Tema 6. Estimación puntual
|
|
|
- Sebastián Castilla Toledo
- hace 9 años
- Vistas:
Transcripción
1 Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener estimadores Método de los momentos Método de máxima verosimilitud Lecturas recomendadas: Secciones 7.3 y 7.5 del libro de Peña y el capítulo 7 de Newbold.
2 Planteamiento del problema Supondremos se observa una m.a.s. de una variable aleatoria X, que sigue una distribución conocida (normal, exponencial, Poisson, etc) aunque con parámetros desconocidos El problema que estudiaremos es cómo estimar estos parámetros a partir de los datos de la muestra. De estos parámetros lo único que se conoce es su rango de posibles valores, denominado espacio paramétrico. Ejemplos: Algunos parámetros de interés podrían ser la media o la varianza poblacional, o la proporción de la población que posee determinado atributo.
3 Definiciones Estadístico Un estadístico T es una función real de la muestra aleatoria (X 1, X 2,......, X n ). Estimador Estadístico que se usa para estimar un parámetro. Estimación Realización específica de un estimador. Estimador Puntual Función de la muestra que da como resultado un único valor. La correspondiente realización se llama estimación puntual del parámetro. Notación: (acento circunflejo (ˆ) encima) θ = parametro que se quiere estimar ˆθ = estimador de θ
4 Ejemplos de estimadores Ejemplo: Media poblacional µ, un estimador se denota por ˆµ. Un estimador puede ser la media muestral ˆµ = X = X X n n Estimador : funcion de la muestra Para un mismo parámetro θ podemos definir tantos estimadores como queramos. Algunos serán mejores que otros? Cuál utilizar? Ejemplo: X = el gasto de un estudiante universitario en la compra de libros de texto. cuál es el gasto medio µ = E[X ]? Una m.a.s. de tamaño n: (X 1, X 2,..., X n ). Obtenemos los valores: (x 1, x 2,..., x n ).
5 Ejemplos de estimadores Ejemplo cont.: a) Proponer cuatro estimadores del parámetro poblacional µ T 1 (X 1,..., X n ) = ˆµ 1 = 1 n n i=1 T 2 (X 1,..., X n ) = ˆµ 2 = 1 n 1 X i n i=1 T 3 (X 1,..., X n ) = ˆµ 3 = X 1 + X n 2 T 4 (X 1,..., X n ) = ˆµ 4 = X 2 X 1 X i Puede haber estimadores absurdos
6 Ejemplos de estimadores Ejemplo cont.: b) Suponer que n = 3 y que la muestra es x 1 = 30, x 2 = 20 y x 3 = 10. Calcular las estimaciones con cada uno de los estimadores propuestos en apartado a) T 1 (x 1, x 2, x 3 ) = = T 2 (x 1, x 2, x 3 ) = = T 3 (x 1, x 2, x 3 ) = = 20 2 T 4 (x 1, x 2, x 3 ) = = 10 Cuál estimación utilizo? Una respuesta es utilizar aquella estimación cuyo estimador tenga mejores propiedades.
7 Propiedades de los estimadores Un estimador ˆθ de θ es insesgado si verifica que E[ˆθ] = θ Ejemplo: La media, la varianza y las proporciones muestrales son estimadores insesgados de los correspondientes parámetros poblacionales. Si E[ˆθ] θ se dice que el estimador es sesgado El sesgo de un estimador viene entonces definido por Sesgo(ˆθ) = E[ˆθ] θ En la práctica es preferible un estimador cuya distribución esté más concentrada alrededor del parámetro que se está estimando (sesgo = 0)
8 Propiedades de los estimadores ˆθ1 es un estimador insesgado ˆθ2 es un estimador sesgado θˆ θˆ 2 1 ES UN ESTIMADOR INSESGADO ES SESGADO θˆ1 θˆ 2 θ θˆ
9 Propiedades de los estimadores Ejemplo cont.: c) Cuáles de los estimadores del ejemplo anterior son insesgados? [ ] 1 n E[T 1 ] = E X i n i=1 µ = 1 n {}}{ E[X i ] = µ insesgado n i=1 [ ] 1 n E[T 2 ] = E X i = 1 n E[X i ] = n n 1 n 1 n 1 µ i=1 i=1 [ ] X1 + X n E[T 3 ] = E = E[X 1] + E[X n ] = µ + µ = µ insesgado E[T 4 ] = E [X 2 X 1 ] = E[X 2 ] E[X 2 ] = µ µ = 0 T 1 y T 3 son insesgados Cuál utilizo?
