Bárbara Cánovas Conesa
|
|
|
- Antonia Alcaraz Lagos
- hace 8 años
- Vistas:
Transcripción
1 Bárbara Cánovas Conesa Junio 07 ada la función f() { + a si b 9 si > a) Calcula razonadamente los parámetros a y b para que f() sea derivable en todo R. b) Enuncia el teorema de Rolle y comprueba si, para los valores hallados en el apartado anterior, la función f() verifica las hipótesis del teorema en el intervalo [-, 6]. Para que f() sea derivable, lo primero que tiene que cumplir es que sea continua, por lo que: f() f() f() + f() ( + a) 4 + a f() b 9) 3 b 4 + a 3 b a + b 7 + +( f() 4 + a Además, para que sea derivable se tiene que cumplir: f () f (): + f() f () si { b si > () 4 f () + +( b) 4 b Por último, sustituimos en la primera ecuación para obtener el valor de a: a 6 7 a f() { si si > b 8 Teorema de Rolle: si una función f() es continua en el intervalo [a, b], derivable en el intervalo (a, b) y f(a) f(b), entonces eistirá un valor c (a, b) de manera que f (c) 0. Para los valores hallados anteriormente: Por tanto, si cumple el teorema de Rolle. f() Continua: [, 6] erivable (,6) f( ) 3 f(6) 3 Con una chapa metálica de 8 metros se desea construir, cortando cuadrados en las esquinas, un cajón sin tapa de volumen máimo. Haya razonadamente las dimensiones de dicho cajón. La función a optimiza (maimizar) es el volumen: V() A base h V() ( ) (8 ) V() V () V () { m m Con lo que las dimensiones del cajón son V V (3.34) 4.08 > 0 Mínimo () 6 { V () 4 < 0 Máimo m
2 EvAU _ Matemáticas _ CC _ CLM a y + z a 4 a) iscute el siguiente sistema de ecuaciones lineales en función del parámetro a R: + y az a } y z 3 b) Resuélvelo razonadamente para el valor a. Primero estudiamos el rango de la matriz de los coeficientes: a M ( a) M a a a a 0 a 0 { a R {0, }: R(M) 3 a 0 Segundo, estudiamos para los valores de a obtenidos, el rango de la matriz ampliada: 0 a 0 M ( ) det C, C, C a 0: R(M ) 3 3 a M ( ) det C, C, C 3 0 a : R(M ) 3 3 Según el Teorema de Rouche-Frobenius: La condición necesaria y suficiente para que un sistema de m ecuaciones y n incógnitas tenga solución es que el rango de la matriz de los coeficientes y el de la matriz ampliada sean iguales. a R {0, } R(M) R(M*) 3 nº incógnitas SC a {0, } R(M) R(M*) 3 SI Para el valor de a, el Sistema es Compatible eterminado. Lo resolvemos por Kramer: y + z + y + z } M y z 3 3 y 0 3 z (8,, 7 ) ado el punto P(,0, ) y las rectas r y+ z y + z 0 y s { 0 + z + 0 a) etermina razonadamente la posición relativa de las rectas r y s b) Encuentra razonadamente la ecuación general del plano que pasando por P es paralelo a r y a s. La posición relativa de ambas rectas la estudiamos con los rangos de las matrices M (formada por los vectores directores de ambas rectas) y M* (formada por los dos vectores directores y por el vector RS, siendo R y S un punto de la recta r y s, respectivamente): Recta r: Recta s d r (,, 0) R (,,0) d r (,,) (,0,) d r S (0,, ) (,,) Es decir, las dos rectas Se Cruzan. RS (,, ) M ( 0 ) det C, C 0 Rg(M) 0 M ( ) 6 0 Rg(M ) 3
3 Bárbara Cánovas Conesa s r P Junio 07 El vector normal del plano es perpendicular a los vectores directores de las dos rectas. Por lo que el vector normal del plano lo hallamos haciendo el producto vectorial de los dos vectores directores. Una vez hallado dicho vector normal, usaremos la ecuación normal del plano para, junto con el punto P, hallar la ecuación del plano pedido. n π (,,0) (,,, ) n π (,, ) π ( ) + (y 0) + (z + ) 0 π + y + z 3 0 a) Los operarios A, B y C producen, respectivamente, el 0%, el 30% y el 0% de las resistencias que se utilizan en un laboratorio de electrónica. Resultan defectuosas el 6% de las resistencias producidas por A, el % de las producidas por B y el 3% de las producidas por C. Se selecciona al azar una resistencia: a.. Calcula razonadamente la probabilidad de que sea defectuosa. a.. Si es defectuosa, calcula razonadamente la probabilidad de que proceda del operario A. b) Las resistencias se empaquetan al azar en cajas de cinco unidades. Calcula razonadamente la probabilidad de: b.. Que en una caja haya eactamente tres resistencias fabricadas por B. b.. Que en una caja haya al menos dos fabricadas por B. Para responder a las preguntas del apartado a), hacemos un diagrama de árbol. Si llamamos a los sucesos: - A que la resistencia escogida proceda del operario A - B que la resistencia escogida proceda del operario B - C que la resistencia escogida proceda del operario C - que la resistencia escogida sea defectuosa - que la resistencia escogida no sea defectuosa Para calcular la probabilidad de que sea defectuosa, usamos el teorema de la probabilidad total: P() P(A) P( A) + P(B) P( B) + P(C) P( C) P() Para calcular la probabilidad de que siendo defectuosa sea del operario A, empleamos la probabilidad condicionada y el teorema de Bayes: P(A ) P(A ) P() P( A) (PA) P() , 0, 0,3 P(A ) ,06 A 0,94 0,0 B 0,9 0,03 C 0,97 En el apartado b) empleamos la distribución Binomial. Si designamos la variable X resistencia fabricada por el operario B, sigue una distribución binomial: Bin (n, p) X~Bin (, 0. 3) P(X 3) { P(X ) P(X < ) [P(X 0) + P(X )] ( ) P(X )
4 4 EvAU _ Matemáticas _ CC _ CLM Calcula razonadamente los siguientes límites: Ln ( + ) 0 cos Ln ( + ) 0 cos Ln( + ) sen ( + ) cos 0 + ( + ) cos adas las funciones f() y g() 4 a) Calcula razonadamente el área del recinto cerrado itado por sus gráficas. b) Encuentra razonadamente la ecuación de la recta normal a la gráfica de g() en el punto de abscisa 3. El área del recinto itado por ambas gráficas la calculamos con la integral definida entre los puntos de corte de ambas gráficas, de la función diferencia: Puntos de Corte: { Para saber qué función está por encima de la otra y así calcular la función diferencia, sustituimos en cada función un valor que esté dentro del intervalo (-,): f(0) 0 Es decir, f() se encuentra por encima de la función g(). Por tanto: A f() g() d d [ ] g(0) 4 ( ) ( + 4) A 9 u 3 La ecuación de la recta normal a una función es: y y g ( 0 ) ( 0 ) { y 0 g( 3) g () g ( 3) 8 y + 9 ( + 3) y 8 8 adas matrices A ( 0 0 ) B ( 0) C ( ) a) Tiene inversa la matriz I 3 + B? Razona la respuesta. I 3 es la matriz identidad de orden 3. b) Calcula razonadamente la matriz X que verifica que X + C A X B Una matriz tiene inversa cuando es cuadrada y su determinante es distinto de cero I 3 + B ( 0 0) + ( 0) I 3 + B ( 0) I 3 + B Por lo que dicha matriz si tiene inversa. X + C A XB X + XB A C X(I + B) A C X(I + B)(I + B) (A C)(I + B) XI (A C)(I + B) X (A C)(I + B)
