Capítulo 7. Subterráneo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 7. Subterráneo"

Transcripción

1 Capítulo 7 Solución n Numérica de la Ecuación n de Flujo Subterráneo Teoría a de Flujo Subterráneo Semestre Alberto Rosas Medina 1

2 Índice Polinomios de Lagrange Diferencias Finitas en una Dimensión Diferencias Finitas en dos Dimensiones 2

3 Teoría a de Aproximación Polinomial Motivación El punto de partida es la definición n de un polinomio. Un polinomio es un expresión n matemática tica que consiste de una suma de potencias en una o más m s variables cada una multiplicada por un coeficiente. Ejemplo, un polinomio de una variable. Polinomio de dos variables 3

4 Interpolación polinomial Suponga que se dan n+1 puntos como donde son las absicas de los puntos (de la malla) con separación n arbitraría. a. Entonces el polinomio de orden n que pasa por los n+1 puntos puede escribirse como una serie de potencias 4

5 El ajuste de serie de potencias a los n+1 puntos da un sistema de ecuaciones Aunque los coeficientes a i pueden determinarse resolviendo el sistema de ecuaciones. No es factible debido a que primero se necesita un programa para resolver ecuaciones lineales y segundo por que el orden de los polinomios puede ser tan grande que induzca errores de redondeo. 5

6 Polinomios de Lagrange Los polinomios de Lagrange de mayor interés s son los de primero, segundo y tercero orden. Ejemplo de Polinomio lineal Supóngase que se tiene solo dos puntos en la malla, entonces la manera más m s sencilla de ajustar un polinomio es utilizando polinomios lineales, es decir, 6

7 Datos propuesta de funciones lineales Entonces se necesita plantear un polinomio lineal que será el que ajuste los dos puntos utilizando y 7

8 Polinomio lineal Entonces el polinomio lineal es Equivalente a la ecuación n de la recta dados 2 puntos. 8

9 Polinomio de Orden n Para ilustrar la aproximación n con polinomios de orden n. se considera n=2. Se tienen 3 puntos x 0, x 1, x 2. Se necesita tres polinomios de orden 2. 9

10 Entonces el polinomio que se ajusta a los tres datos es 10

11 Entonces de manera general se tiene De manera abreviada es Por lo tanto el polinomio de ajuste es 11

12 Un punto importante a considerar es el error de aproximación, es decir, se tiene que Donde es el polinomio de aproximación 12

13 Método de Diferencias Finitas El método m de diferencias fintas representa derivadas continuas para una ecuación n diferencial parcial con expresiones envolviendo la evaluación n de la función desconocida en puntos discretos. La consecuencia natural de esta acción n es la transformación n de un problema envolviendo derivadas clásicas a uno envolviendo ecuaciones algebraicas. 13

14 El primer paso es representar f(x) ) usando y derivando esta expresión n para aproximar la derivada Se deriva el polinomio de aproximación La derivada es solo en el polinomio, n es el grado del polinomio de Lagrange.. El término t f(x j ) es el valor especifico de f(x)en el punto x j. 14

15 Si se considera un polinomio de orden n=2 y j=o para esta expresión Se obtiene 15

16 Al hacer la derivada se obtiene Si se considera el punto x j, se obtiene Usando similarmente para j=1,2 se tiene 16

17 El siguiente paso es saber donde se quiere la derivada evaluada, sea x=x 0, entonces se tiene Entonces la derivada de la función f en x 0 está dada por Donde el error es proporcional al cuadrado de. 17

18 El procedimiento anterior se hace de manera semejante para x 1 y x 2. Lo importante es notar el resultado para x 1. Entonces evaluando x 1 en Se obtiene 18

19 Simplificando la ecuación n anterior se obtiene Nótese que en esta aproximación n la información n la información n en el nodo en el cual se está aproximando no aparece en la fórmula. f 19

20 Para encontrar la derivada de segundo orden Si se considera j=0, y teniendo en cuenta que n=2 20

21 Desarrollando para j=1,2 Un punto importante a notar es que la segunda derivada en el punto x 1 tiene un error de aproximación n cuadrático. Esto es derivando 2 veces y evaluando x 1 en la siguiente expresión n se obtiene el orden del error. Cosa que no pasa con x 0 y x 2 21

