Curso de Elemento Finito con el software ALGOR
|
|
|
- Ana María Ríos Prado
- hace 9 años
- Vistas:
Transcripción
1 Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM M. en I. Alejandro Farah Instituto de Astronomía, UNAM
2 Contenido general: - La teoría detrás del Método de los Elementos Finitos Fenómenos físicos Ecuaciones constitutivas - Solución de problemas por el MEF utilizando ALGOR
3 Desarrollo histórico: - Hrenikoff, 1941, solución a problemas elásticos por el Método del Trabajo. - Courant, 1943, por medio de interpolación polinomial para modelar problemas de torsión. - Turner, 1956, obtuvo las matrices de rigidez (armaduras y vigas). - Clough, 1960, primero en utilizar el término elementos finitos. - Zienkiewicz y Chung, 1967, publican primer libro sobre EF , se crean las bases formales del método. - y se inició toda una revolución.
4 Cómo se hace? iii) Elección de las funciones que describen el fenómeno físico con una con un dominio definido y conocido (ecuaciones constitutivas). vi) Ensamble de las ecuaciones de los elementos (discretización). viii) Solución del sistema de ecuaciones matriciales. x) Determinación de los valores aproximados (interpolación).
5 Fenómeno Físico: Se denomina fenómeno físico a cualquier suceso natural observable y posible de ser medido (elasticidad, el agua hirviendo ) modelos matemáticos ecuaciones diferenciales
6 Característica común: ED continuas y diferenciables infinitamente Método de las Diferencias finitas Métodos Variacionales Método de los Residuos Pesados Método de las Diferencias finitas Sustituye la ED original por una ecuación en diferencias Alcanza buenos resultados en problemas bidimensionales con fronteras paralelas a los ejes coordenados
7 Métodos Variacionales Sustituye en la ED original una solución de prueba con ciertos coeficientes constantes, el problema se resume a encontrarlos x x 2 1 F ( u, u,...) dx Solo se puede aplicar a aquellas ecuaciones diferenciales que tienen un principio variacional, lo cual es difícil de demostrar.
8 Método de los Residuos Pesados Sustituye en la ED original una solución aproximada h(x) y obtiene un error residual R(x) Método de Colocación por Puntos Métodos de los Subdominios Método de Galerkin Método de los Mínimos Cuadrados 2 d h( x) R( x) D Q 2 dx x x 2 1 w ( x) R( x) dx i 0 0 Son los más usados (en especial del M. de Galerkin), también conocidos como formulación integral del MEF.
9 Calculando el área de un círculo con triángulos
10 A partir de simples vigas, resortes Ley de Hooke F=K x
11 Definición: El MEF es un procedimiento matemático por interpolaciones para resolver problemas físicos gobernados por ecuaciones diferenciales
12 . Otra vez, cómo se hace: Elección de las funciones de aproximación Discretización del dominio: el dominio real se sustituye por elementos discretos eligiendo los puntos nodales y especificando sus coordenadas Ensamble de las ecuaciones de los elementos Solución del sistema de ecuaciones Determinación de los valores aproximados
13 Se distingue porque: Formulación integral y finalmente genera un sistema de ecuaciones algebraicas lineales Interpolación de valores de las cantidades desconocidas en los puntos nodales
14 Independiente del problema físico (ED) que se quiera resolver No proporciona la función aproximada sino los valores de la función en ciertos puntos del dominio (nodos) Por interpolación matemática determina los valores de la función en los nodos restantes
UNIVERSIDAD RICARDO PALMA
UNIVERSIDAD RICARDO PALMA FACULTAD DE DEPARTAMENTO ACADÉMICO DE INGENIERÍA I. INFORMACION GENERAL PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : RESISTENCIA DE MATERIALES Y CÁLCULO DE ELEMENTOS FINITOS
