Tema 8: HETEROCEDASTICIDAD *
|
|
|
- Felipe Moreno Herrero
- hace 8 años
- Vistas:
Transcripción
1 Universidad Carlos III de Madrid César Alonso ECONOMETRIA Tema 8: HETEROCEDASTICIDAD * Índice 1. Introducción Ejemplos El modelo de regresión lineal con heterocedasticidad Consecuencias sobre el estimador MCO Consecuencias sobre los estimadores de variables instrumentales 4 3. Inferencia Robusta a la heterocedasticidad: Propuesta de White o de Eiker-White 5 * Este material está basado en material previo elaborado por María Arrazola y José de Hevia.
2 1. Introducción ECONOMETRÍA. Tema 7. El análisis de muchos fenómenos económicos exige relajar el supuesto de HOMOCEDASTICIDAD (varianza condicional del error constante) que se hace en el modelo de regresión clásico. Tanto en el contexto de datos de sección cruzada como de datos de series temporales es habitual encontrar situaciones con HETEROCE- DASTICIDAD. El término heterocedasticidad se refiere a aquella situación en que la varianza de Y condicional a las variables del modelo no es constante para los distintos valores de las X s Ejemplos Supongamos que 100 estudiantes se apuntan a una clase de mecanografía. Supongamos que algunos han escrito a máquina antes y otros no lo han hecho nunca. Al acabar la primera clase, algunos estudiantes mecanografían fatal y otros lo hacen bastante bien. Si construyéramos un gráfico mostrando los errores tipográficos cometidos por los estudiantes con respecto a las horas acumuladas de mecanografía, veríamos que la dispersión de los errores tipográficos disminuye a medida que la variable explicativa (el número de horas acumuladas de mecanografía) aumenta. La diferencia en los errores cometidos entre el mejor y el peor de la clase será probablemente más pequeña después de la última clase que después de la primera clase. César Alonso (UC3M) 1
3 Supongamos que tenemos datos de renta y de gasto en alimentación para un número grande de familias. Si representamos en un gráfico el gasto en alimentación frente a la renta es de esperar que encontremos heterocedasticidad. Probablemente, la dispersión en el gasto en alimentación para diferentes niveles de renta aumente con la renta. Las familias pobres tienen menos flexibilidad en su nivel de gasto en alimentación, de manera que veremos poca dispersión en el gasto de alimentación para dichas familias. Por el contrario, cabe esperar que algunas familias ricas gasten mucho en alimentación (por ejemplo, comiendo caviar o cenando a menudo en restaurantes caros) y que otras familias ricas con preferencias diferentes gasten mucho menos en alimentación, destinando su renta a otros usos. 2. El modelo de regresión lineal con heterocedasticidad Sin pérdida de generalidad, consideraremos el caso del modelo de regresión simple: Y = β 0 + β 1 X + ε donde: y: E(ε X) = 0 E(Y X) = β 0 + β 1 X = P LO(Y X) C(Y, X) β 0 = E(Y ) β 1 E(X) y β 1 = V (X) V (ε X) = V (Y X) = σ 2 (X) HETEROCEDASTICIDAD César Alonso (UC3M) 2
4 Veremos que: MCO es insesgado y consistente, incluso en ausencia de homoscedasticidad. Los errores estándar de las estimaciones basados en la expresión convencional son sesgados e inconsistentes en presencia de heteroscedasticidad. (y por tanto no podemos utilizarlos para hacer inferencia) Consecuencias sobre el estimador MCO Qué propiedades tendrá el estimador de MCO en este contexto?. Centrémonos en el análisis de la estimación de β 1. Suponiendo que tenemos una muestra aleatoria: Insesgadez Sabemos que β 1 = i c iy i, con c i = x i i x2 i Dado que i c i = 0 y i c ix i = 1, tenemos que:. E( β 1 X i ) = E( i c iy i X i ) = i c ie(y i X i ) = i c i(β 0 + β 1 X i ) = β 1 Por tanto, E( β 1 ) = β 1 Insesgadez Consistencia Sabemos que β 1 = i x iy i i x2 i = 1 n i x iy i, 1 n i x2 i César Alonso (UC3M) 3
5 luego p lím β 1 = p lím 1 n i x iy i p lím 1 n i x2 i = C(X, Y ) V (X) = β 1 Consistencia Expresión de la varianza V ( β 1 X i ) = σ 2 β1 = V ( i c iy i X i ) = i c2 i V (Y i X i ) = i c2 i σi 2 i = x2 i σi 2 ( i x2 i [ )2 ] i V ( β 1 ) = E x2 i σi 2 ( i x2 i )2 Nótese que esta expresión no es la habitual. Por tanto, la construcción de intervalos de confianza y la contrastación de hipótesis que se realiza a partir de la expresión habitual σ 2 β1 = σ 2 E ( i x2 i ) no son válidas. La importancia del sesgo dependerá de la magnitud de la Heterocedasticidad. Eficiencia MCO no es, en este contexto, el Estimador Lineal Insesgado de Mínima Varianza Consecuencias sobre los estimadores de variables instrumentales Al igual que en el caso del estimador MCO, la propiedad de consistencia no se ve afectada por la presencia de heterocedasticidad, dado que los supuestos sobre la varianza no se utilizan para derivar la propiedad de consistencia. César Alonso (UC3M) 4
6 No obstante, la expresión convencional de la varianza de este estimador es incorrecta, lo que invalida también toda inferencia basada en dicho estimador de la varianza. 3. Inferencia Robusta a la heterocedasticidad: Propuesta de White o de Eiker-White Nótese que en general desconocemos la forma que tiene σ 2 i. En cualquier caso, y a partir de resultados asintóticos, puede llevarse a cabo la construcción aproximada de intervalos de confianza y la contrastación [ de hipótesis, empleando la propuesta de estimación para ] σ 2 β1 i = E x2 i σi 2 ( de White o Eiker-White. i x2 i )2 Esta propuesta es aplicable tanto para el estimador MCO como para estimadores de variables instrumentales. No obstante, vamos a centrarnos formalmente en el caso del estimador MCO. La principal ventaja es que no precisa conocer el patrón que caracteriza la heterocedasticidad. La propuesta consiste en calcular s 2 β1 = i x2 i ε 2 i ( i x2 i )2, en donde ε i son los residuos de MCO del modelo, es decir: ε i = Y i Ŷi = Y i ( β 0 + β 1 X i ) Los errores estándar de los estimadores calculados de esta forma se conocen como errores estándar robustos, o errores estándar consistentes a heterocedasticidad, o errores estándar de Eicker-White. César Alonso (UC3M) 5
7 Se puede demostrar que: es decir β 1 β 1 i x2 i ε 2 i ( i x2 i )2 N(0, 1), β 1 β 1 s β1 N(0, 1), Se puede emplear este resultado para construir intervalos de confianza y realizar contrastes de hipótesis como se hace habitualmente. En la práctica, la mayor parte de los programas econométricos incorporan con la estimación MCO o de VI la opción de errores estándar robustos a heterocedasticidad. Importante: dado que en presencia de heterocedasticidad la varianza condicional de Y no es constante, no tiene sentido considerar el error estándar de la regresión o el R 2 como medidas de bondad del ajuste, puesto que sólo tienen sentido en un contexto homocedástico. César Alonso (UC3M) 6
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
ECONOMETRIA. Tema 5: ERRORES DE ESPECIFICACIÓN. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35
ECONOMETRIA Tema 5: ERRORES DE ESPECIFICACIÓN César Alonso UC3M César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35 Introducción Hemos visto que el estimador MCO tiene buenas propiedades bajo los supuestos
Tema 2. Heterocedasticidad. 1 El modelo de regresión lineal con errores heterocedásticos
ema 2. Heterocedasticidad. El modelo de regresión lineal con errores heterocedásticos En este tema vamos a analizar el modelo de regresión lineal Y t = X tβ + u t, donde X t = (X t, X 2t,.., X kt y β =
Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.
ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores
Mínimos Cuadrados Generalizados
Tema 2 Mínimos Cuadrados Generalizados 2.1. Modelo de regresión con perturbaciones no esféricas En el tema de Mínimos Cuadrados Generalizados vamos a relajar dos de las hipótesis básicas sobre la perturbación.
Heteroscdasticidad y MCG
May 24, 2009 Modelo lineal clasico: 1 Linealidad: Y = Xβ + u. 2 Exogeneidad: E(u) = 0 3 No Multicolinealidad: ρ(x) = K. 4 No heteroscedasticidad ni correlacion serial: V (u) = σ 2 I n. Teorema de Gauss/Markov
Ejemplo 7.1. Heterocedasticidad. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)
Ejemplo 7.1 Heterocedasticidad Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 7.1. Heterocedásticidad 1 / 22 Enunciado.