22 Si se consideran polinomios lineales esto es Se obtiene la primera derivada 22

23 Si se evalúa a en x=x 0 se obtiene Nótese que debido a que se usaron sólo s dos nodos, el error de truncamiento es y es mayor que. 23

24 Para finalizar se plantea una manera que facilita las expresiones de ecuaciones en diferencias finitas. Ejemplo 24

25 Representación n de la Ecuación n de Flujo Subterráneo con Diferencias Finitas Ecuación n de flujo en un medio poroso saturado Usando la notación n de la tabla anterior se tiene Donde 25

26 Expandiendo y se define h ik =h(x i, t k ) se tiene Asociado a esta fórmula f podemos resolver para h(x i, t k+1 Véase la siguiente figura +1 ) 26

27 Esquema computacional de Diferencias finitas. Para hallar el valor un valor desconocido al tiempo k+1 27

28 Comparación n de las ecuaciones El término t A corresponde al espacio en el nivel de tiempo k, y el término t B es la derivada en tiempo y está en diferencia hacía a adelante (forward( forward), está localizado en i,k y es proyectadoal nivel de tiempo k+1 28

29 Si se considera un tiempo inicial k=0, entonces en la ecuación n se modifican los subíndices y se tiene Es decir, el sistema se resolverá para k+1 29

30 Problema bien planteado Para resolver el sistema de ecuaciones se necesita que el problema este bien planteado, es decir, que tenga condiciones de iniciales y de frontera y la solución dependa continuamente de estas y sea única. Condiciones de Frontera Dirichlet h(z,t)=f 1 (t), z =0,L En términos t de diferencias finitas h(z i,t)= )=h i i=0 y L 30

31 Condiciones Neumann: : condiciones de flujo Teniendo presente que Entonces se tiene que La representación n de derivadas en los nodos finales puede puede emplearse para diferencias centradas forward y backward 31

32 Condiciones Robin Simplificado se tiene La ecuación n anterior describe la salida o escape en un acuífero cuando k es considerado como el coeficiente de salida, h 0 (z) es el valor de la carga en el exterior, y h(z,t) ) es la carga en el acuífero. 32

33 Sistema de ecuaciones de las diferencias finitas Del sistema discretizado Se puede escribir de manera abreviada como Donde f son las condiciones de frontera, estas modifican la matriz K en el primer y último renglón. n. 33

34 De manera general K está dada por Y la matriz S por 34

35 Se tiene que resolver el siguiente sistema de ecuaciones Se factoriza el término t h k+1 y se tiene Sea entonces se tiene Y se resuelve el sistema por un método m efectivo excepto hallando c

36 Método de Diferencias Finitas en dos Dimensiones Se extiende el problema a dos dimensiones, para ello considérese la ecuación Tal que Reescribiendo la ecuación n del operador se tiene 36

37 La aproximación n del operador en diferencias finitas es Donde Considere que el coeficiente de trasmisividad es menor en xy entonces se anula el tercer sumando de la ecuación 37

38 El esquema de discretización es 38

39 39

40 Ejemplo de la ecuación n de flujo en dos dimensiones Para el caso de un acuífero isotrópico y homogenero: Es decir: Considerando el estado estacionario: Lo que es igual a: 40

41 El método m de diferencias finitas En este método, m el valor de la función n desconocida en cada nodo es aproximada por su desarrollo en series de Taylor Esta ecuación n se aplica en cada nodo incógnita 41

42 Obtenemos un sistema Ax=b, de n ecuaciones con n incógnitas x y una matriz A como la siguiente: Donde el vector b contiene a las condiciones de frontera y no todas sus entradas son cero. Resolviendo el sistema obtenemos los valores de la función n buscada que es solución n de la ecuación n diferencial parcial 42

