Guía de Ejercicios: Funciones
|
|
|
- Mario Alejandro Zúñiga Franco
- hace 9 años
- Vistas:
Transcripción
1 Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función inversa. Componer funciones. Contenidos 1. Dominio y Recorrido de una función. 2. Inyectividad, sobreyectividad y biyectividad. 3. Función inversa. 4. Composición de funciones. Debo saber Antes de empezar a realizar estos ejercicios es importante que recordemos algunos conceptos: Función: Una función es una relación en donde a cada elemento perteneciente al conjunto le corresponde un único elemento del conjunto. Dominio: El dominio de una función en está formado por aquellos valores reales de para los que se puede calcular la imagen Se denota como. Recorrido (o Rango): El recorrido de una función en es el conjunto de los valores reales que toma la variable ó Se denota como. Función inyectiva (o uno a uno): La función, es inyectiva si y sólo si: Función sobreyectiva (o epiyectiva): La función es sobreyectiva si y sólo si: La función es sobreyectiva si y sólo si todos los elementos del conjunto B son imagen de algún elemento de A. La función es sobreyectiva si y sólo si Función biyectiva: Una función es biyectiva si es al mismo tiempo es inyectiva y sobreyectiva. Función inversa: Se llama función inversa de a otra función que cumple que si, entonces Solo es posible determinar la función inversa, si y solo si es biyectiva. Primera Edición
2 Composición de funciones: Dadas las funciones y, donde la imagen de está contenida en el dominio de, se define la función composición como ( ), para todos los elementos de. Logaritmo: El logaritmo de un número en base se define como el número al que hay que elevar para obtener el número. Ejercicio 1 Dada la función , donde determine: a) Si la función es biyectiva. b) La inversa de ser posible. a) Si es biyectiva Recordamos que una función es biyectiva si es al mismo tiempo es inyectiva y sobreyectiva. La función es inyectiva si y sólo si, 2 3 Por definición Multiplicando por inversos es inyectiva Por distributividad y reduciendo términos semejantes. Ordenando la ecuación Reduciendo términos semejantes Multiplicando por (1/55) La función es sobreyectiva si y sólo si Por definición Multiplicando por (7x + 3) Multiplicando distributivamente Ordenando la ecuación: ; Factorzando por término común x Despejando Primera Edición
3 En donde,. Luego: 2 3 es sobreyectiva Como es inyectiva y sobreyectiva, entonces es biyectiva. c) La inversa de ser posible. Como es biyectiva, entonces es posible determinar Considerando Intercambiando variables, por, e por Reemplazando por Ejercicio 2 Sea a) Determinar el dominio de la función b) Determinar si es inyectiva y si es sobreyectiva c) Encontrar la inversa de la función d) Verificar que e) Calcular f) Determinar el valor de cuando a) Dominio de la función Como el argumento del logaritmo debe ser positivo, entonces Organizando la inecuación: Multiplicando por (1/2) -, Primera Edición
4 b) Si es inyectiva Sean -,, entonces: Por definición Ordenando la ecuación: Multiplicando por (-1) Igualando los argumentos Ordenando la ecuación: Multiplicando por (1/2) es inyectiva Si es sobreyectiva Por definición Ordenando la ecuación: Por definición de logaritmo Despejando En donde, es sobreyectiva c) Inversa de la función Considerando Intercambiando variables, por, e por. (esto es un acomodo de la notación formal) Reemplazando por d) Verificar que ( ). / Por definición. / Evaluando. / en la función Primera Edición
5 . / Simplificando ( ) Eliminando paréntesis en el argumento Reduciendo términos en el argumento Por definición y propiedad de logaritmo Eliminando paréntesis Reduciendo términos semejantes e) Calcular ( ) Reemplazando por Ordenando en el argumento Calculando resulta 4 porque f) El valor de x cuando Reemplazando por Ordenando la ecuación de tal forma que el logaritmo quede en un lado de la igualdad y positivo: ( ) Por definición de logaritmo Resolviendo la potencia Despejando la incógnita Ejercicio 3 Sea ;, donde y. Determine y su dominio. ( ) Como Primera Edición