Curso de ALGOR UNAM. M. en I. Alejandro Farah. 30/01/2006 Instituto de Astronomía 1
UNAM M. en I. Alejandro Farah 30/01/2006 Instituto de Astronomía 1 UNAM Objetivo: Conocer las aplicaciones y formas de uso de los softwares para FEA (en específico de ALGOR). Así como contemplar las ventajas
Advanced Engineering for Real Solutions CURSO BÁSICO DE ELEMENTOS FINITOS 1.1 INTRODUCCIÓN
CURSO BÁSICO DE ELEMENTOS FINITOS 1.1 INTRODUCCIÓN Módulo MEF 1 1. Introducción al Método de Elementos Finitos (MEF) 1. Definición 2. Historia 2. Conceptos básicos de álgebra lineal 1. Sistemas de ecuaciones
ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA. Código: Titulación: INGENIERO INDUSTRIAL Curso: 4
ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA Código: 141214001 Titulación: INGENIERO INDUSTRIAL Curso: 4 Profesor(es) responsable(s): PEDRO JESÚS MARTÍNEZ CASTEJÓN Departamento: ESTRUCTURAS
INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO
INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO El método del elemento finito es una técnica numérica para resolver problemas que se pueden describir por ecuaciones diferenciales parciales o que pueden ser
Advanced Engineering for Real Solutions CURSO BÁSICO DE ELEMENTOS FINITOS 1.3 PARTE 1: ELEMENTO BARRA EN 1D
CURSO BÁSICO DE ELEMENTOS FINITOS.3 PARTE : ELEMENTO BARRA EN D Sistema MEF Modelos Matemáticos Derivación de la matriz de rigidez Álgebra matricial y solución de ecuaciones Métodos Numéricos Ingeniería
Capítulo V. Introducción al análisis por el método de elemento finito
Capítulo V Introducción al análisis por el método de elemento finito El método de elemento finito es una técnica para resolver ecuaciones diferenciales parciales, primero, discretando las ecuaciones al
MÉTODO DE LOS ELEMENTOS FINITOS.
de MÉTODO DE LOS ELEMENTOS FINITOS. Castillo Madrid, 23 de Noviembre de 26 Índice de 2 3 4 de de El de los Elementos Finitos (M.E.F.) es un procedimiento numérico para resolver ecuaciones diferenciales
ESTRUCTURAS II. Julio Flórez López
ESTRUCTURAS II Julio Flórez López Ingeniería Estructural: Asegurar la integridad de piezas mecánicas y edificaciones bajo la acción de solicitaciones termo-mecánicas Diseño Estructural: Determinar las
Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0
Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0 Curso de adaptación al grado en ingeniería aeroespacial para ingenieros técnicos aeronáuticos Adrián Lozano Durán [email protected]
SISTEMAS DISCRETOS Y SISTEMAS CONTINUOS. INTRODUCCIÓN AL MÉTODO DE ELEMENTOS FINITOS. Mercedes López Salinas
SISTEMAS DISCRETOS Y SISTEMAS CONTINUOS. INTRODUCCIÓN AL MÉTODO DE ELEMENTOS FINITOS Mercedes López Salinas PhD. Ing. Civil [email protected] ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela
02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales
02 Elementos finitos para tensión/ compresión axial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 El método de los elementos finitos El método de los elementos
MÉTODOS NUMÉRICOS DE LA
SEMINARIOS DE MODELACIÓN COMPUTACIONAL MÉTODOS NUMÉRICOS DE LA MODELACIÓN COMPUTACIONAL MARTÍN N DÍAZD, IGEOF-UNAM, MEXICO 1 Contenido Etapas de la Modelación Computacional Métodos Numéricos Método de
I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras
I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución
Desarrollo histórico del Método M los Elementos Finitos
Desarrollo histórico del Método M de los Elementos Finitos MATEMÁTICA y FISICA Funciones de Aproxim ación Calculo Variacional Leonard Euler 1783 Lord Rayleigh 1870 W. Ritz 1909 Residuos Ponderados C. F.