43 Experimento 1 Se tiene una porción n de un acuífero confinado, homogéneo e isotrópico pico,, en el estado estacionario. Se quiere conocer la distribución n de la carga hidráulica h en toda la región. Esta se encuentra limitada por un rectángulo como el siguiente: lo que nos da las condiciones ciones de frontera condiciones de Dirichlet 43

44 Gráfica de la solución n del experimento 1 Longitud de los lados: XL=YL=100L. La malla tiene 35x35 rectángulos y 36x36 nodos. Solución n analítica: 44

45 Experimento 2 Tenemos un acuífero como el del caso anterior. Las condiciones de frontera en el problema se modifican de la siguiente manera: Y en uno de los lados tenemos una condición n de Neumann 45

46 Solución n experimento 2 Longitud de los lados: XL=4L YL=3L. La malla tiene 35x35 rectángulos y 36x36 nodos. Solución n analítica es igual que en el caso anterior. 46

47 Experimento 3 Condiciones de frontera: 47

48 Experimento 4 Tenemos el cuadrado unitario en cuyo centro está ubicado el punto (1/2,1/2). Esto representa una isla con un pozo en su centro. El movimiento del agua que circula por debajo de esta región n está gobernado por la misma ecuación 48

49 Sabemos que: Sustituyendo la velocidad de Darcy,, y el area de la superficie del cilindro Despejando E integrando Esta ultima igualdad es solución n de la ecuación n diferencial parcial que gobierna el fenómeno, así: 49

50 Nuestra condición n de frontera es la siguiente: Así Donde: Esta solución n esta compuesta por dos funciones, una de ellas no está determinada, y es precisamente la que encontraremos con el algoritmo desarrollado 50

51 Solución Esta es la gráfica de: Aquí vemos la gráfica encontrada: 51

52 Y finalmente la suma de las dos anteriores es la solución n al problema planteado 52

53 Aproximación n en series de Taylor 53

54 54

55 Diferencias progresivas 55

56 Diferencias progresivas 56

57 Diferencias progresivas 57

58 Diferencias Regresivas 58

59 Diferencias Centrales 59

60 Diferencias Centrales 60

61 61

62 Resumen 62

63 Bibliografía Referencia Principal, George F. Pinder y Michael A. Celia, Subsurface Hydrology, Jhon wiley & Sons,, Inc., Hoboken New Jersey,, 2006 Desarrollo de un algoritmo para evaluar el suministro de agua subterranea Nora Isabel Pérez P Quezadas. Tesis de Lic. en Matemáticas, ticas, Facultad de Matemáticas. ticas. UV. México M ://mmc2.igeofcu.unam.mx/norapeq/ 63

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones Métodos de elemento finito 7.4.. Método de Galerkin 7.4.. Formulación n de elemento finito en dimensiones Los métodos m de elemento finito (MEF) son una estrategia numérica alternativa muy popular para

Más detalles

El Experimento Darcy. Teoría a de Flujo Subterráneo. Alberto Rosas Medina

El Experimento Darcy. Teoría a de Flujo Subterráneo. Alberto Rosas Medina El Experimento Darcy Teoría a de Flujo Subterráneo Alberto Rosas Medina Darcy publica un artículo durante su gestión n como inspector general de puentes y caminos en la ciudad de Dijon,, Francia. El reporte

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Simulación Numérica de Yacimientos

Simulación Numérica de Yacimientos Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza email: frodriguezd@pep.pemex.com Tel: 5550871, 56 3017 al 19 Capítulo 3. Diferencias Finitas 1 3.1 Diferencias Finitas Considerar que

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias Análisis Numérico 2018 2 Universidad Nacional Autónoma de México Facultad de Ciencias Contenido 1 2 3 Construcción de naturales Introducción En los temas anteriores estudiamos la aproximación de una función

Más detalles

MODELOS LINEALES. Alejandro Vera Trejo

MODELOS LINEALES. Alejandro Vera Trejo MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones

Más detalles

Unidad IV: Diferenciación e integración numérica

Unidad IV: Diferenciación e integración numérica Unidad IV: Diferenciación e integración numérica 4.1 Diferenciación numérica El cálculo de la derivada de una función puede ser un proceso "difícil" ya sea por lo complicado de la definición analítica