6 Luego, igualando ( ) y se tiene: Elevando al cuadrado en ambos lados de la igualdad. Multiplicando distributivamente para eliminar paréntesis. Despejando Como la función no tiene restricciones para, entonces el Ejercicio 4 Considere la función definida por. Determine su dominio, si es biyectiva y su inversa si es que existe. a) Dominio de la función Para que la función racional no se indetermine debe cumplir que: * + b) Si es biyectiva Sean * +, entonces: Multiplicando por inversos Ordenando: ; Reduciendo términos semejantes Multiplicando por Por otro lado, es inyectiva Por definición, y multiplicando por Multiplicando distributivamente Ordenando la ecuación: ; Factorizando por el término común Despejando : multiplicando por Primera Edición
7 , donde, entonces Por lo tanto, * + Y como la función está definida por no es epiyectiva. Luego, no es biyectiva. c) Función inversa, si es que existe Como no es biyectiva, luego en estricto rigor no existe. Si de igual forma queremos construir, debemos hacer algunas aclaraciones: Considerando y podemos redefinir la función para que ahora sea biyectiva. Luego: * + * + Como ahora es biyectiva, entonces existe la función inversa. Considerando Intercambiando variables, por, e por (esto es un acomodo de la notación formal) Reemplazando por Ejercicio 5 Dada la función. Determine su dominio y recorrido. a) Dominio de la función El racional se indetermina cuando el denominador es cero, por lo tanto: Pero, como es raíz cuadrada, Primera Edición
8 Entonces, considerando ambas restricciones, se tiene que: Factorizando por diferencia de cuadrados (suma por diferencia) Identificando puntos críticos, al despejar en ambas ecuaciones: Por lo tanto: 1 0 b) Recorrido de la función Multiplicando por Elevando al cuadrado ( ) Multiplicando distributivamente Ordenando: Multiplicando por Despejando Calculando la raíz cuadrada del denominador En donde Como Identificando puntos críticos, al despejar en ambas ecuaciones: Primera Edición
9 Por lo tanto: Según lo anterior, podríamos suponer que el , pero: Si reemplazamos en valores pertenecientes al 1 0, como por ejemplo y, resulta: Para Para Por lo que los valores de obtenidos solo pertenecen al intervalo 0 0 [ [ Primera Edición
SOLUCIONARIO Composición de funciones y función inversa
SOLUCIONARIO Composición de funciones y función inversa SGUICES04MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Composición de funciones y función inversa Ítem Alternativa E Comprensión A 3 D 4 B 5 C 6 D 7 A
Guía de Ejercicios: Funciones exponenciales y logarítmicas
Guía de Ejercicios: Funciones exponenciales y logarítmicas Área Matemática Resultados de aprendizaje Aplicar la función exponencial y logarítmica en diversos contextos. Contenidos 1. Aplicación de la Función
SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos
SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D
Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II
467890467890 M ate m ática Tutorial MT-a Matemática 006 Tutorial Nivel Avanzado Función eponencial y logarítmica II Matemática 006 Tutorial Función eponencial y logarítmica Marco Teórico. Función eponencial..
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA
SGUIC3M020MT311-A16V1. GUIA DE EJERCITACIÓN Propiedades de las potencias
SGUICM00MT11-A16V1 GUIA DE EJERCITACIÓN Propiedades de las potencias TABLA DE CORRECCIÓN GUÍA PRÁCTICA PROPIEDADES DE LAS POTENCIAS Ítem Alternativa 1 C D B 4 E ASE 5 A 6 C 7 A 8 C B 10 E Comprensión 11
ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una
Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4
Funciones I Par ordenado Es un conjunto formado por dos objetos matemáticos cualesquiera "a" "b" denotado por (a; b) que se consideran ordenados con el criterio de uno antecede al otro. Notación: (a; b)
Álgebra Básica Desarrollo ejercicios Guia 7.
Álgebra Básica Desarrollo ejercicios Guia 7. Ecuaciones Racionales 1. Resuelva las siguientes ecuaciones racionales, analizando el dominio y dando el conjunto solución. a) 1 m Convencionalmente despejamos,
MATEMÁTICAS GUÍA DE EJERCITACIÓN 1 RESPUESTAS I. EJERCICIOS PREGUNTA Transforma a fracción común: 1.1 1,2
MATEMÁTICAS GUÍA DE EJERCITACIÓN 1 RESPUESTAS I. EJERCICIOS PREGUNTA 1 1. Transforma a fracción común: 1.1 1, 1 1 6 Expresando como fracción: y simplificando:. 10 10 Entonces: 1, 6/ 1., 6 Expresando el
1. Decida si la siguiente función es biyectiva, realice su grafica. Partamos por definir el dominio e imagen de la función.
DU0- Métodos de Cuantificación 009, Semestre Otoño Guía de ejercicios resueltos y propuestos Funciones y polinomios:. Decida si la siguiente función es biyectiva, realice su grafica. f : R R f Solución:
GUÍA DE EJERCICIOS. Áreas Matemáticas Análisis Estadístico
GUÍA DE EJERCICIOS Áreas Matemáticas Análisis Estadístico Resultados de aprendizaje Determinar e interpretar medidas de tendencia central y de posición, en datos tabulados. Contenidos 1. Estadística descriptiva
SOLUCIONARIO Sistema de inecuaciones de primer grado
SOLUCIONARIO Sistema de inecuaciones de primer grado SGUICEG032EM31-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Sistema de inecuaciones de primer grado Ítem Alternativa 1 C 2 A 3 E 4 D 5 C 6 A 7 E 8 C 9
4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES
Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
Guía de exámenes parciales
Universidad de Costa Rica Escuela de Matemática Proyecto MATEM http://matem.emate.ucr.ac.cr/ tel. (506) 511-458 Guía de exámenes parciales Precálculo undécimo 017 Contenido I Parcial:... Álgebra... Geometría
Documento 2 : Nuevas funciones a partir de otras
Unidad 4: Funciones reales de una variable real Temas: Algebra de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas, biyectivas. Función inversa. Capacidades. Manejar conceptos y
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
Cálculo Diferencial. Prof. Enrique Mateus N.
Determinar el rango de las siguientes funciones. f ( ). f ( ). 4. 5. 6. 7. f ( ) f ( ) f ( ) f ( ) 4 f ( ) 5 f ( ) ( ) 8.. f ( ). f ( ). f ( ) ( ) 4 4. f ( ) 9 5. f ( ) 6. f ( ) ( ) 7. f ( ) 5 8. f ( )
Colegio Universitario Boston Función Logarítmica Función Logarítmica 226
226 Una función logarítmica es una función de la forma representa a la base de la función, y cumple el papel de argumento., donde Para que una función se considere logarítmica se debe cumplir que el valor
( ) ( ) ( ) Reduce a común denominador el siguiente conjunto de fracciones: x 1 2. Solución: Común denominador: 1 =
Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) ( )( + )( )
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
Tutorial MT-m4. Matemática Tutorial Nivel Medio. Función exponencial y logarítmica I
12345678901234567890 M ate m ática Tutorial MT-m4 Matemática 2006 Tutorial Nivel Medio Función exponencial y logarítmica I Matemática 2006 Tutorial Función exponencial y logarítmica Marco Teórico 1. Función
Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:
MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y
Programa Entrenamiento MT-21
Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Inecuaciones y sistemas de inecuaciones lineales SGUICEN030MT1-A16V1 TABLA DE CORRECCIÓN Guía de ejercitación Inecuaciones y sistemas
FUNCIONES: DOMINIO, RANGO Y GRAFICA
FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,
Guía de Ejercicios. Área Matemática SUMATORIAS. Antes de empezar a realizar estos ejercicios es importante que recordemos algunos conceptos:
Guía de Ejercicios Área Matemática SUMATORIAS Resultados de aprendizaje Usar propiedades de la sumatoria para resolver diferentes situaciones. Contenidos 1. Propiedades de las sumatorias. Debo saber Antes
SOLUCION DE LAS INECUACIONES IRRACIONALES
SOLUCION DE LAS INECUACIONES IRRACIONALES 1) Expresiones que contienen en el denominador no se pueden pasar y multiplicar por cero es decir no podemos anular la expresión del denominador = = = = 2 4 Si
Tutorial MT-a5. Matemática Tutorial Nivel Avanzado. Proporcionalidad y porcentajes II
1256789012567890 M ate m ática Tutorial MT-a5 Matemática 2006 Tutorial Nivel Avanzado Proporcionalidad y porcentajes II Matemática 2006 Tutorial Proporcionalidad y porcentajes Marco Teórico 1. Proporcionalidad.
Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.
ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de
Igualdad de funciones
5)Realiza una tabla para cada una de las funciones, en el intervalo dado, donde el dominio son los números enteros. a) f ( x) = 3x [ 0,5] b) f ( x) = 4x + 1 [,6] 3 c) f ( x) = x [,8] d) f ( x) = x [,3]
ECUACIONES E INECUACIONES.
CAPÍTULO 3 ECUACIONES E INECUACIONES www.mathspace.jimdo.com [email protected] 3.1. ECUACIONES Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable,
1 - Ecuaciones. Sistemas de Ecuaciones Mixtos
Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar
A = {(2; 3), (5; 7), (1; 4)} B = {(4; 1), (9; 8), (3; 6)} C = {(2; 3), (1; 7), (3; 5)}
Funciones I Función.- Es una relación o correspondencia binaria (es decir, entre dos magnitudes), de manera que a cada valor de la primera, le corresponde un único valor de la segunda. Ejemplo: Sea la
SEGUNDO TURNO TEMA 1
TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto
3. (a+b) 3 = a 3 +3a 2 b+3ab 2 +b (a b) 3 = a 3 3a 2 b 3ab 2 b 3. 9x 12 2x 3 3x+4 = 9/ x 2x 3x = x = 20 x = 5
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Ecuaciones Algebraicas J. Labrin - G.Riquelme Productos Notables: 1. (a±b) = a ±ab+b. (a+b) (a b) = a b 1. Resuelva
Solución Primer Parcial Matemática
Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo
Tutorial MT-b7. Matemática Tutorial Nivel Básico. Ecuaciones y Sistemas de ecuaciones
146890146890 M ate m ática Tutorial MT-b Matemática 006 Tutorial Nivel Básico Ecuaciones y Sistemas de ecuaciones Matemática 006 Tutorial Ecuaciones y sistemas de ecuaciones Marco Teórico 1. Ecuaciones
UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA
UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA FUNCIÓN EXPONENCIAL. Se llama función exponencial a la función de la forma y = a x en donde a R +, a y x es una variable. Existen muchos fenómenos
INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO
INTERVALOS INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2016 2017) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar}
Logaritmos. Logaritmo en base b de un argumento x igual a n (exponente) si y solo si b elevado a n da como resultado a x.
Logaritmos Revisadas las potencias y los radicales podemos abordar los logaritmos, los cuales están relacionados con la exponenciación a través la siguiente función. log b x = n x = b n Logaritmo en base
INECUACIONES LINEALES
INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada
Ejemplos: + 3 no es una ecuación, es una identidad. Por qué? La igualdad 3( x + 1) = 2x + 1 sí es una ecuación. Por qué?
TEMA:.- POLINÓMICAS Una ecuación es una igualdad entre dos epresiones algebraicas que sólo se verifica para algunos valores de sus incógnitas. Estos valores son las soluciones de la ecuación. Las epresiones
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
Ecuación Función cuadrática
Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2010 2011) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x > 4} C = {x Z x 2 < 20} D = {x N x es primo}
Programa Entrenamiento MT-21
Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Función potencia y función raíz cuadrada SGUICEN05MT1-A16V1 TABLA DE CORRECCIÓN Guía de ejercitación Función potencia y función raíz
PROGRAMA EMPRENDER 2018
Tercero y Cuarto Medio Unidad 1: NÚMEROS Unidad 2: PROPORCIONALIDAD Preparación PSU Matemática Cuadro sinóptico de unidades y contenidos Conjuntos o Subconjuntos o Representación o Cardinalidad Conjuntos
GUÍA DE EJERCICIOS: MATEMÁTICAS
GUÍA DE EJERCICIOS: MATEMÁTICAS Matrices Esta guía de estudio está diseñada con ejercicios resueltos paso a paso con el fin de mostrar los procedimientos detallados para abordar cada uno de ellos. Las
Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.
Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =
Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8.
Funciones I Una función es una regla que relaciona los elementos de dos conjuntos y, es decir a todos los elementos del conjunto, que llamaremos dominio se le asigna por medio de alguna regla, uno y sólo
Unidad No 1.- Funciones Numéricas (Parte II).
Unidad No.- Funciones Numéricas (Parte II)..6.- CLASIFICACIÓN DE LAS FUNCIONES. FUNCIÓN INYECTIVA. Una función se dice que es inyectiva si elementos diferentes del domino poseen imágenes diferentes en
Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma:
Inecuaciones Una inecuación es una desigualdad matemática que presenta al menos una variable en alguno de sus miembros, por eso también se le conoce como desigualdad algebraica. Los signos de desigualdad
Ecuación de segundo grado
UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,
CENTRO UNIVERSITARIO DEL CENTRO DE MÉXICO. División Bachillerato. Notas de Apoyo. Matemáticas IV. Luisa Edith Martínez Navarro
CENTRO UNIVERSITARIO DEL CENTRO DE MÉXICO División Bachillerato Notas de Apoyo Matemáticas IV Luisa Edith Martínez Navarro Septiembre 2015 Índice general Introducción 4 1. Operaciones con Distintos tipos
GUÍA DE EJERCICIOS EQUILIBRIO DE ECUACIONES POR MÉTODO ALGEBRAICO
GUÍA DE EJERCICIOS EQUILIBRIO DE ECUACIONES POR MÉTODO ALGEBRAICO Área Química Resultados de aprendizaje Aplicar conocimientos matemáticos y sobre leyes ponderales en el equilibrio de ecuaciones químicas
Capítulo 2. Funciones
Capítulo 2. Funciones Objetivo: El alumno analizará las características principales de las funciones reales de variable real y formulará modelos matemáticos. Contenido: 2.1 Definición de función real de
Teoría Tema 2 Concepto de función
página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS UNA - UCR - TEC - UNED - MEP - MICITT Álgebra e iπ + φ φ 0 III Nivel I Eliminatoria Marzo 06 Índice. Presentación. Contenidos 3. Algunos consejos útiles 4. Problemas
Unidad didáctica 4. Ecuaciones de primer y segundo grado
Unidad didáctica Ecuaciones de primer y segundo grado 1. Definición de ecuación. Una ecuación es una igualdad en la que existen cantidades conocidas y una cantidad desconocida, que se quiere averiguar,
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas.
CURSO 2009-2010 DEPARTAMENTO: MATEMÁTICAS CURSO: 1º ESO ÁREA: MATEMÁTICAS Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. Cálculo del m.c.d. y m.c.m.
La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir:
Función Exponencial La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir: Con Gráfica función exponencial a) Si la función es creciente en. b) Si la función
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
LABORATORIO DE CÁLCULO-2016 GUÍA DE REVISIÓN
LABORATORIO DE CÁLCULO-2016 GUÍA DE REVISIÓN Unidad I 1. Indique los distintos subconjuntos numéricos en R. 2. A qué se denomina recta real?. 3. Qué es un intervalo real?. Cómo se lo simboliza?. 4. Defina
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es fundamental que asistas
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
SGUIC3M0M311-A15V1 Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es
TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA
Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*
DESIGUALDAD E INECUACIONES. Sean a, b, c y d números reales cualesquiera. Para ellos valen las siguientes propiedades:
DESIGUALDAD E INECUACIONES PROPIEDADES DE LA RELACION MAYOR QUE. Sean a, b, c y d números reales cualesquiera. Para ellos valen las siguientes propiedades: ) Ley de tricotomía: Para dos números reales
Algebra Lineal XI: Funciones y Transformaciones Lineales
Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:
Números Reales, Funciones e Inecuaciones.
CAPÍTULO 1 Números Reales, Funciones e Inecuaciones. Estos apuntes corresponden a la preparación de clases de la sección 1. Pretenden complementar el texto guía y no lo reemplazan bajo ninguna circuntancia.
Apellidos: Nombre: 3. Utiliza las propiedades de los logaritmos para hallar el valor de la expresión y de la incógnita. a) [0,75 puntos] log 8
EXAMEN DE MATEMÁTICAS NÚMEROS Y ALGEBRA Apellidos: Nombre: Curso: B1ºC Día: 6 - X- 16 CURSO 016-17 TEMA 1 - NÚMEROS 1. [1,5 puntos] Expresa los siguientes intervalos y semirrectas en lenguaje natural,
EJERCICIOS RESUELTOS DE INECUACIONES
EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 2 - Intervalos Inecuaciones Intervalo En matemática llamamos intervalo a un subconjunto de la recta real. Por ejemplo: Esto se lee: El intervalo A está formado por las x pertenecientes
Curso Propedéutico de Cálculo Sesión 1: Funciones
Curso Propedéutico de Cálculo Sesión 1: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 Esquema 1 2 El cálculo se basa en las propiedades de los
ÁLGEBRA Algunas soluciones a la Práctica 1
ÁLGEBRA Algunas soluciones a la Práctica 1 Correspondencias y aplicaciones (Curso 2004 2005) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
APLICACIONES DE LAS ECUACIONES DIFERENCIALES EN LA INGENIERIA CURVA DEL CABLE COLGANTE BAJO SU PROPIO PESO
APLICACIONES DE LAS ECUACIONES DIFERENCIALES EN LA INGENIERIA CURVA DEL CABLE COLGANTE BAJO SU PROPIO PESO ECUACIÓN DEL CABLE COLGANTE BAJO SU PROPIO PESO Se considera el caso de un cable colgado en sus
( 3) esto no es igual a 3 ya que sería
MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su
Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra
12345678901234567890 M ate m ática Tutorial MT-b6 Matemática 2006 Tutorial Nivel Básico Álgebra Matemática 2006 Tutorial Álgebra Marco teórico: 1. Término algebraico El término algebraico es la unidad