10 Propiedades de los estimadores En lo que respecta a la varianza en general serán preferibles aquellos estimadores que tengan menor varianza, pues serán más precisos en el sentido de que variarán poco de unas muestras a otras. Sean ˆθ 1 y ˆθ 2 dos estimadores insesgados de θ. Diremos que ˆθ 1 es más eficiente que ˆθ 2 si se verifica que V [ˆθ 1 ] < V [ˆθ 2 ] Si ˆθ es un estimador insesgado de θ, y no hay ningún otro estimador insesgado que tenga menor varianza, entonces se dice que ˆθ es el estimador insesgado más eficiente o estimador de mínima varianza
11 Estimadores de mínima varianza Algunos estimadores insesgados de mínima varianza son La media muestral cuando la muestra proviene de una distribución normal La varianza muestral cuando la muestra proviene de una distribución normal La proporción muestral cuando la muestra proviene de una distribución binomial
12 Error cuadrático medio Sea ˆθ un estimador de θ. El error cuadrático medio de ˆθ es [ ) ] 2 ECM[ˆθ] = E (ˆθ θ Proposición: Sea ˆθ un estimador de θ. Se cumple que: ( ECM[ˆθ] = V [ˆθ] + E[ˆθ] θ ( = V [ˆθ] + Sesgo(ˆθ) ) 2 ) 2
13 Error cuadrático medio Cómo seleccionar el estimador más adecuado? Que E[ˆθ] no se aleje mucho de θ Que ˆθ tenga poca varianza Si hay varios estimadores, con distinto sesgo y varianza. Es mejor el que tenga menor ECM ˆθ 1 es sesgado ˆθ 2 es insesgado pero de mayor varianza
14 Más ejemplos Ejemplo: El consumo de un cierto producto en una familia de cuatro miembros durante los meses de verano, es una variable aleatoria con distribución uniforme en el intervalo (α, α + 1) { 1 si x (α, α + 1) f (x) = 0 resto Sea (X 1,..., X n ) una muestra aleatoria de consumos de distintas familias. a) Demostrar que la media muestral es un estimador sesgado de á y que su sesgo es 1 2. b) Calcular el error cuadrático medio de X. c) Obtener un estimador insesgado de á (a partir de X ).
15 Más ejemplos Ejemplo cont.: a) E[ X ] = b) α+1 α f (x)dx = α α Sesgo( X ) = 1 2 c) ECM( X ) = V [ X ] + (Sesgo( X )) 2 ˆα = X 1 2 = 1 12n = = 3n n E[ˆα] = α
16 Metodos de construccón de estimadores Método de los momentos Se basa en igualar los momentos muestrales con los momentos poblacionales Método de máxima verosimilitud Se basa en maximizar la función de verosimilitud MV (que mide lo verosímil o creíble que resulta cada valor de θ cuando se ha obtenido una muestra concreta)
17 Método de máxima verosimilitud La función de verosimilitud L(θ) se defiene L(θ) = L(θ) = n p θ (x i ) i=1 n f θ (x i ) i=1 distribuciones discretas distribuciones continuas L(θ) es función de θ, para unos ciertos valores fijos de la muestra (x 1,..., x n ). No es una variable aleatoria Por comodidad, se usa su logaritmo ln L(θ) función soporte
18 Propiedades del estimadores de MV El EMV siempre está dentro del espacio paramétrico. El estimador de máxima verosimilitud es, bajo condiciones generales, se distribuye asintóticamente (cuando el tamaño muestral tiende a infinito) según una normal. El EMV es un estimador consistente (en el ĺımite, para muestras grandes, tiende a tener el valor del parámetro). El EMV es asintóticamente insesgado (tiende a ser insesgado). El EMV es asintóticamente eficiente (tiende a tener mínima varianza).
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07
TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones
Estimaciones puntuales. Estadística II
Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón [email protected] FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento
8. Estimación puntual
8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Tema 8: Contraste de hipótesis
Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste
INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez
INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Naelli Manzanarez Gómez TEMA II ESTIMACIÓN PUNTUAL DE PARÁMETROS POBLACIONALES La estimación puntual de un parámetro relativo a
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
T.3 ESTIMACIÓN PUNTUAL
T.3 ESTIMACIÓN PUNTUAL 1. INTRODUCCIÓN: ESTIMACIÓN Y ESTIMADOR 2. PROPIEDADES DE LOS ESTIMADORES 3. MÉTODOS DE ESTIMACIÓN. EJEMPLO 1, EJEMPLO 2 1. Introducción: Estimación y Estimador En este tema se analizan
Tema 2: Estimación puntual
Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo
Estadística I Tema 7: Estimación por intervalos
Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones
Estimación de Máxima Verosimilitud Utilizando la Función optim en R
Estimación de Máxima Verosimilitud Utilizando la Función optim en R Juan F. Olivares-Pacheco * 15 de diciembre de 2006 Resumen En este trabajo se muestra el método de verosimilitud para la estimación de
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
Definición Una hipótesis es una afirmación acerca de un parámetro.
Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para
CONTRASTE DE HIPÓTESIS
CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región
Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.
ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores
1. Ejercicios. 2 a parte
1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA
1. Introducción Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA Los análisis económicos y empresariales se efectúan sobre la base de la toma de decisiones, las cuales se toman a partir de la información
Teléfono:
Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:
6. ESTIMACIÓN DE PARÁMETROS
PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso
INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento
Tema 5: Introducción a la inferencia estadística
Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10
Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes
Contrastes de hipótesis paramétricos
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,
Preparación de los datos de entrada
Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
Tablas de Probabilidades
Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios
Determinación del tamaño de muestra (para una sola muestra)
STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado
Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Pruebas selectivas para el ingreso en el Cuerpo Superior de Estadísticos del Estado. Orden ECC/1517/2015, de 16 de Julio (BOE 27/07/2015).
Estimador de Máxima Verosimilitud
Estimador de Máxima Verosimilitud Tratamiento Estadístico de Señales Pablo Musé, Ernesto López, Luis Di Martino {pmuse,elopez,dimartino}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre
ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro
Tema 9: Contraste de hipótesis.
Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
ESTADISTICA GENERAL. INFERENCIA ESTADISTICA Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL INFERENCIA ESTADISTICA Profesor: Celso Celso Gonzales Objetivos Entender los conceptos de estimación puntual y estimación por intervalos. Calcular e interpretar intervalos de confianza
Tema 5. Muestreo y distribuciones muestrales
Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:
El Movimiento Browniano en la modelización del par EUR/USD
MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés
CUERPO TÉCNICO, OPCION ESTADISTICA
CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales
Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación
1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA
1. VALORES FALTANTES Los valores faltantes son observaciones que en un se tenía la intención de hacerlas, pero por distintas razones no se obtuvieron. Puede ser que no se encuentre a un encuestado, entonces
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Anota aquí tus respuestas para esta sección Distribución Z
Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten
Tema 2 - Introducción
Tema 2 - Introducción 1 Tema 1. Introducción a la inferencia estadística Planteamientos y objetivos. Revisión de distribuciones multivariantes. Esperanza y varianza de sumas de v.a. independientes. Tema
Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables
Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)
Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
Tema 7 Intervalos de confianza Hugo S. Salinas
Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca
Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005
Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba
( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE
Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia
Estadística Inferencial
Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico
Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos
Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable
PROBABILIDAD Y ESTADÍSTICA Aplicaciones y Métodos George C. Canavos CAP. 8 ESTIMACIÓN PUNTUAL Y POR INTERVALO
8.1 Introducción En el capítulo anterior se mencionó, en forma breve, que las estadísticas se emplean para estimar los valores de parámetros desconocidos o funciones de éstos. En este capítulo se examinará
Conceptos del contraste de hipótesis
Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de
INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos
INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas
Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo
4. Prueba de Hipótesis
4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los
07 Estimación puntual e introducción a la estadística inferencial
07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?
ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA
GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592
Diplomado en Estadística Aplicada
Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística
Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS
DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN
ANÁLISIS DE FRECUENCIAS
ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
MLG Ana M. Bianco FCEyN
MLG Ana M. Bianco FCEyN 2008 44 Propiedades de los Estimadores de Máxima Verosimilitud Recordemos que si la variable aleatoria Y tiene función de densidad (f.d.)o probabilidad puntual (f.p.p.)f(y, θ),
2. Distribuciones de Muestreo
2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores
Teoría de la decisión Estadística
Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.
FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota
FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY0 2015 Nombre y apellido: Legajo: 1 2 3 4 5 Nota / / / / / 1.- El gobierno de la ciudad ha construido senderos especiales para bicicletas en un barrio de la
Tema 8. Fundamentos de Análisis discriminante
Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 8. Fundamentos de Análisis discriminante 8.1. Introducción. Empezamos deniendo el problema discriminante.