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte I) Contenido Ecuaciones en derivadas parciales Ecuaciones en derivadas parciales elípticas Ecuación de Laplace Aproximación

Más detalles

Interpolación Numérica

Interpolación Numérica Interpolación Numérica Contenido Interpolación Numérica Polinomio Único de Interpolación Polinomio de Interpolación de Lagrange (Método de Ordenadas) Método de Newton (Interpolación Polinomial forma de

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales:

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: MAT 1105 F PRACTICA Nº 2 FECHAS DE ENTREGA: Tercer parcial Martes 14 de julio de 2009 Hrs. 16:30 a 18:00 Aula 5 (Geología) Viernes 17 de julio de 2009 Hrs. 16:30 a 18:00 Aula 31 1. Resuelva el siguiente

Más detalles

MÉTODO DE DIFERENCIAS FINITAS (FDM)

MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) Cambia ecuaciones diferenciales ecuaciones en diferencias finitas a Relaciona el valor de la variable dependiente en un punto a valores

Más detalles

Anexo I. Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI:

Anexo I. Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI: Anexo I Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI: 004004 Director del proyecto: M. C. Juan José Tapia Armenta MÉTODO DE DIFERENCIAS FINITAS Por: Fernando

Más detalles

Diferenciación numérica

Diferenciación numérica Diferenciación numérica MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Cuándo es necesario aplicar diferenciación

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018.

Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018. Página 1 de 4 FACULTAD: CIENCIAS BASICAS PROGRAMA: _FISICA DEPARTAMENTO DE: FISICA Y GEOLOGIA CURSO: ÁREA: Métodos Numéricos CÓDIGO: 157103 Profundización REQUISITOS: 167003 CORREQUISITO: -------------

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 12

Análisis Numérico para Ingeniería. Clase Nro. 12 Análisis Numérico para Ingeniería Clase Nro. 12 Aproximación de Funciones Temas a tratar: Interpolación por Splines Cúbicos. Aproximación por ínimos Cuadrados. Criterios de elección: Tipo de Aproximación

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Aproximación Polinomial de Funciones.

Aproximación Polinomial de Funciones. Aproximación Polinomial de Funciones José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E 1 Introducción En estas notas se presentan los fundamentos de los

Más detalles

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza.

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza. Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13 Problemas. Hoja 1 Problema 1. El método o algoritmo de Horner para evaluar en x 0 el polinomio P (x) = a 0 + a 1 x + + a N x N consiste formalmente en

Más detalles

1. El Método de Diferencias Finitas

1. El Método de Diferencias Finitas 1. El Método de Diferencias Finitas Por Guillermo Hernández García El Método consiste en una aproximación de derivadas parciales por expresiones algebraicas envolviendo los valores de la variable dependiente

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

Soluciones Numéricas de Modelos Matemáticos

Soluciones Numéricas de Modelos Matemáticos Cuarta Sesión 9 de febrero de 2011 Contenido Aproximación Numérica 1 Aproximación Numérica 2 3 4 Algunos Métodos Sencillos para EDPs Aproximación numérica a una función por Series de Taylor Serie de Taylor:

Más detalles

Simulación Numérica de Yacimientos

Simulación Numérica de Yacimientos Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza e-mail: frodriguezd@pep.pemex.com Tel: 5550872, 5622 307 al 9 Capítulo 4. Simulación Numérica de Flujo Multifásico Unidimensional 4.

Más detalles

APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES PARCIALES (EDP) MOTIVACIÓN Una ecuación que tiene derivadas parciales de una función desconocida, de dos o más variables

Más detalles

Semana 05 EDOs Exactas - Aplicaciones

Semana 05 EDOs Exactas - Aplicaciones Matemáticas Aplicadas MA101 Semana 05 EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería EDOs de 1er orden (Semana 01) Ecuaciones no lineales

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL

Más detalles

EJEMPLO 1: La suma de los cuadrados de dos números pares consecutivos es 724, hallar los números. 2 =724

EJEMPLO 1: La suma de los cuadrados de dos números pares consecutivos es 724, hallar los números. 2 =724 PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. INTRODUCCIÓN Múltiples problemas, tanto como la aplicación de otras ciencias como la vida real, se resuelven mediante ecuaciones de segundo grado. Para hallar

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

Departamento de Matemáticas IES Valsequillo

Departamento de Matemáticas IES Valsequillo Departamento de Matemáticas IES Valsequillo Programación de 3º ESO - MATEMÁTICAS ACADÉMICAS Criterios de Evaluación, Contenidos y Estándares de Aprendizaje Prueba extraordinaria Criterio de Evaluación

Más detalles

Curso de Elemento Finito con el software ALGOR

Curso de Elemento Finito con el software ALGOR Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM www.algor.com M. en I. Alejandro Farah Instituto de Astronomía, UNAM www.astroscu.unam.mx/~farah Contenido general: - La teoría

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-6-4-M--00-0 CURSO: Matemática aplicada JORNADA: SEMESTRE: Matutina do. Semestre AÑO: 0 TIPO DE EXAMEN: Examen

Más detalles

MOVIMIENTO DEL AGUA EN FORMACIONES GEOLÓGICAS. 4.1 Conservación de Fluido de Masa

MOVIMIENTO DEL AGUA EN FORMACIONES GEOLÓGICAS. 4.1 Conservación de Fluido de Masa MOVIMIENTO DEL AGUA EN FORMACIONES GEOLÓGICAS 4.1 Conservación de Fluido de Masa Considerando un fluido elemental con volumen V y superficie S que está asociado a un cuerpo fluido (en este caso agua).

Más detalles

PLAN DE MEJORAMIENTO GRADO NOVENO. Comprensión de las expresiones algebraicas como estructuras matemáticas aplicables al desarrollo científico.

PLAN DE MEJORAMIENTO GRADO NOVENO. Comprensión de las expresiones algebraicas como estructuras matemáticas aplicables al desarrollo científico. PLAN DE MEJORAMIENTO GRADO NOVENO INSTITUCIÓN EDUCATIVA LOMA HERMOSA DOCENTE: WÍLMAR ALONSO RAMÍREZ G. Refuerzo matemáticas 2011, grado 9 o Fecha: 25/07/2011. PRIMER PERÍODO: Competencias: Comprensión

Más detalles

MATEMATICA. Facultad Regional Trenque Lauquen

MATEMATICA. Facultad Regional Trenque Lauquen Qué es el álgebra? Es el manejo de relaciones numéricas en los que una o más cantidades son desconocidas, incógnitas, a las que se las representa por letras, por la cual el lenguaje simbólico da lugar

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

Flujo en acuífero confinado

Flujo en acuífero confinado SESIÓN PRÁCTICA EDO CON CONDICIONES DE CONTORNO Flujo en acuífero confinado En esta sesión práctica se plantea el estudio del movimiento del agua a través de un medio poroso bajo una geometría de acuífero

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Aproximación funcional. Introducción

Aproximación funcional. Introducción Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender

Más detalles

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Ejercicios Resueltos Ejercicio : Encontrar la pendiente de la recta

Más detalles

CAPÍTULO. 7 Métodos numéricos

CAPÍTULO. 7 Métodos numéricos CAPÍTULO 7 Métodos numéricos 7.3 Método de Euler mejorado Consideremos ahora el polinomio de Taylor de orden de y.x/ en x D x 0 para aproximar a la solución del PVI y 0 D f.x; y/, con y.x 0 / D y 0. Esta

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Concepto de Ajuste de Curvas (Diferencia con Interpolación)

Concepto de Ajuste de Curvas (Diferencia con Interpolación) Ajuste de Curvas Contenido Concepto de Ajuste de Curvas (Diferencia con Interpolación) Estimación de Parámetros Lineales por Mínimos Cuadrados Ajuste Polinomial Estimación de Parámetros No Lineales por

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

Métodos Numéricos (SC 854) Interpolación

Métodos Numéricos (SC 854) Interpolación Interpolación c M. Valenzuela 2007 2008 (26 de febrero de 2008) 1. Definición del problema de interpolación Dada una tabla de valores (x i,f i ) se desea estimar f(x) para valores de x que no se encuentran

Más detalles

MA1018: MATEMÁTICAS II

MA1018: MATEMÁTICAS II MA1018: MATEMÁTICAS II Departamento académico que la ofrece: Matemáticas C - L - U: 3-0 - 8 Programas académicos en los que se imparte: 2 LAE11, 2 LEM11, 2 LCDE11, 2 LIN11, 2 LCPF11, 2 LLN11, 2 LAC11,

Más detalles

DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA. APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS TESIS

DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA. APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS TESIS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INSTITUTO DE GEOFÍSICA POSGRADO EN CIENCIAS DE LA TIERRA DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

Funciones polinomiales

Funciones polinomiales 1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos

Más detalles

3. Ecuación de difusión

3. Ecuación de difusión 3. Ecuación de difusión Modelización Numérica de la Atmósfera 2017 En este capítulo usaremos la ecuación de difusión como vehículo para introducir dos tipos de esquemas: explícitos e implícitos. Se estudiará

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error.

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error. Examen Extraordinario de Métodos Matemáticos de la Especialidad (Técnicas Energéticas). 7 de Junio de 16 1.1) Escribir la solución de elementos nitos del problema d u + du + u f en (, 1) u () u (1). (1)

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Integración Numérica

Integración Numérica Integración Numérica Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg Integración Numérica Los métodos numéricos utilizados para

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

TRABAJO PRÁCTICO 6 PROBLEMA DE CONVECCIÓN-DIFUSIÓN

TRABAJO PRÁCTICO 6 PROBLEMA DE CONVECCIÓN-DIFUSIÓN INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS TRABAJO PRÁCTICO 6 PROBLEMA DE CONVECCIÓN-DIFUSIÓN Estudiante FREDY ANDRÉS MERCADO NAVARRO Pasaporte: 98 773.53 Maestría en Simulación Numérica y Control

Más detalles

1. Números naturales y sistema de numeración decimal

1. Números naturales y sistema de numeración decimal 1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR CATÁLOGO 2008 SOLUCIONARIO del MODELO DE EXAMEN DE ADMISIÓN

UNIVERSIDAD SIMÓN BOLÍVAR CATÁLOGO 2008 SOLUCIONARIO del MODELO DE EXAMEN DE ADMISIÓN 993 77 993 30 UNIVERSIDAD SIMÓN BOLÍVAR CATÁLOGO 008 SOLUCIONARIO del MODELO DE EXAMEN DE ADMISIÓN Resuelto por los profesores del Instituto ALBERT EINSTEIN Conocimientos de Matemática.- Se tiene: Desarrollando:

Más detalles

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN * 40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar

Más detalles

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

ECUACIÓN GENERAL DE LA PARÁBOLA

ECUACIÓN GENERAL DE LA PARÁBOLA ECUACIÓN GENERAL DE LA PARÁBOLA Una ecuación de segundo grado en las variables que carezca del término en puede escribirse en la forma: Si A 0, C 0 D 0, la ecuación representa una parábola cuo eje es paralelo

Más detalles

Matemáticas III. Geometría analítica

Matemáticas III. Geometría analítica Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

ECUACIONES GENERALES DE LA HIDRAULICA EN MEDIOS POROSOS

ECUACIONES GENERALES DE LA HIDRAULICA EN MEDIOS POROSOS ECUACIONES GENERALES DE LA HIDRAULICA EN MEDIOS POROSOS CONSERVACION DE MASA PARA FLUJO EN UN MEDIO SATURADO Consideremos un volumen de control rectangular. Este volumen de control tiene dimensiones Δx,

Más detalles

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas ANALISIS NUMERICO Práctica 1 - Diferencias Finitas do Cuatrimestre 014 Clasificación de ecuaciones diferenciales en derivadas parciales Eercicio 1 Hallar las regiones donde la ecuación (α + x) u xx + xyu

Más detalles

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11 1.. LOS NUMEROS REALES CONDUCTA DE ENTRADA La figura muestra una recta real -1 0 1 Teniendo en cuenta la Figura responde en minutos a. Cuantos números Reales hay entre -1 y 1. b. Cuantos números naturales

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 12

Análisis Numérico para Ingeniería. Clase Nro. 12 Análisis Numérico para Ingeniería Clase Nro. 12 Aproximación de Funciones Temas a tratar: Interpolación por Splines Cúbicos. Aproximación por ínimos Cuadrados. Criterios de elección: Tipo de Aproximación

Más detalles

Solución de la ecuación de Stokes

Solución de la ecuación de Stokes REVISTA Solución de la ecuación de Stokes Doctora en Ciencias Matemáticas, Resumen Palabras clave Método de los elementos Elementos cuadriláteros Solution of the Stokes equation using the quadrilateral

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Facultad de Ciencias UNAM Tema: Diferenciación Numérica Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Profesor: Pablo Barrera 2 INDICE Preliminares 3 Diferenciación numérica 5 Ejemplos

Más detalles

7.3 Método de Euler mejorado

7.3 Método de Euler mejorado 43 Ecuaciones diferenciales Ejercicios 7..1 Euler. Soluciones en la página 477 Determine una aproximación lineal de la solución y.x/ de cada una de los siguientes PVI en el punto indicado utilizando el

Más detalles

Método de los volúmenes finitos

Método de los volúmenes finitos Capítulo 1 Método de los volúmenes finitos 1.1. Forma discreta de las ecuaciones de conservación escalar Sea φ(x, y, z) una magnitud escalar, un dominio en R 3 y Γ su frontera, podemos escribir una ecuación

Más detalles

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES Para una función de una variable puede construirse una mejor aproximación mediante una función cuadrática que mediante una función lineal, para las funciones

Más detalles

Interpolacion y extrapolacion numerica y Ajuste de datos

Interpolacion y extrapolacion numerica y Ajuste de datos Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Interpolacion y extrapolacion numerica y Ajuste de datos Prof: J. Solano 2012-I Introducción La interpolación y extrapolación

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre ANÁLISIS NUMÉRICO 4 horas a la semana 8 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que

Más detalles

Apuntes y Ejemplos Unidad No. 5

Apuntes y Ejemplos Unidad No. 5 Método de Spline 1. Planteo del problema a partir de las condiciones El trazador cúbico o spline es un conjunto de polinomios de tercer grado que se genera a partir de un conjunto de puntos y, para calcularlo,

Más detalles

Análisis Numérico: Soluciones de ecuaciones en una variable

Análisis Numérico: Soluciones de ecuaciones en una variable Análisis Numérico: Soluciones de ecuaciones en una variable MA2008 Contexto Uno de los problemas básicos en el área de Ingeniería es el de la búsqueda de raíces: Dada una función o expresión matemática

Más detalles

Escuela de Ciencias Básicas Tecnologías e Ingeniería. Algebra Trigonometría y Geometría Analítica

Escuela de Ciencias Básicas Tecnologías e Ingeniería. Algebra Trigonometría y Geometría Analítica Guía No 1 Algebra y Trigonometría Grupo: 1 UNAD Escuela de Ciencias Básicas Tecnologías e Ingeniería Algebra Trigonometría y Geometría Analítica ECUACIONES DE PRIMER GRADO EN UNA VARIABLE Ecuación Una

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Respuesta: Resolver la ecuación aplicando completación de cuadrados En donde a=1,b=6,c=8. Para ello se siguen los siguientes pasos.

Respuesta: Resolver la ecuación aplicando completación de cuadrados En donde a=1,b=6,c=8. Para ello se siguen los siguientes pasos. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO. INTRODUCCIÓN En el campo laboral tiene utilidad como por ejemplo en química, cinética química para describir la variación en la concentración de reactantes respecto

Más detalles

Matemáticas Aplicadas MA101. Semana 01. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Matemáticas Aplicadas MA101. Semana 01. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 01 Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Ecuaciones diferenciales y matrices en ingeniería Contaminación de lagos y ríos

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo X Integración numérica Introducción La integral definida I(f) = b a f(x)

Más detalles