5 (I + B) I + B ((I + B)Adj ) t Bárbara Cánovas Conesa Junio 07 I + B 3 4 (I + B) Adj ( 0 0 ) (I + B) ( 4 ) 0 ((I + B) Adj ) ( 4 ) { (A C) ( 0 0 ) ( ) (A C) ( 3 0) 0 0 X (A C)(I + B) ( 3 0) ( 4 ) 4 0 4/3 0 /3 3 ( 0 3 ) X ( 0/3 /3) /3 /3 /3 a) Encuentra razonadamente la ecuación de la recta, en su forma general o implícita, que contiene a los puntos P(0,, ) y Q(4, 3,0). + λ b) Encuentra razonadamente un punto que equidiste de P y Q y que pertenezca a la recta r { y λ λ R z La recta s que contiene a los dos puntos P y Q, tendrá como vector director el vector PQ y como punto el P. Para hacer la ecuación general de la recta, hallamos primero la continua y de ahí, operando, llegamos a la general: d r PQ (4, 4,) (,,) r P (0,,) y z r { y y + 0 z r { z r P R M El punto R desconocido es un punto de la recta r que está a igual distancia de los puntos P y Q. Hallamos la ecuación del plano que contiene al punto medio del segmento PQ (M) y tiene como vector normal el vector PQ. Q PQ (,,) π ( ) (y + ) + (z + ) 0 π y + z + 0 M (,, ) El punto R lo hallamos como el punto intersección entre la recta r y el plano, para ello ponemos la ecuación de la recta r en forma paramétrica, ésta nos da un punto genérico de R. El cual sustituiremos en la ecuación del plano, hallando el parámetro. Por último, sustituiremos en el punto genérico, calculando así el punto que equidista de P y Q: λ r { y λ R (λ, λ, + λ) π (λ) ( λ) + + λ + 0 λ 0 R ( 9 9, 9 9, 3 9 ) z + λ
6 6 EvAU _ Matemáticas _ CC _ CLM a) En mi casa dispongo de dos estanterías A y B. En A tengo 0 novelas, 0 ensayos y 0 libros de matemáticas y en la B tengo novelas y 8 libros de matemáticas. Elijo una estantería al azar y de ella, también al azar, un libro. Calcula razonadamente la probabilidad de que: a.. El libro elegido sea de matemáticas. a.. Si el libro elegido resultó ser de matemáticas, que fuera de la estantería B. b) El tiempo de espera en una parada de autobús se distribuye según una distribución normal de media minutos y desviación típica minutos. b.. Calcula razonadamente la probabilidad de esperar menos de 3 minutos. b. Cuántos minutos de espera son superados por el 33% de los usuarios? Para responder a las preguntas del apartado a), hacemos un diagrama de árbol. Si llamamos a los sucesos: - A que el libro escogido sea de la estantería A - B que el libro escogido sea de la estantería B - N que el libro escogido sea una Novela - E que el libro escogido sea un Ensayo - M que el libro escogido sea de Matemáticas Para calcular la probabilidad de que el libro elegido sea de matemáticas, usamos el teorema de la probabilidad total: P(M) P(A) P(M A) + P(B) P(M B) P(M) 0. 3 Para calcular la probabilidad de que siendo de matemáticas, sea de la estantería B, empleamos la probabilidad condicionada y el teorema de Bayes: P(B M) P(B M) P(M) P(M B) P(B) P(M) 0. P(B M) , /4 M 0, A B / 3/ / /4 0 N E N E M En el apartado b) empleamos la distribución Normal. Si designamos la variable X tiempo de espera en una parada de autobús, sigue una distribución normal: N (μ, σ) La probabilidad de esperar menos de 3 minutos será: P(X < 3) Tipificamos X~N (, ) X μ P ( < σ 3 ) P(Z < 0.4) Si nos fijamos en la curva de la distribución normal tipificada vemos como, al ser el área debajo de la curva igual a : -0,4 0,4 P(Z < 0.4) P(X > 0.4) Suceso Contrario [ P( < 0.4) Buscamos en la Tabla ( 0.64)] P(X < 3)
Universidad de Castilla la Mancha Septiembre Propuesta A
A.- árbara Cánovas Conesa 67 7 Universidad de Castilla la Mancha Septiembre.7 Propuesta A www.clasesalacarta.com Septiembre 7 a) Calcula razonadamente el área de la región determinada por la curva f()
EVAU. Junio matematiib.weebly.com
Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua
MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN
MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)
MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN
MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una
PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.
PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN
MATEMÁTICAS: EBAU 7 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A Sean A = ( 4 ) y B = ( 3 ), a) Estudiar si A y B tienen inversa y calcularla cuando sea posible. ( punto) Una matriz cuadrada M tiene inversa
Tema 11: Problemas Métricos
..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b
IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)
IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo
Ejercicio 2 opción A, modelo 5 Septiembre 2010
Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio
PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)
PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor
TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera
TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas
Ejercicio 1 de la Opción A del modelo 1 de Solución
Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017
PROBABILIDAD (EvAU EBAU 2017) 1 ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 Publicado el día 29 de junio de 2017. El presente documento se actualizará cuando se disponga
PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.
Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de
IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 01 Reserva (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 6 Septiembre 01 ['5 puntos] De entre todos los triángulos rectángulos
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente
MATEMÁTICAS II (PAUU XUÑO 2011)
MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades
La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x
Consideremos un sistema de n ecuaciones lineales con n incógnitas como el siguiente: a 11 x 1 + a 1 x +. + a 1n x n b 1 a 1 x 1 + a x +. + a n x n b... a n1 x 1 + a n x +. + a nn x n b n La matriz de los
Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m
Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso Modelo
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2017-2018 Modelo MATERIA: MATEMÁTICAS II INSTRUCCIONES Y CRITERIOS GENERALES
Matemáticas Aplicadas a las Ciencias Sociales II Soluciones
Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón
IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2
IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio
PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.
Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A
Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)
Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos
Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango
SISTEMAS DE ECUACIONES
Universidad de Granada Máster de Profesorado U. D. SISTEMAS DE ECUACIONES Director del trabajo : D. Antonio López Megías SISTEMAS DE ECUACIONES Pilar FERNÁNDEZ CARDENETE Granada,
UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017
INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
SEPTIEMBRE Opción A
Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos
MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3
MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las
PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.
Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:
TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)
I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PUBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2016-2017 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx
Ejercicio 1 de la Opción A del modelo 6 de Solución
Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto
TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO
TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Sistemas de ecuaciones lineales dependientes de un parámetro
Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que
Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A
Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada
Distancia entre dos rectas que se cruzan Perpendicular común
Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que
C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).
UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas
PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO 2016-17 Opción A 1.- Considera las matrices A = ( 1 2 1 0 0 2 1 ), B = ( 2 1 0) y C = ( 1 0 0 1 5 0 ) 3 2 1 a)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,
PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A
Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).
[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución
Ejercicio n º 1 de la opción A de junio de 2008 [2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. La recta x = a es una asíntota vertical (A.V.) de la función
TEMA 5. RECTAS Y PLANOS. INCIDENCIA.
TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León
Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger
Sistemas de ecuaciones
Apuntes Tema 11 Sistemas de ecuaciones 11.1 Definiciones Def.: Se llama sistema de ecuaciones lineales a un conjunto de igualdades dadas de la siguiente forma: a 11 x 1 + a 12 x 2 + a 1n x n = b 1 a 21
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Universidad de Castilla la Mancha PAU/LOGSE Septiembre Opción A
1 Universidad de Castilla la Mancha PAU/LOGSE Septiembre.01 Opción A SEPTIEMBRE 01 1.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones
Selectividad Matemáticas II junio 2012, Andalucía
Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim
IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim
