Matemáticas Universitarias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Universitarias"

Transcripción

1 Matemáticas Universitarias

2 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de solución de una inecuación de primer y segundo grado, la forma de expresar la solución a través de intervalos y las principales diferencias con relación a las ecuaciones Contextualización Anteriormente trabajamos con la solución de las ecuaciones lineales y cuadráticas en su forma de igualdad, ahora aprenderemos a resolver desigualdades lineales y cuadráticas con una sola variable e introducir la notación de intervalo. Aprenderemos también a resolver ecuaciones y desigualdades que contengan valor absoluto. 7/2743/ hi8.jpg

3 2 Introducción al Tema Qué es una desigualdad lineal? Su solución será igual a la de una igualdad lineal? Suponga que a y b son dos puntos sobre la recta de los números reales. Entonces a y b coinciden, o a se encuentra a la izquierda de b o viceversa. Si a y b coinciden entonces a = b. si a se encuentra a la izquierda de b, decimos que a es menor que b y escribimos a<b, en donde el símbolo de desigualdad es < se lee es menor que. Por otra parte, si a se encuentra a la derecha de b, decimos que a es mayor que b escribiendo a>b. Los enunciados a>b y b<a son equivalentes.

4 3 Explicación Una desigualdad es un enunciado que establece que un número es menor que otro. Los símbolos de desigualdad son: < se lee menor que > se lee mayor que se lee diferente se lee mayor o igual que se lee menor o igual que Reglas para las desigualdades 1. Si un mismo número es sumado o restado en ambos lados de una desigualdad, la desigualdad resultante tendrá el mismo sentido que la original. En forma simbólica Si a < b, entonces a+c < b+c y a-c < b-c Por ejemplo: 7 < 10, de modo que 7+3 < Si ambos lados de una desigualdad son multiplicados o divididos por el mismo número positivo, la desigualdad resultante tendrá el mismo sentido que la original. En forma simbólica, Si a < b y c>0, entonces ac < bc y a c < b c Por ejemplo, 3<7 y 2>0, de modo que 3(2) < 7(2) y 3 < Si ambos lados de una desigualdad son multiplicados o divididos por el mismo número negativo, entonces la desigualdad tendrá el sentido contrario de la original. En forma simbólica,

5 4 Si a<b y c>0, entonces a(-c) > b(-c) y a c > b c Por ejemplo, 4<7 pero 4(-2) > 7(-2) y 4 2 > Cualquier lado de una desigualdad puede ser reemplazado por una expresión equivalente. En forma simbólica, Si a<b y a=c, entonces c<b Por ejemplo, si x<2 y x=y+4, entonces y+4<2 5. Si los lados de una desigualdad son ambos positivos o negativos, entonces sus recíprocos respectivos estarán relacionados por un símbolo de desigualdad con sentido contrario de la original. Por ejemplo, 2<4 pero 1 > Si ambos lados de una desigualdad son positivos y elevamos cada lado a la misma potencia positiva, entonces la desigualdad resultante tendrá el mismo sentido que la original. Por lo tanto 0<a<b y n>0, entonces a n < b n n y a n < b En donde suponemos que n es un entero positivo en la última desigualdad. Por ejemplo, 4<9 y también que 4 2 < 9 2 y 4 < 9 Definición de desigualdad lineal Un desigualdad lineal en una variable x es aquella que puede escribirse en la forma ax+b<0, Donde a y b son constantes y a 0. Ejemplo 1. Resolver 2(x-3) <4 Solución: reemplacemos la desigualdad dada por desigualdades equivalentes hasta que la solución sea evidente.

6 5 2(x 3) < 4, 2x 6 < 4 (regla 4) 2x < 4 +6 (regla1) 2x < 10 (regla 4) 2x < (regla 2) x < 5. Podemos escribir nuestra solución simplemente como x < 5 y representarla en forma geométrica por el segmento de línea gruesa en la siguiente figura donde el paréntesis indica que el 5 no está incluido en la solución. Y en notación de intervalo será (-, 5) este intervalo indica que se extiende de manera indefinida hacia la izquierda. Tipos de intervalos Existen otros tipos de intervalo. Por ejemplo, el conjunto de todos los números x para los que a x b es llamado intervalo cerrado e incluye a los números a y b, los cuales son llamados extremos del intervalo y es denotado por [a,b].

7 6 vgaw-yzq8/s400/intervalos.jpg Ejemplo 2. Resolver 3 (s 2) + 1 > 2(s 4) 2 Solución: 3 2 (s 2) + 1 > 2(s 4) 2 3 (s 2) + 1 > 2[ 2(s 4)] (regla 2) 2 [3(s 2) + 2] > 4(s 4) 3s 4 > -4s +16 7s > 20 s > 20 7 (regla 2)

8 7 La solución en intervalo es ( 20 7, ) La desigualdad (inecuación) cuadrática o de segundo grado: x 2 6x + 8 > 0 La resolveremos aplicando los siguientes pasos: 1ºIgualamos el polinomio del primer miembro a cero y obtenemos las raíces de la ecuación de segundo grado. x 2 6x + 8 = 0 2º Representamos estos valores en la recta real. Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo: P(0) = > 0 P(3) = = < 0 P(5) = = > 0

9 8 3º La solución está compuesta por los intervalos (o el intervalo) que tengan el mismo signo que el polinomio. S = (-, 2) (4, ) Vitutor. (s.f.). Inecuaciones cuadráticas. Recuperado de: Valor absoluto. Ecuaciones con valor absoluto. El valor absoluto de un número real x, escrito por x, está definido como x, si x 0 x = x, si x < 0 Ejemplo 3: Resolución de ecuaciones con valor absoluto. Resolver x-3 = 2 Solución: esta ecuación establece que x-3 es un número que está a 2 unidades del cero. Por lo tanto, x-3 = 2 o x-3 = -2 Resolviendo éstas se obtiene x = 5 y x = 1. Desigualdades con valor absoluto. La siguiente tabla muestra un resumen de las soluciones: Desigualdad (d >0) x < d x d Solución -d < x < d -d x d

10 9 x > d X < -d o x > d x d x d o x d Ejemplo 4: Resolución de desigualdades con valor absoluto. Resolver x-2 < 4 Solución: el número x-2 debe estar a menos de 4 unidades del cero. Del estudio anterior esto significa que -4 < x-2 < 4. Podemos establecer el procedimiento para resolver esta desigualdad como sigue: -4 < x-2 < < x < 4+2 (sumando 2 a cada miembro) -2 < x < 6 Así la solución es el intervalo abierto (-2,6). Esto significa que todos los números reales entre -2 y 6 satisfacen la desigualdad original.

11 10 Conclusión En esta sección aprendiste a solucionar desigualdades lineales y cuadráticas y anotando esta solución en notación de intervalo abierto o cerrado según sea el caso. También estudiaste la manera de resolver ecuaciones y desigualdades con valor absoluto. Todo esto con el uso de una sola variable. La siguiente sesión aprenderemos a resolver ecuaciones lineales de más de una variable a través de los sistemas de ecuaciones lineales y métodos de solución.

12 11 Para aprender más En este apartado encontrarás más información acerca del tema para enriquecer tu aprendizaje. Puedes ampliar tu conocimiento visitando los siguientes sitios de Internet. Es de gran utilidad visitar el apoyo correspondiente al tema, pues te permitirá desarrollar los ejercicios con más éxito. Importe artículo sobre las desigualdades con valor absoluto, con ejercicios para elaborar. Desigualdades con valor absoluto. (2013). En Universidad Nacional de Colombia. Consultado el 3 de abril de 2013: Artículo que hace referencia a las características y al desarrollo de las inecuaciones cuadráticas. Inecuaciones cuadráticas. (2010). Consultado el 3 de abril de 2013:

13 12 Actividad de Aprendizaje Aplicar los conceptos aprendidos en la sesión para resolución de inecuaciones o desigualdades expresando dicha solución a través de su correspondiente intervalo x x x 3 < 4 + 7x 4. x 7 < x 1 6. x 2 + 5x + 6 > x 2 + 9x 5 > 0 Sube la actividad a la plataforma.

14 13 Bibliografía Haussler, E. (1997). Matemáticas para administración, economía, ciencias sociales y de la vida. México: Prentice Hall hispanoamericana, S.A. Cibergrafía Inecuaciones cuadráticas. (2010). Consultado el 3 de abril de 2013:

Matemáticas. Sesión #3. Ecuaciones cuadráticas y desigualdades.

Matemáticas. Sesión #3. Ecuaciones cuadráticas y desigualdades. Matemáticas Sesión #3. Ecuaciones cuadráticas y desigualdades. Contextualización Ahora nos toca estudiar las ecuaciones de segundo grado también conocida por ecuaciones cuadráticas. Las ecuaciones cuadráticas

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 4 Nombre: Ecuaciones Cuadráticas Objetivo de la asignatura: En esta sesión el estudiante aplicará los principales métodos de solución de raíces de polinomios de

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 7 Nombre: Operaciones básicas con matrices, producto e inversa. Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas de suma,

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad

Más detalles

Matemáticas. Sesión #4. La ecuación de la recta y su grafica.

Matemáticas. Sesión #4. La ecuación de la recta y su grafica. Matemáticas Sesión #4. La ecuación de la recta y su grafica. Contextualización El sistema de coordenadas es uno de los conceptos que aprenderemos en esta sesión, aprenderemos a identificar los elementos

Más detalles

Desarrollaremos la noción de pendiente y las diferentes formas de ecuaciones de rectas.

Desarrollaremos la noción de pendiente y las diferentes formas de ecuaciones de rectas. Matemáticas 1 Sesión No. 4 Nombre: La ecuación de la recta y su gráfica. Contextualización El sistema de coordenadas es uno de los conceptos que aprenderemos en esta sesión, aprenderemos a identificar

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la

Más detalles

Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1

Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 6 Nombre: Sistemas de ecuaciones lineales y métodos de solución Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos de solución por sustitución,

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Sesión No. 10. Nombre: Integrales. Contextualización MATEMÁTICAS.

Sesión No. 10. Nombre: Integrales. Contextualización MATEMÁTICAS. Matemáticas Sesión No. 0 Nombre: Integrales Contetualización En esta sesión trabajaremos con el cálculo integral, nuestro objetivo es definir la anti derivada y la integral indefinida de una función diferencial

Más detalles

MATEMÁTICAS BÁSICAS. Universidad Nacional de Colombia Sede Bogotá. 24 de julio de Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Universidad Nacional de Colombia Sede Bogotá. 24 de julio de Departamento de Matemáticas MATEMÁTICAS BÁSICAS Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 24 de julio de 2012 Parte I Ecuaciones lineales ECUACIONES Una ecuación es una igualdad entre dos expresiones

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 2017

UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 2017 UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 017 Práctica 1- Números Reales Entre los conjuntos numéricos más conocidos con los que trabajaremos en esta práctica se encuentran los Naturales (N),

Más detalles

2x + 1 < 3 2x x > 2 3x 5 + x Las soluciones de una inecuación la podemos expresar mediante:

2x + 1 < 3 2x x > 2 3x 5 + x Las soluciones de una inecuación la podemos expresar mediante: CLASE 1 Inecuaciones 1.1 Introducción Una inecuación es una desigualdad que relaciona dos expresiones algebraicas por medio de uno de los siguientes signos: >,

Más detalles

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos: INECUACIONES. Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:, se lee" menor que",se lee" menor o igual que",se lee" mayor que",se lee

Más detalles

En esta sesión introduciremos la llamada derivada de una función y aprenderás reglas importantes para encontrar estas derivadas.

En esta sesión introduciremos la llamada derivada de una función y aprenderás reglas importantes para encontrar estas derivadas. Matemáticas 1 Sesión No. 9 Nombre: Derivadas Contextualización Comencemos aora el estudio del cálculo. Las ideas propias del cálculo son totalmente diferentes a las del algebra y la geometría. La fuerza

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

ECUACIONES E INECUACIONES.

ECUACIONES E INECUACIONES. CAPÍTULO 3 ECUACIONES E INECUACIONES www.mathspace.jimdo.com [email protected] 3.1. ECUACIONES Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable,

Más detalles

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl Guía Matemática INECUACIONES profesor: Nicolás Melgarejo.cl 1. Orden en R Consideremos un conjunto compuesto por símbolos no numéricos como el siguiente: A = {Œ, Ø,!, #, Æ, ø} No es posible ordenar el

Más detalles

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS. Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las

Más detalles

PREPARADOR DE CALCULO 11

PREPARADOR DE CALCULO 11 3 PREPARADOR DE CALCULO 3 ÁREA: Matemáticas ASIGNATURA: Cálculo INTENSIDAD HORARIA SEMANAL: 5 Horas TEMA: Conjuntos Definición: Intuitivamente, un conjunto es una colección o clase de objetos bien definidos.

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11 1.. LOS NUMEROS REALES CONDUCTA DE ENTRADA La figura muestra una recta real -1 0 1 Teniendo en cuenta la Figura responde en minutos a. Cuantos números Reales hay entre -1 y 1. b. Cuantos números naturales

Más detalles

Unidad 7. Desigualdades. Objetivos. Al finalizar la unidad, el alumno:

Unidad 7. Desigualdades. Objetivos. Al finalizar la unidad, el alumno: Unidad 7 Desigualdades Objetivos Al finalizar la unidad, el alumno: Comprenderá el concepto de orden en los números reales, así como el de valor absoluto y sus propiedades. Aplicará las propiedades de

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Además se definirá la función lineal en forma de expresión matemática y se aprenderá a usar su gráfica.

Además se definirá la función lineal en forma de expresión matemática y se aprenderá a usar su gráfica. Matemáticas 1 Sesión No. 5 Nombre: Función lineal y cuadrática. Contextualización En esta sesión aprenderás a interpretar el concepto de función, para que sirve trabajar con funciones, que datos maneja

Más detalles

Ecuación de segundo grado

Ecuación de segundo grado UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,

Más detalles

PREPA N o 1. Inecuaciones. Resolución de inecuaciones con valor absoluto. Diga cuál es el conjunto solución de. x 2 < 1+ x

PREPA N o 1. Inecuaciones. Resolución de inecuaciones con valor absoluto. Diga cuál es el conjunto solución de. x 2 < 1+ x UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-1111) Elaborado por Miguel Labrador 12-10423 Ing. Electrónica PREPA N o 1. Inecuaciones Resolución de inecuaciones con valor absoluto. Ejemplo 1. Diga cuál es

Más detalles

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma:

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma: Inecuaciones Una inecuación es una desigualdad matemática que presenta al menos una variable en alguno de sus miembros, por eso también se le conoce como desigualdad algebraica. Los signos de desigualdad

Más detalles

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades lineales en una variable Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o Inecuaciones Una inecuación o desigualdad,

Más detalles

CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11

CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 DESIGUALDADES E INECUACIONES PERÍODO I FECHA 3 de abril de 08 NIVEL MEDIA TÉCNICA CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO LOGROS: Reconoce el concepto de desigualdad,

Más detalles

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.

Más detalles

Matemáticas. Sesión #5. Función lineal y cuadrática.

Matemáticas. Sesión #5. Función lineal y cuadrática. Matemáticas Sesión #5. Función lineal y cuadrática. Contextualización En esta sesión aprenderás a interpretar el concepto de función, para que sirve trabajar con funciones, que datos maneja y como se le

Más detalles

MATEMÁTICAS CCSS 1º DE BACHILLERATO

MATEMÁTICAS CCSS 1º DE BACHILLERATO 1) Desigualdades e inecuaciones polinómicas Se trata de expresiones en las que tenemos un signo de desigualdad. Los símbolos de desigualdad son (, ) { Propiedades : Si a los dos miembros de una desigualdad

Más detalles

Desigualdades o Inecuaciones Desigualdades lineales en una variable

Desigualdades o Inecuaciones Desigualdades lineales en una variable Desigualdades o Inecuaciones Desigualdades lineales en una variable Una desigualdad, es una oración que incluye un signo de desigualdad. Los signos de desigualdad son: ,,. (Estos se leen: menor que,

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8 Plan de Estudios: Semestre 1 Área: Matemática 1 Nº Créditos: Intensidad horaria semanal: 3 Hrs T Hrs P Total horas: 6 Tema: Desigualdades 1. OBJETIVO Apropiar los conceptos de desigualdades y establecer

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 2 - Intervalos Inecuaciones Intervalo En matemática llamamos intervalo a un subconjunto de la recta real. Por ejemplo: Esto se lee: El intervalo A está formado por las x pertenecientes

Más detalles

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]

Más detalles

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4 Colegio Raimapu Departamento de Matemática Guía N Desigualdades e Inecuaciones Nombre del Estudiante: π ) Para el conjunto de números reales A = R / es verdadero que: I) A II), A III) A ) Qué condición

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones

Más detalles

FUNDAMENTOS NUMÉRICOS SEMANA 4

FUNDAMENTOS NUMÉRICOS SEMANA 4 FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES

Más detalles

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades lineales en una variable Prof. Anneliesse Sánchez Adaptada por Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o Inecuaciones Una desigualdad, es una oración

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Matemáticas. Sesión #2. Polinomios y expresiones racionales.

Matemáticas. Sesión #2. Polinomios y expresiones racionales. Matemáticas Sesión #2. Polinomios y expresiones racionales. Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas,

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe Así encontramos (las abscisas de) los puntos críticos.

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Usamos los símbolos de una desigualdad son: ,, para representar

Más detalles

Matemáticas. Sesión # 1. Fundamentos del Álgebra.

Matemáticas. Sesión # 1. Fundamentos del Álgebra. Matemáticas Sesión # 1. Fundamentos del Álgebra. Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para el manejo

Más detalles

Identificación de inecuaciones lineales en los números reales

Identificación de inecuaciones lineales en los números reales Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: jueves, 3 de junio de 06. 3 Polinomios y funciones racionales 3. Funciones

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 07 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: miércoles, 3 de agosto de 07. 3 Polinomios y funciones racionales 3.

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática

Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática 1 Capítulo 4 Inecuaciones M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Ecuaciones e Inecuaciones

Ecuaciones e Inecuaciones 5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de

Más detalles

Por qué expresar de manera algebraica?

Por qué expresar de manera algebraica? Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

1. x = 2. Solución : x = 2 o x = x = 2. Solución x = 2 o x= x = 0. Solución: x = 0

1. x = 2. Solución : x = 2 o x = x = 2. Solución x = 2 o x= x = 0. Solución: x = 0 Problemas que involucran igualdades con valor absoluto. x =. Solución : x = o x = -. x =. Solución x = o x= -.. x = 0. Solución: x = 0. x =. No hay solución posible. No existen valores absolutos negativos.

Más detalles

Módulo 4 Resolución de inecuaciones. Gráficas e intervalos

Módulo 4 Resolución de inecuaciones. Gráficas e intervalos Módulo 4 Resolución de inecuaciones. Gráficas e intervalos OBJETIVO Identificar los intervalos abiertos y cerrados. Determinar y graficar la solución de inecuaciones con valor absoluto. Primero empecemos

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 8 Nombre: Depreciación. Parte I Objetivo Al término de la sesión el estudiante solucionará problemas reales de depreciación a través de la aplicación de los

Más detalles

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

E IDENTIFICAR ECUACIONES E IDENTIDADES

E IDENTIFICAR ECUACIONES E IDENTIDADES DISTINGUIR OBJETIVO E IDENTIFICAR ECUACIONES E IDENTIDADES NOMBRE: CURSO: FECHA: IDENTIDADES Y ECUACIONES Una igualdad algebraica está formada por dos epresiones algebraicas separadas por el signo igual

Más detalles

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA FUNCIÓN Y RELACIÓN RELACION Dados los conjuntos A =

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 11 Nombre: Funciones exponenciales y logarítmicas. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos relacionados con las funciones

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña UNIVERSIDAD AMERICANA Escuela de Matemática, II C-12. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE ALGEBRA (Factorización, Ecuaciones e Inecuaciones) La factorización

Más detalles

FUNDAMENTOS NUMÉRICOS

FUNDAMENTOS NUMÉRICOS SEMANA 1 ÍNDICE NÚMEROS REALES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 NÚMEROS REALES (R)... 5 PROPIEDADES DE LOS NÚMEROS REALES... 5 LA RECTA NUMÉRICA... 8 CONJUNTOS E INTERVALOS... 9 OPERACIONES

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

EJERCICIOS RESUELTOS DE NÚMEROS REALES

EJERCICIOS RESUELTOS DE NÚMEROS REALES EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-

Más detalles

UNDÉCIMO GRADO TALLER GUÍA No. 2 NOMBRE: DESIGUALDADES EN LOS REALES

UNDÉCIMO GRADO TALLER GUÍA No. 2 NOMBRE: DESIGUALDADES EN LOS REALES UNDÉCIMO GRADO TALLER GUÍA No. ÁREA: MATEMÁTICAS UNIDAD: No. ASIGNATURA: INTRODUCCIÓN AL CÁLCULO NOMBRE: DESIGUALDADES EN LOS REALES OBJETIVO: Desarrollar la capacidad de conceptualización mediante la

Más detalles

FACULTAD DE INGENIERÍA NIVELACIÓN DE MATEMÁTICAS

FACULTAD DE INGENIERÍA NIVELACIÓN DE MATEMÁTICAS NIVELACIÓN DE MATEMÁTICAS FACULTAD DE INGENIERÍA OBJETIVOS DEL PROGRAMA El Programa Matemáticas pretende reforzar los contenidos básicos de los programas de estudio de matemáticas establecidos para la

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

Inecuaciones INTRODUCCIÓN. 4. Si: a > b c < 0 ac < bc

Inecuaciones INTRODUCCIÓN. 4. Si: a > b c < 0 ac < bc Inecuaciones INTRODUCCIÓN Este capítulo nos ayudará a desarrollar aún más nuestra capacidad de análisis, pues la diversidad de problemas que se presentan aquí requieren que el estudiante sea analítico,

Más detalles

Nombre estudiante: Fecha: D / M / A Asignatura: MATEMÁT. Educador: Luz Dari Lindarte Clavijo. Socialización con estudiante y padre familia, firma:

Nombre estudiante: Fecha: D / M / A Asignatura: MATEMÁT. Educador: Luz Dari Lindarte Clavijo. Socialización con estudiante y padre familia, firma: EVALUACIÓN ACADÉMICA Gestión Académica Versión 3 / 12-2-2016 Nombre estudiante: Fecha: D / M / A Asignatura: MATEMÁT DBA: Utiliza las propiedades de los números enteros y racionales y las propiedades de

Más detalles

Tema 4. Ecuaciones e Inecuaciones.

Tema 4. Ecuaciones e Inecuaciones. Tema 4. Ecuaciones e Inecuaciones. 1. Ecuaciones con una incógnita. 1.1. Ecuaciones de primer grado 1.. Ecuaciones de segundo grado 1.3. Ecuaciones bicuadráticas 1.4. Ecuaciones polinómicas 1.5. Ecuaciones

Más detalles

Coordinación de Matemática I (MAT021)

Coordinación de Matemática I (MAT021) Coordinación de Matemática I (MAT01) Taller Primer semestre de 01 Semana 1: Lunes 6 viernes 30 de marzo Ejercicios Ejercicio 1 1. Sea x 0 un número real, mostrar que si x 0 < r para todo r > 0 entonces

Más detalles

1º Bachillerato Capítulo 2: Inecuaciones

1º Bachillerato Capítulo 2: Inecuaciones Matemáticas Aplicadas a las Ciencias Sociales I 1º Bachillerato Capítulo 2: Inecuaciones 43 Índice 2. INECUACIONES DE PRIMER Y SEGUNDO GRADO 2.3. RESOLUCIÓN DE INECUACIONES DE PRIMER GRADO Y SU INTERPRETACIÓN

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b, donde a y b son números reales con a. Para resolverla despejamos

Más detalles