4. Método del elemento finito (formulación de desplazamientos)
4 Método del elemento finito (formulación de desplazamientos) 41 Introducción El método del elemento finito es un método numérico que permite encontrar soluciones aproximadas a problemas físicos gobernados
Método del elemento finito Código ( )
Código (8084283) Por : Euro CASANOVA Departamento de Mecánica, USB Ofc.: MEU-317B Tel: 906-4091 / 906-4056 email: [email protected] web: http://prof.usb.ve/ecasanov 1 Datos del curso Horario: Miércoles 17H
MNEM - Métodos Numéricos en la Ingeniería Mecánica
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 295 - EEBE - Escuela de Ingeniería de Barcelona Este 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras
MN - Métodos Numéricos
Unidad responsable: 295 - EEBE - Escuela de Ingeniería de Barcelona Este Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería Curso: Titulación: 2018
Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones
Métodos de elemento finito 7.4.. Método de Galerkin 7.4.. Formulación n de elemento finito en dimensiones Los métodos m de elemento finito (MEF) son una estrategia numérica alternativa muy popular para
INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO. Algunas bases.
INTROUIÓN L MÉTOO L LMNTO FINITO lgunas bases. l método del elemento finito es una herramienta de análisis muy poderosa que permite obtener soluciones aproximadas a una amplia variedad de problemas de
BIBLIOTECA DE MATLAB PARA LA APLICACIÓN DEL MÉTODO DE ELEMENTOS FINITOS.
BIBLIOTECA DE MATLAB PARA LA APLICACIÓN DEL MÉTODO DE ELEMENTOS FINITOS. Lic. Omar López Armas, Dr. C. Ramón Quiza Sardiñas. Departamento de Ingeniería Mecánica Universidad de Matanzas Camilo Cienfuegos,
CAPÍTULO 8 CONCEPTOS BÁSICOS DEL MÉTODO POR ELEMENTO FINITO
CAPÍTULO 8 CONCEPTOS BÁSICOS DEL MÉTODO POR ELEMENTO FINITO 8. GENERALIDADES El método del elemento finito (MEF en español o FEM en inglés) es un método numérico para la resolución de ecuaciones diferenciales,
ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas
ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO Mercedes López Salinas PhD. Ing. Civil [email protected] ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y
Método del Elemento Finito Programa de estudios por competencias
I. IDENTIFICACIÓN DEL CURSO Método del Elemento Finito Programa de estudios por competencias ORGANISMO ACADÉMICO: Facultad de Ingeniería Programa Educativo: Licenciatura en Ingeniería Mecánica Fecha: Aprobación
Mecánica de las Estructuras II
Mecánica de las Estructuras II Página 1 de 5 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Civil Escuela: Ingeniería
Formulación de Galerkin El método de los elementos finitos
Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE INGENIERÍA SILABO
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE INGENIERÍA SILABO CÁLCULO POR ELEMENTOS FINITOS (MC-516) 2010-II UNIVERSIDAD NACIONAL DE INGENIERÍA
Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++
Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++ Esquema del curso Qué problemas queremos resolver? Análisis Numérico:El Método de los Elementos Finitos
ELEMFINIT - Elementos Finitos
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 250 - ETSECCPB - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona 751 - ECA - Departamento
Introducción al Método de los Elementos Finitos Carácter: Electiva
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL Introducción al Método de los Elementos Finitos Carácter: Electiva PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural
Capítulo 7. Subterráneo
Capítulo 7 Solución n Numérica de la Ecuación n de Flujo Subterráneo Teoría a de Flujo Subterráneo Semestre 2008-1 Alberto Rosas Medina 1 Índice Polinomios de Lagrange Diferencias Finitas en una Dimensión
Relaciones esfuerzo deformación
Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo
FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014
FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación
MC-5122 Método del elemento finito
MC-5122 Método del elemento finito Por : Euro CASANOVA Departamento de Mecánica, USB Ofc.: MEU-317B Tel: 96-491 / 96-456 email: [email protected] web: http://prof.usb.ve/ecasanov 1 Datos del curso Horario:
Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria
Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Splines Introducción Un spline es una función polinomial definida por casos donde cada caso es un polinomio
08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales
08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos
1.4.1. Residuos pesados
1.4. Métodos de aproximación de ED 1.4.1. Residuos pesados El método de los residuos pesados es un método general y poderoso para obtener soluciones aproximadas de ecuaciones diferenciales ordinarias (EDO)
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS Norberto Marcelo Nigro a,1 Gerardo Franck a,2 a Facultad de Ingenieria y Ciencias Hidricas de la Universidad Nacional del Litoral (FICH-UNL), Ciudad Universitaria, 3000 Santa Fe,
08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales
08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos
CAPÍTULO 2. El método de elementos finitos ha tenido un largo trayecto a lo largo de la historia, pero
CAPÍTULO 2 PRINCIPIO DEL MÉTODO DE ELEMENTOS FINITOS 2.1 ANTECEDENTES DEL MÉTODO DE ELEMENTOS FINITOS El método de elementos finitos ha tenido un largo trayecto a lo largo de la historia, pero con el creciente
ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP
Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP Introducción a la Teoría de Elementos Finitos (Tratamiento
CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada
Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)
Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del
ELEMENTOS FINITOS PROBLEMA ELIPTICOS
Análisis Nuérico II Volúenes Finitos Probleas Elípticos ELEMENTOS FINITOS PROBLEMA ELIPTICOS 1/46 Análisis Nuérico II Eleentos Finitos Probleas Elípticos ELEMENTOS FINITOS PROBLEMA ELIPTICOS Forulación
Solución de ecuaciones diferenciales por el método de elementos finitos
Solución de ecuaciones diferenciales por el método de elementos finitos Departamento de Matemáticas Método de elemento finito Un problema del método de diferencias finitas es que al aplicarlo obtenemos
Solución de la ecuación de Stokes
REVISTA Solución de la ecuación de Stokes Doctora en Ciencias Matemáticas, Resumen Palabras clave Método de los elementos Elementos cuadriláteros Solution of the Stokes equation using the quadrilateral
APUNTES DE ELEMENTOS FINITOS PARA SÓLIDOS DEFORMABLES
APUNTES DE ELEMENTOS FINITOS PARA SÓLIDOS DEFORMABLES BEGOÑA CALVO CALZADA MIGUEL ÁNGEL MARTÍNEZ BARCA ESTEFANÍA PEÑA BAQUEDANO Área de Mecánica de Medios Continuos y Tª de Estructuras Diseño e impresión.-
MÉTODO DE DIFERENCIAS FINITAS (FDM)
MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) Cambia ecuaciones diferenciales ecuaciones en diferencias finitas a Relaciona el valor de la variable dependiente en un punto a valores
Concepto de Ajuste de Curvas (Diferencia con Interpolación)
Ajuste de Curvas Contenido Concepto de Ajuste de Curvas (Diferencia con Interpolación) Estimación de Parámetros Lineales por Mínimos Cuadrados Ajuste Polinomial Estimación de Parámetros No Lineales por
CMAM - Aplicaciones de Mecánica Computacional
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 295 - EEBE - Escuela de Ingeniería de Barcelona Este 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras
Subárea: Matemáticas
MATEMÁTICAS. Subárea: Matemáticas CONTENIDO OBJETIVOS REFERENCIA BIBLIOGRAFICA 1. ÁLGEBRA Los números reales y el principio de inducción. Campo de los números reales. Campo de los números complejos. Polinomios.
El método de los elementos finitos
El método de los elementos finitos Segundo curso Grado en Física Índice Funciones continuas a trozos: elementos finitos Métodos variacionales Elementos finitos aplicados a la ecuación de Poisson Consideremos
MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA
UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD
DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA. APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS TESIS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INSTITUTO DE GEOFÍSICA POSGRADO EN CIENCIAS DE LA TIERRA DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS
El Método de Elementos Finitos
Programa de: Hoja1de5 El Método de Elementos Finitos Código: Curso Introductorio UNIVERSIDAD NACIONAL DE CORDOBA FAC. DE CIENCIAS EXACTAS FISICAS Y NATURALES REPUBLICA ARGENTINA Carrera: Maestría en Ciencias
APLICACIONES COMPUTACIONALES
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES PARCIALES (EDP) MOTIVACIÓN Una ecuación que tiene derivadas parciales de una función desconocida, de dos o más variables
E. Uresti. Otoño Taller de la calculadora TI NSpire CX CAS. E. Uresti. Agenda. Descripción. Generales
Taller de la Otoño 2014 Generalidades: Operaciones básicas. Uso de variables. Constructores y delimitadores. y desasignación de variables. y factorización de expresiones. Formación de ecuaciones. Solución
Matemáticas de la Especialidad de Ingeniería Mecánica
Matemáticas de la Especialidad de Ingeniería Mecánica Módulo 1: Introducción Plan 2010: Programa curso 2013 14 Clase 01 Introducción a la asignatura. Introducción a Matlab. Clases 02, 03 Primer ejemplo
Sesión 1. Simulación numérica multifísica
Sesión 1. Simulación numérica multifísica M. Meis y F. Varas Departamento de Matemática Aplicada II Universidad de Vigo Introducción a Elmer, sofware libre de simulación numérica multifísica A Coruña,
Titulo: Análisis del Comportamiento no Lineal del Hormigón en Vigas Isostáticas en Puentes.
Titulo: Análisis del Comportamiento no Lineal del Hormigón en Vigas Isostáticas en Puentes. Aval de la Investigación: Centro Provincial de Vialidad. Pinar del Río Dirección: Isabel Rubio # 52 e/ Juan Gualberto
ASIGNATURA: ANÁLISIS DE ESTRUCTURAS. MÉTODOS NUMÉRICOS
ASIGNATURA: ANÁLISIS DE ESTRUCTURAS. MÉTODOS NUMÉRICOS (Código: 104233) 1. EQUIPO DOCENTE D. Juan José Benito Muñoz. Catedrático de Universidad D. Enrique López del Hierro Fernández. Profesor Asociado
En efecto, si tenemos el siguiente problema de contorno (1.1) con condiciones de frontera homogéneas, donde Ω es una región dada donde está definido
1 En los últimos años se ha incrementado el interés teórico y práctico por los métodos de descomposición de dominio [65,89] para la solución numérica de ecuaciones diferenciales parciales que modelan sistemas
CONCEPTOS BÁSICOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS DE BARRA. Mercedes López Salinas
CONCEPTOS BÁSICOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS DE BARRA Mercedes López Salinas PhD. Ing. Civil [email protected] ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil
Analisis del método de elementos finitos para la ecuación de la Elastostática y Poisson
Analisis del método de elementos finitos para la ecuación de la Elastostática y Poisson Maria Luisa Daza Torres Proyecto ecuaciones diferenciales parciales Centro de Investigación en Matematicas, CIMAT
08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales
08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos
Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.
Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería
3. Método de Rayleigh-Ritz
3. Método de Rayleigh-Ritz La solución del problema de elasticidad consiste en encontrar la función desplazamiento u válida para todo el dominio y que verifique las condiciones de contorno. El método de
PROYECTOS DE SISTEMAS OPTO MECÁNICOS (OP 003)
Resumen del curso: Se estudian los conceptos necesarios para acometer un proyecto optomecánico. Los fundamentos teóricos, las estrategias adecuadas de diseño, los aspectos de fabricación, montaje y pruebas
SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES
SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,
IX. Vibración de sistemas continuos
Objetivos:. Determinar expresiones para la energía cinética y potencial de sistemas continuos: barras y vigas.. Emplear métodos variacionales para deducir la ecuación de unidimensional: barras (axial)
TRABAJO PRÁCTICO 6 PROBLEMA DE CONVECCIÓN-DIFUSIÓN
INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS TRABAJO PRÁCTICO 6 PROBLEMA DE CONVECCIÓN-DIFUSIÓN Estudiante FREDY ANDRÉS MERCADO NAVARRO Pasaporte: 98 773.53 Maestría en Simulación Numérica y Control
TALLER DE ANÁLISIS ESTRUCTURAL
UNIVERSIDAD AUTÓNOMA METROPOLITANA Casa abierta al tiempo TALLER DE ANÁLISIS ESTRUCTURAL Presenta: Gelacio Juárez Luna 2 1. IDEALIZACIÓN Proceso de Simulación Fenómeno físico Modelo matemático Fuerte Variacional
ASIGNATURA: RESISTENCIA DE MATERIALES
Página 1 de 6 CARACTERÍSTICAS GENERALES* Tipo: Formación básica, Obligatoria, Optativa Trabajo de fin de grado, Prácticas externas Duración: Semestral Semestre/s: 4º Número de créditos ECTS: 5 Idioma/s:
