Geodesia Física y Geofísica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geodesia Física y Geofísica"

Transcripción

1 Geodesia Física y Geofísica I semestre, 2016 Ing. José Francisco Valverde Calderón jose.valverde.calderon@una.cr Sitio web:

2 Introducción La superficie del mar es una superficie menos compleja que la superficie topográfica; presenta una orografía suave, sin rupturas, por lo que cuando esta en reposo, es una superficie equipotencial. El campo gravitatorio terrestre establece el nivel de los mares (esta tiende a estar en una posición de equilibrio). Se considera este superficie como óptima para un sistema de alturas

3 Introducción Lo anteriormente indicado es una situación ideal; los mares se ven afectados por: Mareas (atracción de la Luna y el Sol) Corrientes oceánicas Diversas densidades del mar niveles de sal que contienen La topografía del suelo marino Viento Para hablar de la forma de la Tierra: Hay que encontrar una superficie que sea física (generada por el CGT) O puede ser aproximada mediante una figura geométrica Es una tarea de la geodesia encontrar ambas superficies.

4 Diferencias entre el geoide y el elipsoide*

5 Importancia del campo gravitatorio terrestre Proporciona la vertical del lugar Determinar órbitas satelitales Efectuar nivelación con métodos satelitales Análisis de la distribución de masas a lo interno de la Tierra. Necesario para que otras geociencias cumplan sus tareas, donde se destaca la Geofísica.

6 El operador nabla ( ) es un operador diferencial Puede aplicarse de diferentes formas a escalares y a vectores Está definido matemáticamente como: Gradiente: Considerando una función V(x, y, z) definida y derivable en todo punto como un campo escalar, el gradiente de V define la derivada direccional de ese campo. i j k x y z El significado físico de gradiente está asociado a la máxima tasa de cambio espacial del escalar y proporciona a la vez la dirección de esa variación máxima V V V V grad V i j k x y z

7 Divergencia: Sea V(x,y,z) un campo vectorial (CV) definido y derivable en todo punto, se define la divergencia de V como: La divergencia representa la diferencia entre el flujo que entra y el que sale de un CV sobre la superficie que rodea un volumen. V x, y, z Vxi Vy j Vzk V V x y V V div V x y z i j k Rotacional: Si V(x,y,z) es un CV definido y derivable en todo punto, el rotacional de este campo está V dado por: x y z rot V V V V V V y z x z x y z y z x y x V V i j k V V V x y z z

8 Operador de Laplace o Laplaciano El operador de Laplace o Laplaciano ( 2 ) se define como la divergencia del gradiente de un potencial V, es decir: 2 V V Cuando se expresa en coordenadas cartesianas. Cuando el Laplaciano de un campo escalar o potencial es cero, se dice que satisface la ecuación de Laplace. 2 V div grad V V V x y z V 2 2 2

9 Concepto de campo Ejemplo: El Sol ejerce una fuerza de atracción sobre los planetas Ésta es una fuerza a distancia, no hay contacto Para explicar estas fuerzas a distancia se admite que el Sol perturba el espacio que lo rodea; esto produce una deformación Un planeta gira alrededor del Sol, debido a que el Sol tira de él (concepto de acción a distancia ) La interpretación física es suponer que el Sol crea algún tipo de perturbación Esta perturbación del espacio es lo que se denomina CAMPO Un campo es una función que determina en cada punto del espacio el valor de una magnitud física. Si la magnitud es un escalar, es un campo escalar Si la magnitud es un vector, es un campo vectorial

10 A los campos escalares se les asocia superficies equipotenciales A los campos vectoriales se les asocia líneas de campo o de fuerza

11 Otra definición: En una región cerrada S, existe un campo, creado por una magnitud física, si es posible asignar en cualquier momento, el valor de dicha magnitud física para todos los puntos de S.

12 Campo uniforme Uniforme: los vectores fuerza tienen el mismo módulo, la misma dirección y el mismo sentido en todos los puntos Ejemplo: campo eléctrico que existe entre las placa de un condensador plano es un ejemplo de un campo uniforme

13 En los campos centrales las direcciones de todos los vectores de fuerza convergen en un mismo punto, llamado centro de campo El modulo del vector depende únicamente de la distancia del punto considerado al centro del campo Ejemplo: el campo gravitatorio terrestre Campo central

14 Campos conservativos Un campo de fuerzas es conservativo, si el trabajo que realizan las fuerzas del campo para trasladar una partícula desde un punto A a otro punto B depende solo de los puntos inicial y final, pero no del camino seguido. El campo gravitatorio es conservativo. La energía potencial gravitatoria de la masa m cuando se encuentra a una distancia r de la masa M viene dada por la expresión: Mm Ep G r

15 La energía potencial gravitatoria será negativa, ya que su máximo valor lo alcanza cuando la masa m está infinitamente alejada de M, y en ese punto se le asigna un valor cero. Campo gravitatorio: perturbación que un cuerpo produce en el espacio que lo rodea por el hecho de tener MASA. El campo gravitatorio es un campo de fuerzas centrales (radiales) y conservativo. El campo gravitatorio se describe mediante dos magnitudes: Una vectorial: Intensidad de campo gravitatorio en un punto del campo (aceleración de la gravedad, g) Una escalar: Potencial gravitatorio en un punto del campo, V

16 Teoría del potencial Geoide: Superficie equipotencial del campo gravitatorio terrestre, idealizado como los mares en reposo, proyectados bajo las masas continentales. Potencial (W): Cantidad de trabajo necesario en un punto P para traer una partícula de masa unitaria hacia P desde el infinito. Superficies equipotenciales, vector de gravedad

17 Superficie equipotencial: superficie en donde el potencial de gravedad es el mismo. El vector de gravedad es perpendicular en cada punto El geoide es una superficie equipotencial, donde W es constante A las superficies equipotenciales también se les llama superficies de nivel La líneas que cortan de forma normal a las superficies de nivel se llaman Líneas de plomada La magnitud del vector de gravedad depende de la densidad del terreno.

18 1. Son continuas, sin rupturas y forman superficies cerradas alrededor de la Tierra. 2. Su distribución esta dada por la distribución de masas de la Tierra. 3. Las S.N no son paralelas. 4. Su radio de curvatura no varia bruscamente y sus variaciones se asocian con cambios de densidad. 5. No se cortan entre si. Propiedades de las S.N 6. El vector de gravedad es perpendicular a estas. 7. El valor de la gravedad NO es constante. 8. En cada punto, el vector de gravedad y la superficie de nivel son tangentes 9. En general, las líneas de plomada no son rectas, al no ser paralelas las superficies de nivel.

19 Propiedades de las S.N Los sistemas de medición utilizados para la determinación de alturas (y en general coordenadas) se orientan según campo de gravedad terrestre. El plano horizontal del instrumento coincide con la línea tangente a la superficie equipotencial que pasa por el punto de observación. El eje vertical del instrumento coincide con la línea de la plomada Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica

20 Propiedades de las S.N La falta de paralelismo de la S.N producen que la altura de un punto dependa del camino que se recorra (HB dn) Tomado de Sanchez, L. 2011: Notas de la III Escuela SIRGAS, Heredia, Costa Rica

21 Galileo Galilei fue quien demostró la relación entre la aceleración de la gravedad y la distancia recorrida por un cuerpo en caída libre, mediante la fórmula: s = distancia g = aceleración de la gravedad t = tiempo

22 F km m 1 2 l 2 l F = fuerza de atracción m = masas de los cuerpos l = distancia entre las masas k = constante de gravitación universal Newton enuncia la ley de gravitación universal. Esta relaciona la masa y la fuerza gravitacional k x m kgs 2

23 Función potencial Función potencial gravitatoria: V km r A partir de la anterior ecuación, se puede calcular el potencial generado por una masa puntual sobre una determinada masa. Si se tiene un sistema con n- masas atrayentes

24 Cuando se tiene un número infinito de masas atrayentes con densidad homogénea, en una región cerrada, cada una con masas infinitesimalmente pequeñas, se tiene: m v v m = densidad m = masa v = volumen del cuerpo

25 Considerando una porción diferencial del cuerpo: dm dv dv dm Por lo que se calcula el potencial debido a una distribución infinita de masas como: V k Volumen dv r Considerando la densidad constante: V k Volumen dv r

26 Potencial debido de una masa puntual: V km r Potencial debido a una distribución de masas puntuales: Potencial debido a un número infinito de masas puntuales: V k Volumen dv r

27 Propiedades de la función potencial 1. El valor de V cuando r tiende al infinito es cero. limv 0 r 2. El potencial V y las primeras derivadas son continuas en todo el espacio. V V V,, existen x y z 3. En cada punto exterior a las masas atrayentes, el potencial satisface la ecuación de Laplace. V V V x y z V

28 Ecuación de Laplace La ecuación de Laplace es una ecuación de derivadas parciales Para una función u en R 2, se escribe como: u x u y Para una función u en R 3, se escribe: u u u x y z Las soluciones a la ecuación de Laplace se llaman Funciones armónicas, y tienen la característica de que las primeras y segundas derivadas son continuas.

29 Ecuación de Poisson El potencial V es continuo para todo el espacio y es igual a 0 en el infinito Las primeras derivadas de V, también son continuas en todo el espacio (propiedad 2 de la función potencial) No ocurre lo mismo con las segundas derivadas, ya que en el interior de las masas atrayentes se presentan discontinuidades. La discontinuidad de Mohorovicic, es una zona de transición entre la corteza y el manto terrestre.

30 Por este motivo, dentro de las masas atrayentes, el potencial V satisface la Ecuación de Poisson 2 Ecuación de Poisson V 4k Ecuación de Poisson Por lo tanto, el potencial gravitacional es una función armónica en el espacio exterior, ósea fuera de las masas atrayentes.

31 Coordenadas esféricas El sistema de coordenadas esféricas se utiliza para determinar la posición espacial de un punto mediante distancia y dos ángulos. Un punto P queda determinado por tres magnitudes: el radio r, el ángulo polar o colatitud y el azimut. En algunos casos, se puede encontrar que en vez de la colatitud, se utiliza la latitud o en vez del azimut, la longitud. Coordenadas esféricas r = Radio = Colatitud = Azimut

32 Ecuación de Laplace en coordenadas cartesianas u u u x y z Ecuación de Laplace en coordenadas cilíndricas Ecuación de Laplace en coordenadas Esféricas

33 Solución a la ecuación de Laplace La ecuación de Laplace, en coordenadas esféricas Potencial gravitacional en coordenadas esféricas: n es un número entero, mayor o igual a 0. m es un número entero y su rango es 0 m n. P nm son las funciones asociadas de Legendre, de grado n y orden m. Donde a nm, b nm son constantes. Si se desea formular una serie para el potencial en el interior de la esfera, se sustituye el termino 1/r n+1, por el termino r n.

34 Polinomios de Legendre Calculo de la función de Legendre m nm 1 2 d 2 ( ) (1 ) 2 n Pnm t t ( t 1) ; (0 m n) n nm 2 n! dt Existe un caso especial, cuando m=0, la función de Legendre se llama Polinomio de Legendre Pn,0( t) Pn( t) Fórmula de Rodríguez n 1 d 2 Pn ( t) ( t 1) n n 2 n! dt n=0, m=0: P 0 1 d ( t) (1) (1) 1 11 dt 0,0 0 n n=1, m=0: n=1, m=1: 1 d P1,0 ( t) (1) ( t 1) 2t t 21! dt d 1 2 P1,1 ( t) (1 t ) ( t 1) 1 t 2 1 t 2 21! dt

35 Las funciones de Legendre, como los polinomios de Legendre, se pueden determinar por medio de formulas recursivas: 2n 1 n m 1 Pn, m( t) tpn 1, m( t) Pn 2, m( t) n m n m n1 2n1 Pn ( t) Pn 2( t) tpn 1( t) n n Con base a esta fórmula, se puede calcular el polinomio P 2, a partir de conocer P 0 y P 1, conocer P 3 a partir de P 1 y P 2 Usualmente, las funciones de Legendre son normalizadas: P nm, (cos ) Polinomios de Legendre ( n m)! 2(2n 1) Pnm. (cos ), m 0 ( n m)! 2n 1 Pn (cos ), m 0 La magnitud de los armónicos esféricos son valores muy pequeños y su valor disminuye conforme se incrementa el grado de las Funciones Asociadas de Legendre

36 Armónicos esféricos Los armónicos esféricos son el producto de las funciones de Legendre por los términos cos m o sin m Se puede efectuar una representación geométrica de los armónicos esféricos. Considerando: cos m, m 0 Yn (, ) Pnm (cos ) sin m, m Cuando m=0 se denominan armónicos esféricos zonales. Como se puede observar, son independientes de la longitud.

37 Armónicos esféricos Los armónicos esféricos zonales tienen n ceros en el intervalo 0 En el caso de que n=m, se llaman armónicos esféricos sectoriales Y cos n (, ) P (cos ) sin n n, n nn La esfera queda dividida en sectores positivos y negativos.

38 Armónicos esféricos Cuando m n, se denominan armónicos esféricos teserales. Dividen la esfera como un tablero de ajedrez

39 Armónicos esféricos

40 Armónicos esféricos n = 2, m = 0 n = 16, m = 0 n = 35, m = 0 n = 50, m = 0

41 Armónicos esféricos n = 16, m = 4 n = 4, m = 4 n = 4, m = 2 n = 16, m = 16

42 Potencial gravitacional terrestre V Satélites en órbitas bajas son afectados por un amplio espectro de perturbaciones debido al C.G de la Tierra. El modelado del campo de gravedad de la Tierra usando armónicos esféricos es conveniente para la integración numérica de las trayectorias de los satélites, asi también como desarrollos analíticos para las perturbaciones orbitales. El enfoque común para el modelado del campo gravitacional es el uso de armónicos esféricos: n n GM a V ( r,, ) 1 Pnm(cos ) Cnm cos m Snm sin m r n 0 r m0 Potencial de una esfera de densidad homogénea

43 Potencial gravitacional terrestre V La representación del geopotencial puede ser definido como un conjunto de tres partes constituyentes: V = V 0 + V 1 + V 2 La primera parte es simplemente el termino dominante de la expresión, correspondiente al grado y orden 0. La función asociada de Legendre P 00 tiene un valor de 1, lo mismo que el coeficiente C 00. El término V 0 = GM/r. Este es el potencial familiar resultante de tratar el cuerpo como una masa puntual.

44 Potencial gravitacional terrestre V La segunda parte de la representación armónica esférica son términos que no tienen dependencia de la longitud. Son los términos con m = 0 y son denotados como la contribución zonal del potencial GM a V P sin C 1 n,0 n,0 r n1 r El término zonal 2 modela la contribución debido al achatamiento planetario. Este es el segundo mayor contribuyente de todo el potencial, siguiendo la contribución del cuerpo central. El termino de grado 1 es 0 asumiendo que el centro del sistema de coordenadas fijo a la Tierra. n

45 Potencial gravitacional terrestre V La notación J n es frecuentemente usada para los coeficientes zonales en lugar del de C n,0. Las dos notaciones difieren en signo: J C n n,0 La parte zonal de potencial es escrito de la siguiente forma: GM a V 1 Pn,0 sin Jn r n1 r La parte remanente de la representación armónica esférica es la parte dependiente de la longitud: n GM a n V2 Pn, m sin Cn, m cos m Sn, m sin m r n1 r m1 n

46 Potencial gravitacional terrestre V El mayor contribuyente longitudinal del potencial es usualmente los términos de grado 2 y orden 2. Estos términos representan la cantidad en que el planeta esta fuera de redondez sobre el ecuador. El coeficiente zonal de grado 1, coeficientes de grado y orden 1 serán 0 al asumir que el centro del sistema de coordenadas coincide con el centro de masas V GM r GM a P sin C r n1 r GM r n n,0 n,0 n a n Pn, m sin Cn, m cos m Sn, m sin m n1 r m1 V0 + V1 + V2

47 Potencial gravitacional terrestre V Expresión para el potencial gravitacional (V) de la Tierra: n n GM a V ( r,, ) 1 Pnm(cos ) Cnm cos m Snm sin m r n 0 r m0 GM = constante G por la masa terrestre. a =Semieje mayor del elipsoide de referencia. r = distancia desde P al centro de la Tierra. Pnm = Funciones asociadas de Legendre. =colatitud. Cnm, Snm = coeficientes armónicos, los cuales describen la distribución de masas dentro del cuerpo central, en este caso, la Tierra. Comúnmente están normalizados. El termino GM/r describe el potencial de un cuerpo esférico homogéneo, por lo que se le conoce como Termino Kepleriano.

48 Potencial gravitacional terrestre V Para la geodesia de satélites, la anterior fórmula se escribe de la siguiente manera: En la práctica es imposible extender el grado del polinomio hasta el infinito

49 Modelos del campo de gravedad globales Tomado de:

50 Tomado de:

51 Potencial gravitacional V, AIUB-CHAMP03S

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón Email: jose.valverde.calderon@una.ac Sitio web: www.jfvc.wordpress.com Prof: José Fco Valverde Calderón Geodesia Física

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón Email: jose.valverde.calderon@una.cr Sitio web: www.jfvc.wordpress.com Números Geopotenciales Alturas dinámicas Se define

Más detalles

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m Fuerza entre dos masas Sím F=- G. M. m/r 2. ur F Fuerza N M masa kg r Distancia entre las dos masas m ur Vector unitario cuya dirección es la de la recta que une las dos masas y sentido saliente de la

Más detalles

Problemas de Sistemas Verticales de Referencia

Problemas de Sistemas Verticales de Referencia Problemas de Sistemas Verticales de Referencia 1. Definición de típos de alturas - alturas de la nivelación - alturas elipsoidales - alturas ortométricas - alturas normales - alturas dinámicas 2. Definición

Más detalles

GEODESIA. I semestre, Ing. José Francisco Valverde Calderón Sitio web:

GEODESIA. I semestre, Ing. José Francisco Valverde Calderón   Sitio web: 1 GEODESIA I semestre, 2015 Ing. José Francisco Valverde Calderón Email: jose.valverde.calderon@una.cr Sitio web: www.jfvc.wordpress.com Definición de geodesia 2 Ciencia que trata de la determinación de

Más detalles

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos La teoría de gravitación universal. Breve introducción sobre la evolución de los modelos del movimiento planetario. Desde el principio de los tiempos, los Hombres han tratado de explicar el movimiento

Más detalles

NOCIONES DE CALCULO VECTORIAL

NOCIONES DE CALCULO VECTORIAL NOCIONES DE CALCULO VECTORIAL ANÁLISIS VECTORIAL o ÁLGEBRA VECTORIAL: Suma, resta y multiplicación de vectores. o CÁLCULO VECTORIAL: Gradiente, divergencia y rotacional. Teorema de la Divergencia. Teorema

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

Técnicas de Análisis Espacial

Técnicas de Análisis Espacial Técnicas de Análisis Espacial Geodesia Es la ciencia que estudia la forma y dimensiones de la Tierra integrando conceptos: Unidad 2 Conceptos de Geodesia Topográficos (distribución del relieve), Geofísicos

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

2 FIGURAS DE LA TIERRA

2 FIGURAS DE LA TIERRA 2 FIGURAS DE LA TIERRA 1 TIPOS DE SUPERFICIE El problema de la figura de la tierra es uno de los más antiguos de la historia de la ciencia. Al principio la Tierra fue considerada como una superficie plana.

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- Dos cargas eléctricas puntuales q 1 =-5µC y q 2 =2 µc están separadas una distancia de 10 cm. Calcule: a) El valor del campo y del potencial eléctricos en un punto B, situado en la línea

Más detalles

FA FCP m k d d T d T d

FA FCP m k d d T d T d Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS Código: CNM- 517 Nombre: Análisis vectorial Prerrequisitos: CNM-295 Duración del semestre: 16 semanas Intensidad

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesia Física y Geofísica I semestre, 2016 Ing. José Francisco Valverde Calderón Email: jose.valverde.calderon@una.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Valverde Calderón Geodesia Física

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve:

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve: ELECTROSTÁTICA 2001 1. El campo eléctrico en un punto P, creado por una carga q situada en el origen, es de 2000 N C - 1 y el potencial eléctrico en P es de 6000 V. a) Determine el valor de q y la distancia

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios l' Indice de contenido Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades Ejes de coordenadas / Coordenadas / Cuadrantes / Fórmula de la distancia / Fórmulas

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

2. ELEMENTOS GEOGRÁFICOS

2. ELEMENTOS GEOGRÁFICOS 1. CONCEPTO DE TOPOGRAFÍA (topo = lugar, grafos = descripción). La topografía es la ciencia que estudia el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la

Más detalles

ROTACIONAL y DIVERGENCIA Campos vectoriales: Campo escalar: Campo vectorial: Campo vectorial:

ROTACIONAL y DIVERGENCIA Campos vectoriales: Campo escalar: Campo vectorial: Campo vectorial: ROTACIONAL DIVERGENCIA Campos vectoriales: Los campos vectoriales son uno de los conceptos fundamentales de la física. Sin ellos es imposible entender el electromagnetismo, la óptica, o ramas más avanzadas

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: geo2fran@gmail.com Sitio web: www.jfvc.wordpress.com 2. El espacio topográfico La topografía es la ciencia que estudia el conjunto de procedimientos para determinar posiciones

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

Cuestiones de Campo Gravitatorio propuestas para Selectividad

Cuestiones de Campo Gravitatorio propuestas para Selectividad 1 a) Explique el concepto de escape y deducir razonadamente su expresión. b) Qué ocurriría en la realidad si lanzamos un cohete desde la superficie de la Tierra con una velocidad igual a la velocidad de

Más detalles

TEMARIO DE LA ASIGNATURA GEOFÍSICA

TEMARIO DE LA ASIGNATURA GEOFÍSICA TEMARIO DE LA ASIGNATURA GEOFÍSICA PROFESORES: FRANCISCO GARCÍA GARCÍA JORDI PADÍN DEVESA TEMA 1: INTRODUCCIÓN. 1.1 Definición de Geofísica. 1.2 Física de la Tierra: campos y propiedades físicas principales.