TEMA 5: Especificación y Predicción en el MRL
EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso
Los estimadores mínimo cuadráticos bajo los supuestos clásicos
Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni [email protected] Mariana Marchionni MCO bajo los supuestos clásicos 1
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
ECONOMETRIA. Tema 6: MODELOS CON VARIABLES EXPLICATIVAS ENDÓGENAS. César Alonso. Universidad Carlos III de Madrid
ECONOMETRIA Tema 6: MODELOS CON VARIABLES EXPLICATIVAS ENDÓGENAS César Alonso Universidad Carlos III de Madrid César Alonso (UC3M) ECONOMETRIA. Tema 6 1 / 70 Endogeneidad Dado el modelo de regresión lineal:
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
2. Modelos con regresores endógenos
. Introducción ema 3. Regresores Endógenos. Bibliografía: Wooldridge, 5., 5.4 y 6.2 En este tema vamos a estudiar el modelo lineal con regresores potencialmente endógenos. Veremos primero las consecuencias
El Modelo de Regresión Lineal
ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables
Econometría III Examen. 29 de Marzo de 2012
Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean
Hoja de Ejercicios 3 El modelo de regresión lineal múltiple
Hoja de Ejercicios 3 El modelo de regresión lineal múltiple Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería comprobar
ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía
ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
Econometría de Económicas Ejercicios para el tema 2 y 3
Econometría de Económicas Ejercicios para el tema 2 y 3 Curso 2005-2006 Profesores Amparo Sancho Perez Guadalupe Serrano Pedro Perez 1 1- Los datos que se adjuntan hacen referencia a los datos de producción
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos
ECONOMETRIA. Tema 3: El modelo de regresión lineal múltiple. César Alonso. Universidad Carlos III de Madrid
ECONOMETRIA Tema 3: El modelo de regresión lineal múltiple César Alonso Universidad Carlos III de Madrid César Alonso (UC3M) ECONOMETRIA. Tema 3 1 / 101 Introducción En la mayoría de las relaciones económicas
Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias
Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados
Notas de clase Estadística R. Urbán R.
Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención
Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16
Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3
TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)
TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión
Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM
Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay
Examen de Introducción a la Econometría 8 de septiembre de 2008
NOMBRE DNI: GRUPO Firma: MODELO 1: SOLUCIONES Examen de Introducción a la Econometría 8 de septiembre de 008 Sólo una respuesta es válida. Debe justificar la respuesta de cada pregunta en el espacio que
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
Econometría II. Hoja de Problemas 1
Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli
Regresión múltiple. Demostraciones. Elisa Mª Molanes López
Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +
PROPIEDADES DEL ESTIMADOR MCO
TEMA 3 PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos
Estadística para la Economía y la Gestión IN 3401 Clase 5
Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad
Curso de nivelación Estadística y Matemática
Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo
TEMA 2: Propiedades de los estimadores MCO
TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso
ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA
GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
TEMA 5. Modelos para Datos de Conteo
TEMA 5. Modelos para Datos de Conteo Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos de Conteo 2 Regresión de Poisson 3 Extensiones Datos de Conteo Variable de
Econometría Aplicada
Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que
Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal
Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia
Tema 8: Regresión y Correlación
Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice
La econometría : una mirada de pájaro
La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un
Estadística para la Economía y la Gestión IN 3401
Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los
Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado
Caso 1: Solución Apartado a) - 2 0 2 4 6 0 2 0 4 0 6 0 8 0 1 0 0 p e r i o d E x c e s s r e t u r n, c o m p a n y a e x c e s s r e t u r n m a r k e t p o r t f o l i o Gráfico 1: Evolución del exceso
Estimación por el método generalizado de momentos (MGM).
Estimación por el método generalizado de momentos (MGM). Siga J.Muro(27/10/2003) 1 Método generalizado de momentos (MGM). Intuición. Principio MGM. Obtención de estimadores MGM. Propiedades de los estimadores.
REGRESIÓN LINEAL SIMPLE
REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias
ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación
ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45
Estimaciones puntuales. Estadística II
Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un
Prácticas Tema 5. Ampliaciones del Modelo lineal básico
Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión
MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.
MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción
Ejercicio Heterocedasticidad_2
Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5
Guía docente 2007/2008
Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación
CAPÍTULO 7 EL MODELO CON PERTURBACIONES NO ESFERICAS. ESTIMACION POR MINIMOS CUADRADOS GENERALIZADOS
Fichero: capitulo 7 CAPÍTULO 7 EL MODELO CON PERTURBACIONES NO ESFERICAS. ESTIMACION POR MINIMOS CUADRADOS GENERALIZADOS. MATRIZ DE COVARIANZAS DE LAS PERTURBACIONES NO ESCALAR. HETEROCEDASTICIDAD Y AUTOCORRELACION
GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.
ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3
Muestreo e intervalos de confianza
Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física
Experimentos de Monte Carlo. Walter Sosa-Escudero
Introduccion Test de Breusch-Pagan de heterocedasticidad: LM = 1 2 SCE g,z χ 2 (p 1) g = residuos al cuadrado, z, variables explicativas de la heterocedasticidad. Esta es una aseveracion asintotica. Que
Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4
ENUNCIADOS DE PROBLEMAS
UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:
TEMA 4 Modelo de regresión múltiple
TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.
Econometría. Multicolinealidad
Econometría Multicolinealidad Que es? Hay dependencia lineal entra las variables explicativas Ejemplo1 1 3 6 1 X = 1 1 4 8 12 Determinante de X ' X es cero No se puede invertir X ' X No se pueden calcular
TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis
TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:
Mínimos Cuadrados Generalizados
Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén
Errores de especificación
CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta
Econometria I. Tema 6: Modelos de Ecuaciones Simultáneas. Universidad Carlos III. Getafe, Madrid. November 2008
Econometria I Tema 6: Modelos de Ecuaciones Simultáneas Universidad Carlos III Getafe, Madrid November 2008 Julio Cáceres Delpiano (UC3M) Econometria I 10/07 1 / 20 Ecuaciones Simultáneas El método de
Análisis de Regresión Múltiple: Estimación
Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso
MÍNIMOS CUADRADOS GENERALIZADOS
Métodos Estadísticos para Economía y Gestión (IN540-2) Otoño 2008 - Semestre I, Parte II Universidad de Chile Departamento de Ingeniería Industrial Profesor: Mattia Makovec ([email protected]) Auxiliar:
Diplomado en Estadística Aplicada
Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad
SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004
Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras
Variables Dependientes Limitadas
Variables Dependientes Limitadas Muestras Truncadas y Censuradas: revisión En algunos casos las variables dependientes pueden estar limitadas en su rango. Ejemplos típicos son las limitaciones por la forma
Cuál es el campo de estudio de la prueba de hipótesis?
ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Ejercicios Resueltos (de examen)
Ejercicios Resueltos de examen Román Salmerón Gómez Modelo lineal uniecuacional múltiple Usando los siguientes datos, consumo nacional C t y renta nacional R t en España para el periodo 995-005 a precios
ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN
CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)
Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)
Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los
Regresión con heterocedasticidad y autocorrelación
Regresión con heterocedasticidad y autocorrelación Tema 6 Regresión con heterocedasticidad La heterocedasticidad significa que var( i ) cte Es la norma, no la excepción, en especial con datos transversales
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Economía Aplicada. Regresión Lineal. Basado en Stock y Watson (cap.4-6), Wooldridge (cap.3-5)
Economía Aplicada Regresión Lineal Basado en Stock y Watson (cap.4-6), Wooldridge (cap.3-5) Outline 1 Modelo de Regresión Lineal Simple Introducción Supuestos Interpretación de los coeficientes Estimación
Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1
Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un
Técnicas de Muestreo Métodos
Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad
Juan José Hernández Ocaña
Juan José Hernández Ocaña L A e s t a d í s t i c a i n fe r e n c i a l n o s permite estimar los p a r á me t r o s de l a p o b l a c ió n a partir d e l a n á l i s i s d e datos de u n a mu e s t
Tema 4. El Modelo de Regresión Lineal con Series Temporales.
Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias
T6. Modelos multiecuacionales
T6. Modelos multiecuacionales Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Los modelos multiecuacionales: SUR y SEM 2 Modelos
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple
ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes
Economía Aplicada. Variables Instrumentales. Basado en Stock y Watson (cap.12), Wooldridge (cap. 15) y Angrist y Pischke (cap. 4)
Economía Aplicada Variables Instrumentales Departamento de Economía Universidad Carlos III de Madrid Basado en Stock y Watson (cap.12), Wooldridge (cap. 15) y Angrist y Pischke (cap. 4) Modelos de Regresión
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA
Econometria de Datos en Paneles
Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )
Caso particular: Contraste de homocedasticidad
36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos
Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad.
Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Tema 1 (IV) Estadística 2 Curso 08/09 Tema 1 (IV) (Estadística 2) Contrastes de aleatoriedad Curso
Econometría de series de tiempo aplicada a macroeconomía y finanzas
Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Multivariadas) Carlos Capistrán Carmona ITAM 1 Principios de Pronóstico. 2 Pruebas de Hipótesis. 3 Estimación
TEMA 3: Contrastes de Hipótesis en el MRL
TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12
