Álgebra II Agosto 2015
|
|
|
- Agustín Espejo Mora
- hace 8 años
- Vistas:
Transcripción
1 Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices: a) ( ) b) ( 1 5 8) c) ( 4 1 ) d) ( ) e) ( 1 ) f) ( ) ) 3A + 2B 2) DC 3) BF + E 4) A t C t 5) D F 6) (A t + B t )C 7) 2F t A t II.- Hallar la matriz X tal que: 1) X SA = B 2) SA + 3X = B Siendo A = ( 2 1 1), B = ( 0 2 6) III.- Hallar la inversa de la siguiente matriz mediante la definición A = ( ) Página 1 de 14
2 Laboratorio # 2 Formas Reducidas I.- Obtener la Forma Reducida Inferior (FRI) y Forma Reducida en Escalón (FRE) de las siguientes matrices )A = ( ) 3)B = ( ) 5)C = ( ) )D = ( ) 4)E = ( ) 6)F = ( ) II.- Hallar la inversa, si existe, de la matriz dada, utilizando transformaciones elementales ) D = ( 3 2 7) ) C = ( 0 1 1) ) B = ( 0 2 3) ) A = ( ) Página 2 de 14
3 Laboratorio # 3 Sistemas de Ecuaciones Lineales I.- Resolver el sistema de ecuaciones lineales dado, mediante el método indicado. 1) 2) 3) 4) 5) 6) x + y + w + z = 11 x w + 3z = 14 2x + 2y 3w = 2 y z w = 4 2x + y 3z = 10 3x + 2y 4z = 9 x y + 3z = 19 x 2y z = 6 x + y + z = 6 x 3y z = 8 x 2z = 12 y + z = 7 x + 3y = 4 4x + 3y + 5z = 0 2x 4y 3z = 0 6x 2y + z = 0 x y z = 0 8x 2y + z = 0 x + 3y 5z = 0 4x y + z = 0 Gauss Gauss-Jordan Inverso de la matriz de coeficientes Gauss Cualquier método Cualquier método Página 3 de 14
4 Laboratorio # 4 Determinantes I.-Usar el desarrollo de Laplace para evaluar las siguientes determinantes a) b) c) II.-Resolver para x x 1 2 d) 1 x 4 = x 1 x 2 1 e) 1 x 1 x 2 = x 2 6 f) x = x III.-Justifica las ecuaciones siguientes g) = h) = i) = Página 4 de 14
5 Laboratorio # 5 Solución de Sistemas de Ecuaciones Lineales por Determinantes I.- Resolver el sistema dado por el método indicado. 1) 2x y + z = 6 2y z = 2 Cramer x + y = 2 2) 6z 10w = 9 3x 4y + 6w = 2 2z Cramer x 2y + 8z = 10 2x 6w 6y = 12 3) x + y + z = 10 y + 2z = 8 Inversa x + 4z = 4 4) 2x 2y + 5z = 4 5x + 2y z = 6 Inversa 5x + 3y 5z = 2 5) 8x + 4y 2z = 12 x + z = 2 Inversa 4x + 2y + 2z = 6 6) 4x + 2y 2z + 6w = 0 x + 3y + 4z 10w = 0 Elegir metodo Página 5 de 14
6 2x 4y + 6z + 2w = 0 6x 2z + 6w = 0 7) 3x 2y + z w = 6 x + 2y z + 2w = 0 Elegir metodo 2x + 3y + 2z + 3w = 7 x 4y z 2w = 2 II.- Determina los valores de k tales que el sistema dado tenga: a) Solución única b) Ninguna solución c) Una infinidad de soluciones 1) x + y + kz = 2 3x + 4y + 2z = k 2x + 3y z = 1 2) x yk = 3 2x 2y = k Página 6 de 14
7 Laboratorio # 6 Fracciones Parciales I.-Indicar la descomposición en fracciones parciales de las fracciones siguientes. 1) x+34 x 2 4x 12 2) 4x2 15x 1 (x 1) 2 (x 3) 3) 19x2 +50x 25 3x 3 5x 5 4) 2x 2 x (x 1) 2 (x+1) 2 5) 5x 2 +8y+5 (x 1)(x 2 +1) 6) 5y 2 +8y+5 y 3 +3y 2 +3y+2 7) u5 +4u 4 15u 3 14u 2 +u+24 (u 2) 2 (u+1) 3 II. Descomponer en sus fracciones parciales simples la fracción dada 1) 2y4 4y 2 y+2 (y 2 y) 2 2) x 2 4x 4 x 3 2x 2 +4x 8 3) 9g3 +16g 2 +3g 10 g 4 +5g 3 4) p 3 p 2 p 4 +2p ) 4h3 8h 2 10h+30 2h 2 +h+6 Página 7 de 14
8 Laboratorio # 7 Logaritmos I.- Expresar el logaritmo dado es términos de logaritmos más simples. 5 1) log a x2 y z 2) 1 2 log x3 y 3 3) log x2 (x + 2) (x + 1)(x 2 + 3) 4) log (x2 4) x (x 7)(x 2 ) 5) log (x + 1)(x 2 + 1) 3 II.- Expresar como un solo logaritmo 1) 4lnx lnx + ln (x 2 + 2) 2) 2lnx 2 ln x + 1 ln(x + 1) 8ln3 2 3) lnx 2 + 7lny lnz 4) lnx lny + 70lnx ln8 5) 3 5 log a x log a y 8 log a x 6) 2lnx ln(x + 1) ln(x + 1) + 3lnx + 2lny 4lnz III.- Expresa "x" en terminos de "y". 1) ln(20 x 2 ) = y + ln30 2) y = 5x 5 x + 1 3) log 3 (xy) = 3 log 3 y x 4) log 2 (x 2 y) = 8 log 2 x y Página 8 de 14
9 Laboratorio #8 Ecuaciones Exponenciales y Logarítmicas I.-Resuelve las siguientes ecuaciones. 1) 7 x+2 = 3 2) 3 x+4 = 6 x 3) 5 x = 2 x+5 4) 7 x2 = 7 3x+4 5) log(r + 2) = log(3r 1) 6) log(x 5) + log(3) = log(2x) 7) log(2a) = log(1 a) 8) log 4 (x) + log 4 (6x 7) = log 4 5 9) log 7 (x + 6) log 7 (x 3) = log ) log 8 (x) = 4 log 8 (2) log 8 (8) 11) 2 log 2 x = 4 12) 2 log(x) log(9) = 2 13) e 2x e x 9 + 9e x = 0 14) e 3x 4e 2x + 3e x 12 = 0 15) e 3x 2e 2x + 2e x 4 = 0 16) 20e 4x 60e 2x 200 = 0 17) e 2x 6e x + 1 6e x = 0 18) 14e 2x + 28e x 112 = 0 Página 9 de 14
10 I.- Simplifica la expresión dada Álgebra II Agosto 2015 Laboratorio # 9 Permutaciones y Combinaciones 1) 8! 4! 2) 3) 12! 6! 4! 9! 4!+5! 4) 6! 7! 5! 5) 3!+4! 3! II.-Halle n o r si 1) P(n, 5) = 6 P(n, 3) 2) P(n, 3) = 5 P(n 1,2) 3) 3 C(4, r) = 4 C(3, r) 4) 12 P(7, r) = 5 P(9, r) III.-Resuelva 1) Se tienen 6 puntos coplanares de manera que 4 de ellos si son colineales. Determinar: a. El número de rectas que pueden trazarse b. El número de triángulos que pueden formarse 2) Un comerciante dispone de 4 latas idénticas de sopa de tomate, 3 latas idénticas de sopa de elote, 2 latas idénticas de champiñones y 4 latas idénticas de apio. En cuantas formas diferentes se puede exhibir las 10 latas? 3) De cuantas formas se pueden hacer combinaciones de letras y dígitos en 4 espacios. Sabiendo que el primer espacio es una letra (cualquiera del alfabeto) y los otros 3 espacios un digito? Página 10 de 14
11 4) Encuentre el número de permutaciones diferentes que pueden formarse con la palabra UANLFCFM tomadas todas a la vez 5) De cuantos modos se puede escoger un comité que está conformado por 1 presidente, 10 diputados, 10 senadores y 1 secretario si se elige entre 5 presidentes, 20 diputados, 30 senadores y 4 secretarios? 6) Cuantos números mayores a 4,500 de 4 dígitos se pueden formar con las cifras 2, 3, 6, 8 sin repetir ningún digito? 7) De cuantos modos se pueden elegir 5 libros que traten de la misma materia entre 7 libros de matemáticas y 6 de física? 8) De cuantos modos se puede formar un grupo de 2 líderes y 8 trabajadores si se eligen de un grupo de 10 líderes y 40 trabajadores? 9) De cuantas maneras puede formarse un estante con 3 libros de matemáticas, 4 de algebra, 5 de geometría y 2 de física, de manera que los libros de la misma materia permanezcan juntos (cada libro tiene diferente editorial) 10) De cuantas maneras se pueden elegir 6 pantalones del mismo material entre 10 de mezclilla y 12 de algodón? Página 11 de 14
12 Laboratorio # 10 Probabilidad 1) Se saca una bola de una caja que contiene 6 bolas rojas, 3 bolas azules y 1 negra. 1. Si se devuelve la bola o la caja y se saca una segunda, Cuál es la probabilidad de que ambos sean rojas? 2. Si no se devuelve la bola a la caja y se saca una segunda. Cuál es la probabilidad de que una sea roja y una negra? 3. En este mismo caso. Cuál es la probabilidad de que una sea roja y una azul? 2) Si se sacan 3 cartas de una baraja de naipes. Cuál es la probabilidad de que salgan: 1. Las 3 sean del mismo palo sean reinas y 1 rey. 3. Al menos 1 corazón, 1 rey o diamante. 3) Encuentra la probabilidad de que en 4 tiros de un dado salgan: 1. 4 tres. 2. Ningún cincos. 4. La suma sea mayor a 4. 4) Una bolsa contiene 5 bolas blancas, 3 negras y 2 rojas. Se sacan 3 al azar. Calcular la probabilidad de que: 1. Las 3 sean negras sean negras y una roja. 5) Calcular la probabilidad de obtener una suma de 8 en un lanzamiento de 2 dados. 6) Calcular la probabilidad de obtener una suma de 8 en un lanzamiento de 3 dados. 7) Se escoge un comité de 5 personas entre un grupo de 7 abogados, 3 ingenieros y 4 doctores. Cuál es la probabilidad de que todos los del comité sean de la misma profesión? 8) Una bolsa contiene 8 pelotas negras y 3 blancas. Si se sacan 2 pelotas. Calcular la probabilidad de que ninguna sea blanca. 9) Un señor compra un boleto para una rifa y su probabilidad de ganar es Una señora compra 3 boletos para participar en la misma rifa. Encuentre la probabilidad de que ninguno de los dos gane. (Solo hay un ganador por rifa). Página 12 de 14
13 Laboratorio # 11 Sucesiones I.- Escribir los 8 primeros términos de la sucesión dada. 1) 2) 3) 4) II. Establecer la ley de formación de las sucesiones dadas 1) 2/9, 5/13, 8/17, 11/21, 14/25,... 2) 1/2, 4/3, 9/4, 16/5, 25/6,... 3) 4) III. Evaluar el Límite indicado Página 13 de 14
14 Laboratorio # 12 Series I.- Determinar si la serie dada es convergente o divergente. Justifique su respuesta. 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) II.- Halle el intervalo de convergencia de las siguientes series de potencias. 1) 2) 3) Página 14 de 14
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
Contando. 1. n factorial: n! = n (n 1) (n 2) ! = 1 por definición
Contando 1 Contando 1. n factorial: n! n (n 1) (n 2) 3 2 1. 0! 1 por definición (a) De cuántas formas se puede ordenar 2 objetos, 3 objetos,..., n objetos? (b) Pedro tiene 4 camisas que va a guardar en
, -4, 5'123, 5. Representa en la recta racional y por el procedimiento visto en clase, los siguientes números: Usa regla, compás, escuadra, cartabón
Matemáticas. 4º ESO (Opción A) Curso 009/0 Centro Concertado Privado Colegio Sta. María del Carmen Calle Madre Elisea Oliver, 0005 Alicante Ejercicios de repaso Tema : Números. Efectúa las siguientes operaciones
Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.
Olimpiada Mexicana de Matemáticas. Guanajuato.
Olimpiada Mexicana de Matemáticas. Guanajuato. Combinatoria Combinaciones y repeticiones. 1. Encuentra la cantidad de formas de elegir un par {a, b} de enteros del conjunto {1,..., 50} de tal forma que:
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
EJERCICIOS DE MATEMÁTICAS B
EJERCICIOS DE MATEMÁTICAS B 4º ESO 1. Un avión vuela entre dos ciudades que distan 80 km. Las visuales desde el avión a A a B forman ángulos de 29 43 con la horizontal, respectivamente. A qué altura está
I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.
CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,
Trabajo de Verano. Matemáticas 1 o de Sociales
Trabajo de Verano. Matemáticas o de Sociales Departamento de Matemáticas. IES La Flota. Junio Nota importante: Para el examen de septiembre hay que traer un par de hojas de papel cuadriculado (de libreta),
a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara.
Estadística II Ejercicios Instrucciones: Resolver los siguientes problemas. Entregar un trabajo por grupo el día del primer parcial, el trabajo deberá tener carátula con los nombres de los integrantes
Nombre del estudiante: Sección: á
Nombre del estudiante: Sección: á A. En una caja hay 7 bolas azules enumeradas del 1 al 7, 9 bolas amarillas enumeradas del 3 al 11, y 10 bolas verdes enumeradas del 4 al 13. Si se saca una bola al azar,
ALGEBRA I - Práctica 3
ALGEBRA I - Práctica 3 1. Cuántos números de cinco cifras se pueden formar utilizando los dígitos 1, 2, 3, 5, 6, 7 y 9 con la condición de que i) todas las cifras sean distintas? ii) todas las cifras sean
EJERCICIOS DE PROBABILIDAD.
EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
Guía Matemática NM 4: Probabilidades
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROBABILIDAD 1- El 47% de las personas de una ciudad son mujeres y el 53% restante hombres. De entre las mujeres, un 28% son jóvenes (entre 0 y 25 años), un 38% son adultas (entre 26 y 64 años) y un 34%
Unidad 3. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales.
Part I Unidad. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales. Ecuaciones lineales en una variable Una ecuación lineal en una variable puede de nirse como ax + b = 0
INSTITUCIÓN EDUCATIVA VILLA DEL SOCORRO PLAN DE APOYO REMEDIAL
NOMBRE COMPLETO DEL ESTUDIANTE GRADO AÑO NOVENO 2015 NOMBRE COMPLETO DEL DOCENTE JUAN FERNANDO RINCÓN ARANGO ÁREA Y/O ASIGNATURA MATEMATICAS FECHA DE ENTREGA DEL PLAN DE RECUPERACIÓN POR PARTE DEL DOCENTE
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas
Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: PROBABILIDAD Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Arboles de decisión Un árbol de decisiones es una herramienta para determinar la
MATEMÁTICAS 2º BACHILLERATO
MATEMÁTICAS 2º BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes
CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK
CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK BLOQUE 1. ESTADÍSTICA 1. ESTADÍSTICA UNIDIMENSIONAL Variable estadística
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
BLOQUE I : NUMEROS Y ALGEBRA
BLOQUE I : NUMEROS Y ALGEBRA ) Calcula y simplifica : ( ) ( ). 8. ( 9 ) a).0 4 ; b) + ; c) + +. : + + + ; d). : 4 ; e) log = 4.log.log ; f) 7.0.0 6 4.0 + 0 ; + y ; h) log 6 + log 8 ln g) ( ) 4 ) Resuelve
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar
También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.
3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------
UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.
C u r s o : Matemática º Medio Material Nº MT - UNIDAD: GEOMETRÍA PROBABILIDADES I NOCIONES ELEMENTALES Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico
1º ESO 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico decimal. 2-Potencias y raíces. 3-Divisibilidad 7.- Las fracciones. 8.- Operaciones con fracciones.
1 Con juntos de Números: Axiomas 1
ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los
MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO
MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto de los bloques. Resolución de
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA NIVEL SÉPTIMO BÁSICO
NIVEL SÉPTIMO BÁSICO Operatoria números naturales Operatoria números decimales Clasificación de números decimales Transformación de decimal a fracción Orden de números enteros Ubicación de números enteros
Capítulo. Técnicas de conteo Pearson Prentice Hall. All rights reserved
Capítulo 35 Técnicas de conteo La regla de multiplicación y conteo Si una tarea consiste de una secuencia de opciones en las cuales hay p posibilidades para la primera opción, q posibilidades para la segunda
Clase 26. Tema: Experimentos aleatorios. Matemáticas 8 Bimestre: IV Número de clase: 26. Esta clase tiene video. Actividad 70
Matemáticas 8 Bimestre: IV Número de clase: 26 Clase 26 Esta clase tiene video Tema: Experimentos aleatorios Actividad 70 1 Lea la siguiente información: Un experimento aleatorio es un ensayo o una acción
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA Nombre Del Proceso PLANIFICACIÓN Fecha: 1-09-2008 Código: C01-2.1-02-00-00-P01 Versión:1.0 Página: 1 de 13 UNIDAD DIDACTICA No. 1
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de
TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas
MATEMÁTICAS º ESO TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD Juan J. Pascual COMBINATORIA Y PROBABILIDAD Notas teóricas - Variaciones: Las variaciones son agrupaciones ordenadas de objetos
EJERCICIOS DE VARIACIONES
EJERCICIOS DE VARIACIONES 1. Cuántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire.. Cuántos números de cuatro cifras distintos pueden formarse con los elementos del
Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.
Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular
Matemáticas de Nivelación
José Manuel Enríquez De Salamanca García Escuela Superior de Ingeniería. Cádiz Departamento de Matemáticas Turno I 24, 25, 26 y 30 de Septiembre y, 1 y 2 de Octubre Turno II 3, 4, 8, 9, 10 y 11 de Octubre
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I
CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I UNIDAD 1 NÚMEROS REALES 1.1. Dados varios números, los clasifica en los distintos campos numéricos y los representa en la recta real. 1.2. Domina
Medidas complementarias de verano MAT = [( ) [( = 2 = 1 3 x 2 :1. 4 5x. x 3 x 2 6x = 0
Calcula y simplifica al máximo: 3 1 4 14 5 33 = [( 3 3 ) ( 5 4 3] 4 ) = ( a) 4 (b c 5 ) 3 b 5 c 0 ( a) 3 = [( 7 6 3 ) ( 5 5 5 5= 6] 6 ) ( (x) 1 4 (x) 1 ) 8 3 5 4 15= 3 1 4 6 4 3 8 = = (x) 5 (x) 3 Escribe
SISTEMA DE ECUACIONES LINEALES
MATRICES 1. MATRICES Y TIPOS DE MATRICES 2. OPERACIONES CON MATRICES 3. PRODUCTO DE MATRICES 4. MATRIZ TRASPUESTA 5. MATRIZ INVERSA 6. RANGO DE MATRICES DETERMINANTES 7. DETERMINANTES DE ORDEN 2 Y 3 8.
TAREAS DE VERANO MATERIA Y OPCIÓN: 3º ESO MATEMÁTICAS ACADÉMICAS, 3ºA
TAREAS DE VERANO MATERIA Y OPCIÓN: º ESO MATEMÁTICAS ACADÉMICAS, ºA NOMBRE DEL ALUMNO: CURSO: ºA LA REALIZACIÓN DE ESTAS TAREAS ES OBLIGATORIA. SI NO SE ENTREGAN EN LA FECHA DE LA PRUEBA O SU CALIFICACIÓN
Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA
Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA INSTRUCCIONES: Escribe el enunciado del problema con su procedimiento correspondiente. ENCIERRA TUS RESPUESTAS. PROBLEMA
Bases curriculares. Números y operatoria. Utilizar potencias de base 10 con exponente. Potencias, raíces y logaritmos
Bases curriculares Educación Básica Contenido 6. Básico 7. Básico Números y operatoria Potencias, raíces y logaritmos Números naturales. Realizar cálculos que involucren las cuatro operaciones. Demostrar
EJERCICIOS DE PROBABILIDAD
Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
Introducción a Ecuaciones Lineales.
Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Introducción a Ecuaciones Lineales. Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Introducción.
MATEMÁTICAS I 1º BACHILLERATO IES LOS CARDONES PLAN DE REPASO SEPTIEMBRE FECHA DE ENTREGA Día del examen de septiembre
MATEMÁTICAS I 1º BACHILLERATO IES LOS CARDONES 016-017 PLAN DE REPASO SEPTIEMBRE 017 COTEIDOS MÍIMOS: - ESTRATEGIAS, HABILIDADES, DESTREZAS Y ACTITUDES GENERALES. - NÚMEROS REALES. - SUCESIONES.. - TRIGONOMETRÍA.
UANL UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA 23
PORTAFOLIO DE PROBABILIDAD Y ESTADÍSTICA CUARTA OPORTUNIDAD FECHA DE EXAMEN: HORA: Nombre del alumno: Grupo: RÚBRICA: Ten en cuenta que el hecho de entregar el trabajo no te otorga automáticamente 40 puntos.
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i
ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:
UTILIZAR DISTINTOS MÉTODOS DE CONTEO
REPASO Y APOYO 13 UTILIZAR DISTINTOS MÉTODOS DE CONTEO OBJETIVO 1 MÉTODO DEL PRODUCTO El método del producto es un método de conteo que consiste en descomponer el experimento en otros experimentos más
2. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes:
NOMBRE Y APELLIDOS: INSTRUCCIONES: 1. Realizar las actividades en el orden indicado. 2. Entregarlas en hojas numeradas y en funda de plástico. 3. Cada actividad deberá contener tanto el enunciado como
Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Suceso seguro. Suceso imposible.
86464 _ 04-047.qxd //07 09:4 Página 4 Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas
Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir:
Conceptos de combinatoria Combinatoria En todo problema combinatorio hay varios conceptos claves que debemos distinguir: 1. Población Es el conjunto de elementos que estamos estudiando. Denominaremos con
Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )
1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números
CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017
SEGUNDO BÁSICO 2017 DEPARTAMENTO ÁMBITO NUMÉRICO 0-50 - Escritura al dictado - Antecesor y sucesor - Orden (menor a mayor y viceversa) - Patrones de conteo ascendente (2 en 2, 5 en 5, 10 en 10) - Comparación
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
Criterios de evaluación Matemáticas - B de 4º de ESO
UNIDAD Criterios de evaluación Matemáticas - B de 4º de ESO CRITERIOS GENERALES Unidad 1: Números reales - Dominar la expresión decimal de un número o una cantidad y calcular o acotar los errores absoluto
Chapter Audio Summary for McDougal Littell Algebra 2
Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación
ANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIO Métodos combinatorios Técnicas básicas Sea S un conjunto finito no vacío. Se designar por S al cardinal de S, es decir, el número de elementos de S. En particular CV = 0 (CV es el
LABORATORIO DE CÁLCULO-2016 GUÍA DE REVISIÓN
LABORATORIO DE CÁLCULO-2016 GUÍA DE REVISIÓN Unidad I 1. Indique los distintos subconjuntos numéricos en R. 2. A qué se denomina recta real?. 3. Qué es un intervalo real?. Cómo se lo simboliza?. 4. Defina
Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones
Matemáticas Discretas Enrique Muñoz de Cote INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir:
Función Exponencial La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir: Con Gráfica función exponencial a) Si la función es creciente en. b) Si la función
14 Probabilidad. Qué tienes que saber? Actividades finales. Sugerencias didácticas. Soluciones de las actividades
14 Probabilidad Qué tienes que saber? 14 QUÉ tienes que saber? ctividades Finales 14 Ten en cuenta Un experimento aleatorio es aquel que tiene un resultado que no se puede predecir. Los sucesos aleatorios
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
- Resolver problemas que involucren probabilidad clásica, unión e intersección de dos eventos
ANGLO AMERICAN INTERNATIONAL SCHOOL ÁREA DE CIENCIAS, MATEMÁTICAS Y SALUD La formulación de un problema, es más importante que su solución Los Refugios del Arrayan 1653. Fonos 23215497-23215480 [email protected]
Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional
Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional 1. Sean x>0 e y dos enteros. Un paseo al azar (s 0,s 1,...,s x ) del origen al punto (x, y) es
Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada
Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 8 Combinatoria La combinatoria es la técnica de saber cuántos elementos
OBJETIVOS DE MATEMÁTICAS B 4º DE ESO
OBJETIVOS DE MATEMÁTICAS B 4º DE ESO UNIDAD 1 1.1. Domina la expresión decimal de un número o una cantidad y calcula o acota los errores absoluto y relativo en una aproximación. 1.2. Realiza operaciones
EJERCICIOS DEL BLOQUE DE PROBABILIDAD.
EJERCICIOS DEL BLOQUE DE PROBABILIDAD. 1.- Cuál es la probabilidad de sacar los dos ases al lanzar dos dados? 2.- Cuál es la probabilidad de obtener tres caras, lanzando al aire una moneda tres veces?.
Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.
Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
Teoría de conjuntos y probabilidad
Teoría de conjuntos y probabilidad M.Sc. Cindy Calderón Arce Lic. Rebeca Soĺıs Ortega Jornada de capacitación CIEMAC Alajuela 2016 Junio, 2016 Jornada de capacitación 1 / 21 Contenidos 1 2 3 2 / 21 Colección
MATEMÁTICAS 1º DE BACHILLERATO
POLINOMIOS Y FRACCIONES 1. Operaciones fracciones algebraicas 2. Opera y simplifica fracciones 3. Repaso fracciones 4. Fracciones equivalentes 5. Potencias de fracciones 6. Operaciones con fracciones 7.
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.
13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral
Es decir: el logaritmo de una cantidad "a" en una base "b" es el exponente "n" al cual hay que elevar la base "b" para obtener la cantidad "a".
Clase- Logaritmos: Sabemos que si b n = a significa a = b. b..... b ("n" veces b). Otra forma de relacionar estas tres cantidades es empleando el concepto de logaritmo; definiéndose: log n b a ; con a,
log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:
Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a
