) P ) Pr P j=1 A j 1 PR(A c j ( ) Pr P j=1 A j = j=1 (( ) c ) ( ) P 1 Pr P j=1 A j = 1 Pr P j=1 Ac j 1 Pr(A c j ) j=i A nosotros ( ) nos interesa fijar el nivel de confianza conjunto Pr P j=1 A j = 1 α conjunto que sabemos que es al menos 1 Pα individual 1 α conjunto = 1 Pα individual α individual = α conjunto P El método de Bonferroni no es más que recalcular los intervalos de confianza para el error anterior.

12 Inferencia multivariante sobre el vector de medias Regiones de confianza Considera una muestra de datos bivariados que siguen una distribución normal bivariada con vector de medias µ = [µ 1, µ 2 ] Si consideramos las variables de forma independiente, nuestra región de confianza es un rectángulo. Cuando existe dependencia entre las variables esa región de confianza no es adecuada. Existirán combinaciones de µ 1 y µ 2 que caigan fuera de dicho rectángulo y aún así sean plausibles. Existirán combinaciones de µ 1 y µ 2 dentro del área del rectángulo y que no sean plausibles al nivel de confianza 1 α. La región de confianza para el vector de medias viene dado por: n( x µ) S 1 ( x µ) < c 0, (n 1)p donde c 0 = (n p) F p,n p.

13 7 5 Inferencia multivariante sobre el vector de medias

14 Inferencia sobre la correlación Dado que el coeficiente de correlación está acotado enrte -1 y 1 no sigue una distribución normal. Pasos para calcular el intervalo de confianza: 1 Calcular la transformación de Fisher. w jk = 1 2 log 1 + r ( jk 1 N 1 r jk 2 log 1 + ρ ) jk 1, 1 ρ jk n 3 2 Calcular el intervalo de confianza para la transformación de Fisher aplicada al coeficiente de correlación. ( w jk z 1 α/2, w jk + z ) 1 α/2 n 3 n 3 3 Transformamos el intervalo anterior para obtener el intervalo sobre el coeficiente ( de correlación. ) e 2W L 1 e 2W, e2wu 1 L + 1 e 2W U + 1 donde W L y W U son el extremo inferior y superior del intervalo calculado en el segundo paso.

15 Referencias Bajorski, P. (2012). Statistics for Imaging, Optics, and Photonics (Vol. 808). New York, United States: John Wiley & Sons. Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). (2a ed) New York, United States: John Wiley & Sons.

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

b. Universidad Nacional-Sede Medellín

b. Universidad Nacional-Sede Medellín Comparación de Intervalos de Confianza para el Coeficiente de Correlación Juan Carlos Correa a, Liliana Vanessa Pacheco b Email: [email protected] a. Universidad Nacional-Sede Medellín b. Universidad

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES Revista Colombiana de Estadística Volumen 24 (2001) N o 1, páginas 27 a 32 UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES CARLOS

Más detalles

Tema 3: Estimación estadística de modelos probabilistas. (primera parte)

Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Estructura de este tema: 1. 2 Estimación por intervalos de confianza. 3 Contrastes de hipótesis. Planteamiento del problema Inconveniente:

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

TEMA 2: Propiedades de los estimadores MCO

TEMA 2: Propiedades de los estimadores MCO TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso

Más detalles

Resumen. Recordemos que una cópula es una función C : I 2 I tal que: C(u 2, v 2 ) C(u 2, v 1 ) C(u 1, v 2 ) + C(u 1, v 1 ) 0. (2)

Resumen. Recordemos que una cópula es una función C : I 2 I tal que: C(u 2, v 2 ) C(u 2, v 1 ) C(u 1, v 2 ) + C(u 1, v 1 ) 0. (2) Contenido 1 2 3 Cópula Empírica Cópula Kernel Resumen Recordemos que una cópula es una función C : I 2 I tal que: 1 Para cualesquiera u, v en I := [0, 1] C(u, 0) = 0 = C(0, v), C(u, 1) = u, C(1, v) = v.

Más detalles

Planificaciones Probabilidad y Estadística B. Docente responsable: GRYNBERG SEBASTIAN PABLO. 1 de 6

Planificaciones Probabilidad y Estadística B. Docente responsable: GRYNBERG SEBASTIAN PABLO. 1 de 6 Planificaciones 6109 - Probabilidad y Estadística B Docente responsable: GRYNBERG SEBASTIAN PABLO 1 de 6 OBJETIVOS 1) Que los estudiantes aprendan los elementos básicos del método probabilístico y de la

Más detalles

Estadística I Tema 7: Estimación por intervalos

Estadística I Tema 7: Estimación por intervalos Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA

Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA Typeset by FoilTEX 5.1 MÉTODO DE LA CANTIDAD PIVOTAL X

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos

Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Estimación por intervalos

Estimación por intervalos Capítulo 9 Estimación por intervalos 9.1. Introducción En este capítulo se desarrolla la estimación por intervalos donde el proceso de inferencia se realiza de la forma θ C, donde C = Cx) es un conjunto

Más detalles

Tema 4: Estimación por intervalo (Intervalos de Confianza)

Tema 4: Estimación por intervalo (Intervalos de Confianza) Tema 4: Estimación por intervalo (Intervalos de Confianza (a partir del material de A. Jach (http://www.est.uc3m.es/ajach/ y A. Alonso (http://www.est.uc3m.es/amalonso/ 1 Planteamiento del problema: IC

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 3: Estimación estadística de modelos probabilistas. (segunda parte)

Tema 3: Estimación estadística de modelos probabilistas. (segunda parte) Tema 3: Estimación estadística de modelos probabilistas. (segunda parte) Estructura de este tema: 1 Técnicas de muestreo y estimación puntual. 2. 3 Contrastes de hipótesis. Planteamiento del problema Sea

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Recuerdo que Conceptos estadísticos Población y muestra Población es una colección de posibles individuos, especímenes, objetos o medidas de interés sobre

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. INFERENCIA ESTADÍSTICA

Más detalles

Estadística Económica y Estadística Empresarial

Estadística Económica y Estadística Empresarial Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Estadística y Econometría Licenciatura en Ciencias Económicas Sin docencia. Plan a extinguir Proyecto docente de:

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso Fundamentos para la inferencia Estadísca 017 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid [email protected] CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Tema 3 Normalidad multivariante

Tema 3 Normalidad multivariante Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO ESTIMACIÓN POR INTERVALO Muchas veces queremos obtener información a través de una muestra para poder hacer inferencias de cómo se comportarían distintos parámetros en la población. Al hacer una encuesta

Más detalles

Estimación de Máxima Verosimilitud Utilizando la Función optim en R

Estimación de Máxima Verosimilitud Utilizando la Función optim en R Estimación de Máxima Verosimilitud Utilizando la Función optim en R Juan F. Olivares-Pacheco * 15 de diciembre de 2006 Resumen En este trabajo se muestra el método de verosimilitud para la estimación de

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Distribuciones multivariadas

Distribuciones multivariadas Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =

Más detalles

Análisis de la Varianza (ANOVA) y Correlación

Análisis de la Varianza (ANOVA) y Correlación Universidad de Chile Rodrigo Assar FCFM MA34B Andrés Iturriaga DIM Víctor Riquelme Análisis de la Varianza (ANOVA) y Correlación Resumen El test ANOVA analiza la relación entre una variable numérica y

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 5 (QUINTO) MODALIDAD

Más detalles

Notas de clase Estadística R. Urbán R.

Notas de clase Estadística R. Urbán R. Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención

Más detalles

Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación

Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación Revista Colombiana de Estadística Volumen 30 No. 1. pp. 69 a 75. Junio 2007 Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación Interval Estimation for the Poisson

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra

Más detalles

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE. ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

Tema 4. Análisis multivariante de la varianza

Tema 4. Análisis multivariante de la varianza Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias

Más detalles

ESTIMACION INFERENCIA ESTADISTICA

ESTIMACION INFERENCIA ESTADISTICA P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Tema 6: Introducción a la inferencia estadística

Tema 6: Introducción a la inferencia estadística Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

Tema 2: Modelos probabilísticos de series

Tema 2: Modelos probabilísticos de series Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,

Más detalles

Experimentos de Monte Carlo. Walter Sosa-Escudero

Experimentos de Monte Carlo. Walter Sosa-Escudero Introduccion Test de Breusch-Pagan de heterocedasticidad: LM = 1 2 SCE g,z χ 2 (p 1) g = residuos al cuadrado, z, variables explicativas de la heterocedasticidad. Esta es una aseveracion asintotica. Que

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid 6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito

Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito Revista Colombiana de Estadística Volumen 27 N o 2. Págs. 99 a 107. Diciembre 2004 Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito Juan Carlos Correa

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Principios de reducción de la data

Principios de reducción de la data Capítulo 6 Principios de reducción de la data 6.1. Introducción Un experimentador usa la información en una muestra X 1,, X n para realizar el proceso de inferencia sobre algun parámetro desconocido θ.

Más detalles

CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32

CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32 PROBABILIDAD Y ESTADISTICA OBJETIVOS: 1. Extraer y sintetizar información de un conjunto de datos. 2. Aprehender los conceptos de aleatoriedad y probabilidad. 3. Estudiar los modelos más importantes de

Más detalles

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles