Integración Numérica
|
|
|
- Sergio Tebar Páez
- hace 7 años
- Vistas:
Transcripción
1 Integración Numérica
2 Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg
3 Integración Numérica Los métodos numéricos utilizados para resolver la Integración Definida de una función son: Método de Coeficientes Indeterminados Método de Curvatura de Newton-Cotes Método de Romberg
4 Integración Numérica La Integral Definida se expresa como bb II = ff xx dddd aa donde ff(xx) es una función continua en el intervalo (aa, bb), y esta representa el área bajo la curva de yy = ff(xx) entre xx = aa y xx = bb. Si se divide el intervalo (aa, bb) en NN subintervalos (xx ii, xx ii+11 ) de longitud hh (hh = xx), obtenemos una serie de rectángulos de ancho hh y altura ff(xx ii ) y el área de cada uno de ellos es ff(xx ii )hh.
5 Integración Numérica El área bajo la curva puede ser aproximada por la suma de las áreas de estos rectángulos, por lo que podemos obtener la Integral Definida de la siguiente forma Por lo tanto, un método de aproximación de I sería el cálculo de la suma de las áreas donde nn es un número entero muy grande pero finito.
6 Integración Numérica Intuitivamente, una mejor aproximación numérica de la integral definida podría ser el cálculo de la suma de las áreas trapezoidales, donde el área del trapezoide i sería La suma TT de estas áreas trapezoidales es entonces
7 Integración Numérica Examinando las fórmulas anteriores podemos ver que cualquiera de estos dos métodos numéricos de aproximación de una integral definida puede ser escrita forma de la suma de los pesos de las ordenadas donde AA ii son constantes apropiadas (pesos), y la ff(xx ii ) son ordenadas de la función escogidas apropiadamente. El error entre la integral definida y estas aproximaciones lo podemos obtener con la siguiente relación
8 Método de Coeficientes Indeterminados En esta sección se determinará el juego de constantes AA ii tal que el Error EE definido en la relación sea igual a cero para una xx ii arbitraria y donde ff(xx) es cualquier polinomio pp nn (xx) de grado no mayor de nn.
9 Método de Coeficientes Indeterminados Ahora, si el error EE es cero cuando ff(xx) es cualquier polinomio de grado no mayor que nn, entonces deberá ser cero cuando ff xx = 11, xx, xx 22,, xx nn. Por sustitución sucesiva de 11, xx, xx 22,, xx nn para ff(xx) en la ecuación del error, obtenemos el siguiente sistema de ecuaciones, las cuales son lineales y con constante desconocida AA ii (considerando la restricción EE = 00 para cada caso)
10 Método de Coeficientes Indeterminados
11 Método de Coeficientes Indeterminados Escribiendo las ecuaciones anteriores en forma matricial obtenemos Resolviendo este sistema de ecuaciones obtenemos los valores de AA ii los cuales los podemos aplicar a la siguiente fórmula para obtener la aproximación de la integral definida
12 Método de Coeficientes Indeterminados Ejemplo: Encontrar la Integral de cosh(xx) de 0 a 2. Considerando los puntos xx = 0, xx = 1, xx = 2 y ff(xx) = cosh(xx)
13 Método de Coeficientes Indeterminados
14 Método de Coeficientes Indeterminados La solución exacta del ejemplo es: Entonces el error total es: Error = =
15 Método de Curvatura de Newton-Cotes Las reglas de trapecios, Simpson 1/3 y Newton 3/8 pertenecen a la clase denominada Curvatura de Newton de métodos de integración numérica para aproximar bb II ff xx dddd aa Estas fórmulas son denotadas por QQ nnnn y son de la forma general donde ff (xx) es un polinomio de interpolación.
16 Método de Curvatura de Newton-Cotes Características: 1. Para valores igualmente espaciados de xx, es decir xx ii+11 xx ii = hh 2. La ff(xx) se aproxima por un polinomio de interpolación de Diferencias Finitas Hacia Adelante de Newton, PP kk (xx) donde: kk nn, para nn impar kk nn + 11, para nn par 3. Se tomarán grupos de NN subintervalos, para calcular PP kk (xx) en cada grupo
17 Método de Curvatura de Newton-Cotes Regla Trapezoidal QQ 1111 Regla de Simpson 1/3 QQ 2222 Regla de Newton 3/8 QQ 3333
18 Método de Romberg Más eficiente computacionalmente, mayor precisión. El método consiste de 2 pasos: a) Calcular aproximaciones de aa bb ff xx dddd usando QQ 1111 (método de trapecios), para diferentes valores hh kk ; donde (bb aa) hh kk = 22 kk ; kk = 00, Llamaremos TT 00 kk
19 Método de Romberg b) Aplicar la fórmula recursiva de Romberg sobre las aproximaciones TT kk 00 encontradas en a), para encontrar las aproximaciones TT kk 11. La fórmula se aplican hasta donde sea posible. TT kk mm = 44mm TT kk+11 kk mm 11 TT mm mm 11
20
21
22
23 Problemas 1. Use el método de Coeficientes Indeterminados para aproximar usando xx 0 = 0.0, xx 1 = 0.5, xx 2 = Aproxime Usando: a) Regla Trapezoidal con h = 0.125; b) Regla de Simpson 1/3 con h = 0.125; c) Regla de Newton 3/8 con h = 2/12.
24 Problemas 3. Aproxime la siguiente función con el Método de Romberg con h = 1, 0.5, 0.25, 0.125, hasta que h d = Considere para éste caso, 9 dígitos de precisión.
25 Integración Numérica
INTEGRACIÓN NUMÉRICA
INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental
El método de los trapecios es muy simple y se puede explicar fácilmente a partir de la siguiente figura.
REGLA DEL TRAPECIO El método de los trapecios es muy simple y se puede explicar ácilmente a partir de la siguiente igura. REGLA DEL TRAPECIO SIMPLE I ( b a) ( a) 2 ( b) Eligiendo un espaciado se divide
TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA
POSTULACIÓN A PRIMER AÑO MEDIO N 1.- Resolver operaciones con números, ecuaciones y potencias. N 2.- Aplicar transformaciones isométricas y teselaciones. N 3.- Evaluar problemas de cálculo de perímetro
Métodos Numéricos (SC 854) Integración
c M. Valenzuela 007 008 (1 de abril de 008) 1. Definición del problema Dada una función f() se desea calcular la integral definida f para valores dados de 0 y f.. Rectángulos 0 f() d (1) Todos los métodos
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función
Marzo 2012
Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos
Integración Numérica. Regla de Simpson.
Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: [email protected] web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: [email protected] Lo que ya se vió
UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 6
Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-11) PREPARADURÍA N 6 Máximos y mínimos: clasificación
TEMA 5: INTERPOLACION NUMERICA
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una
TEMA 6: DERIVACION NUMERICA
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función
Integración numérica
Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura
1 - Ecuaciones. Sistemas de Ecuaciones Mixtos
Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
INTEGRACIÓN APROXIMADA
Humboldt Marine Training INTEGRACIÓN APROXIMADA Preparado por Ing. Boris L. GUERRERO B. Valparaíso, CHILE, 2011. 1 INDICE DE MATERIAS Anexo A.. 3 Método Trapecios. 3 Problema Método Trapecios. 4 1ª Regla
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente
Operaciones con monomios y polinomios
Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32
Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
Límite de una función
Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden
Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica
Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /
Manual de Marca 1. Importancia del Manual de Marca
Manual de Marca 1. Importancia del Manual de Marca El presente Manual de Marca anula y sustituye al anterior. En este se explican todas las normas referidas al uso del imagotipo y sus respectivas aplicaciones.
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 4ª RONDA DEPARTAMENTAL 11 de agosto de 2012
Problema 1 Calcular el valor de la expresión: (214 213) + (999 998) + 1 200 + 0 100. Problema 2 Entre 10 y 20 hay números que son divisibles sólo por 1 y por sí mismos. Cuál es la suma de esos números?
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple
Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje
1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE
Practica 1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE I. INTRODUCCION Las planillas de cálculo se han
1 Ecuaciones diferenciales
1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR 5.1 DERIVADA DE UNA FUNCIÓN 5.1.1 Definición de derivada Definición: Sea I in intervalo abierto, f : I y a I. Diremos que f es derivable en a si existe y
Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.
Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele
Factorización de polinomios
Factorización de polinomios Entre las funciones importantes de la Matemática está la familia de las funciones polinómicas. Una función polinómica puede definirse de manera que su dominio sea el conjunto
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
1. Indica el resultado de cada división y justifica tu respuesta.
Matemáticas 2 Bloque I Instrucciones. Lee y contesta correctamente lo que se te pide. 1. Indica el resultado de cada división y justifica tu respuesta. a) (+p) (+q) = b) (+p) ( q) = c) ( p) (+q) = 2. Si
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA
Universidad Nacional de Rio Cuarto Facultad de Ciencias Exactas, Físico-Químicas y Naturales UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada
UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente
(Tecla Shift pequeña) ó (Tecla Shift grande) Estas teclas, también tienen la función de poner la letra en Mayúsculas.
EL TECLADO Un teclado es un periférico de entrada que consiste en un sistema de teclas, como las de una máquina de escribir, que te permite introducir datos al ordenador. Cuando se presiona un carácter,
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método
Reconocimiento de la integral a partir del método de los trapecios.
Grado 11 Matematicas - Unidad 4 Cómo hallo el área de superficies curvas? Bienvenidos al cálculo integral Tema Reconocimiento de la integral a partir del método de los trapecios. Nombre: Curso: En muchas
Introducción al Cálculo Numérico
Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
LINEAMIENTOS PARA EL USO DE MARCA MINTIC
LINEAMIENTOS PARA EL USO DE MARCA MINTIC Libertad y Orden El objetivo de este documento más que entregar un lineamiento estricto y rígido - y el buen desarrollo de estas, enmarcado en los nuevos parámetros
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Clase 10: Extremos condicionados y multiplicadores de Lagrange
Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función
Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico
Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1
SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Dominios Se presentan los dominios de las funciones trigonométricas : Campo de valores Para cada θ en el dominio
Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:
Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto
Contenido Objetivos Ceros de Polinomios. Ceros de Polinomios. Carlos A. Rivera-Morales. Precálculo 2
Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 Tabla de Contenido 1 2 eros reales : Discutiremos: el Teorema de los de Polinomios : Discutiremos: el Teorema de los de Polinomios uso de la Calculadora
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
Identificación de inecuaciones lineales en los números reales
Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado
I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre
INTRO. LÍMITES DE SUCESIONES
INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades
Práctica 4 Límites, continuidad y derivación
Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
Problema - Sumando Digitos
Primera Olimpiada de Informática Problema - Sumando Digitos Comenzando con un entero entre 00 y 99 inclusive, escritos como dos dígitos (use un cero a la izquierda en caso de que el numero sea menor que
ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II
SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE EDUCACIÓN BÁSICA DIRECCIÓN DE EDUCACIÓN SECUNDARIA ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II A partir de la fórmula para obtener el volumen del
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas
6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,
Guía de Ejercicios: Funciones
Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después
CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)
CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto
Tecnología Eléctrica ( Ingeniería Aeronáutica )
Problema 2 Es necesario seleccionar un motor trifásico de inducción para accionar un compresor de aire. Para dicha selección se han prefijado los parámetros siguientes: El compresor debe girar a una velocidad
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
2x 1. compatible determinado, luego tiene una única solución. Para resolverlo aplicaremos reducción, 23y = 0
RELACIÓN DE ECUACIONES Y SISTEMAS. Considera el sistema. 7 Atención a los coeficientes del sistema! 7. Sabemos antes de resolverlo que el sistema es compatible determinado, luego tiene una única solución.
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Sistemas de ecuaciones lineales dependientes de un parámetro
Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
LA INTEGRAL DEFINIDA IES MURILLO
LA INTEGRAL DEFINIDA IES MURILLO Un poco de Historia El concepto de integral definida surge para resolver el problema del área de figuras limitadas por arcos de curva. Algunos matemáticos que trabajaron
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales
Solución de ecuaciones no lineales c M. Valenzuela 007 008 (5 de mayo de 008) 1. Definición del problema: raíces de ecuaciones no lineales Dada una ecuación de una variable independiente x, f(x) =0, (1)
Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal
Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *
40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
MATE EJERCICIOS DE PRACTICA
MATE 0066 - EJERCICIOS DE PRACTICA TEMA: de inecuaciones polinómicas por factorización Instructora: Ana María Aparicio A. Hallar los puntos críticos de los siguientes polinomios. Los puntos críticos son
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