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

UD 11. Aplicaciones de la dinámica

UD 11. Aplicaciones de la dinámica UD 11. Aplicaciones de la dinámica 1- Leyes de Kepler. 2- Momento angular. 3- Dinámica del movimiento circular. 4- Definición de fuerza central, campo. 5- La interacción gravitatoria. 6- La interacción

Más detalles

Un campo es toda magnitud física definida en una cierta región del espacio y para un cierto intervalo temporal.

Un campo es toda magnitud física definida en una cierta región del espacio y para un cierto intervalo temporal. Concepto de Campo Un campo es toda magnitud física definida en una cierta región del espacio y para un cierto intervalo temporal. El concepto de campo se introdujo en el estudio de la electricidad para

Más detalles

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d Campo graitatorio Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un alor de esa magnitud en un instante

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 9 RESUMEN DE FÍSICA - 2º BACH. PARTE IIA - GRAVITACIÓN/CAMPO ELÉCTRICO Emiliano G. Flores egonzalezflores@educa.madrid.org Resumen Este documento contiene un resumen de los conceptos y expresiones

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en el punto P (1, 3, 0) y siendo φ=. C5. 2 Dado un campo

Más detalles

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada.

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. 1. Introducción. Las aplicaciones del GPS dependen en gran medida del conocimiento de las órbitas de los satélites. La determinación precisa de

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Ley de la Gravitación Universal de Newton

Ley de la Gravitación Universal de Newton Slide 1 / 47 Ley de la Gravitación Universal de Newton 2009 por Goodman y Zavorotniy Slide 2 / 47 Tabla de Contenido: GU y la MCU Haga clic en el tema para ir a la sección Gravitación Universal Campo gravitatorio

Más detalles

La Tierra y su campo de gravedad. Gravedad real y gravedad del modelo. Anomalía y perturbación de la gravedad. Desviación de la vertical.

La Tierra y su campo de gravedad. Gravedad real y gravedad del modelo. Anomalía y perturbación de la gravedad. Desviación de la vertical. La Tierra y su campo de gravedad. Gravedad real y gravedad del modelo. Anomalía y perturbación de la gravedad. Desviación de la vertical. *Bibliografía -Bernhard Hoffman Wellenhof Helmut Moritz (005).

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Prólogo... v. 5 La ley del valor medio Teorema de Rolle La ley del valor medio Resumen

Prólogo... v. 5 La ley del valor medio Teorema de Rolle La ley del valor medio Resumen ÍNDICE Prólogo... v PARTE I: EL NUCLEO DEL CALCULO 1 La integral definida... 3 1. Cálculos en cuatro problemas... 3 2. Respuestas exactas a los cuatro problemas... 10 3. La integral definida sobre un intervalo...

Más detalles

Gravitación universal Por: Jose Doria

Gravitación universal Por: Jose Doria Gravitación universal Por: Jose Doria Ley de Newton de gravitación universal En 1687 Newton publico su obra acerca de la ley de gravedad en su tratado Principios matemáticos de filosofía natural. La ley

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

TEMA 12: UN MUNDO EN MOVIMIENTO

TEMA 12: UN MUNDO EN MOVIMIENTO TEMA 12: UN MUNDO EN MOVIMIENTO 1- MOVIMIENTO El movimiento de un cuerpo es el cambio de posición respecto a otros objetos que sirven como sistema de referencia. Llamamos trayectoria del movimiento de

Más detalles

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años)

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años) Campo gravitatorio 1 Campo gravitatorio Planeta 1. A partir de los siguientes datos del Sistema Solar: Distancia al Sol (U.A.) Periodo orbital (años) R Planeta /R T M Planeta /M T Venus 0,723 0,6152 0,949

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAB24.500908 HORAS TEORÍA: 4.5 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles