Programación dinámica
|
|
|
- Francisca Sáez Ríos
- hace 7 años
- Vistas:
Transcripción
1 Parte de Algoritmos de la asignatura de Programación Master de Bioinformática Programación dinámica Web asignatura: profesor: Transparencias preparadas a partir de las del curso de Algoritmos y Estructuras de Datos II, del Grado de Ingeniería Informática y An Introduction to Bioinformatics Algorithms
2 Método general La programación dinámica se suele utilizar en problemas de optimización, donde una solución está formada por una serie de decisiones. Resuelve el problema original combinando las soluciones para subproblemas más pequeños. Se almacenan los resultados de los subproblemas en una tabla, calculando primero las soluciones para los problemas pequeños, y llegando hasta el tamaño deseado con un proceso iterativo. Con esto se pretende evitar la repetición de cálculos para problemas más pequeños.
3 Método general Ejemplo. Cálculo de los números de Fibonacci. Con método recursivo Fibonacci (n: integer) Si n< Devolver Sino Devolver Fibonacci (n-) + Fibonacci (n-) Problema: Muchos cálculos están repetidos, tiempo de ejec. exponencial. Solución: Calcular los valores de menor a mayor empezando por, e ir guardando los resultados en una tabla. Con programación dinámica. Fibonacci (n: integer) T[] = ; T[] = para i =,,...,n T[i] = T[i-] + T[i-] devolver T[n] Se utiliza la misma fórmula que en la versión anterior, pero de forma más inteligente. El tiempo de ejecución es Θ(n).
4 Método general Aspectos a definir en un algoritmo de programación dinámica: Ecuación recurrente, para calcular la solución de los problemas grandes en función de los problemas más pequeños. Determinar los casos base. Definir las tablas utilizadas por el algoritmo, y cómo se rellenan. Cómo se recompone la solución global a partir de los valores de las tablas. 4
5 Análisis de tiempos de ejecución El tiempo de ejecución depende de las características concretas del problema a resolver. En general, será de la forma: Tamaño de la tabla*tiempo de rellenar cada elemento de la tabla. Un aspecto importante de los algoritmos de programación dinámica es que necesitan una tabla para almacenar los resultados parciales, que puede ocupar mucha memoria. Además, algunos de estos cálculos pueden ser innecesarios.
6 Problema del cambio de monedas Problema: Dado un conjunto de n tipos de monedas, cada una con valor v i, y con una cantidad de monedas de ese tipo c i, y dada una cantidad P, encontrar el número mínimo de monedas que tenemos que usar para obtener esa cantidad. El algoritmo voraz es muy eficiente, pero sólo funciona en un número limitado de casos. Utilizando programación dinámica: Definimos el problema en función de problemas más pequeños. Determinar los valores de los casos base. Definimos las tablas necesarias para almacenar los resultados de los subproblemas. Establecemos una forma de rellenar las tablas y de obtener el resultado. 6
7 Problema del cambio de monedas Definición de la ecuación recurrente: Cambio (i, Q), el problema de calcular el número mínimo de monedas necesario para devolver una cantidad Q, usando los i primeros tipos de monedas (es decir los tipos...i). La solución de Cambio(i, Q) puede que utilice k monedas de tipo i o puede que no utilice ninguna. Si no usa ninguna moneda de ese tipo: Cambio(i, Q) = Cambio(i -, Q) Si usa k monedas de tipo i: Cambio(i, Q) = Cambio(i, Q k*v i ) + k En cualquier caso, el valor será el mínimo: Cambio(i, Q) = min k=,,...,min{q/vi,ci} {Cambio(i-, Q-k* v i )+k} Casos base: Cambio(i, Q) Si (i ) o (Q<) entonces no existe ninguna solución al problema, y Cambio(i, Q) = +. En otro caso para cualquier i>, Cambio(i, ) =. 7
8 Problema del cambio de monedas Definición de las tablas utilizadas: Necesitamos almacenar los resultados de todos los subproblemas. El problema a resolver será: Cambio (n, P). Por lo tanto, necesitamos una tabla de nxp, de enteros, que llamaremos D, siendo D[i, j ]= Cambio(i, j). Ejemplo. n=, P= 8, v= (, 4, 6), no límite en c D Cantidad a devolver Monedas C= C = 4 C = 6 Forma de rellenar las tablas: De arriba hacia abajo y de izquierda a derecha, aplicar la ecuación de recurrencia: D[i, j] = min k=,,...,min{q/vi,ci} {D(i-, Q-k* v i )+k} 8
9 Algoritmo. Problema del cambio de monedas Devolver-cambio (P: int; V: array [..n] of int; C: array [..n] of int; var D: array [..n,..p] of int); para i =,,...,n D[i, ] = para i =,,...,n para j =,,...,P {Tener en cuenta si el valor } D[i, j] = min k=,,...,min{q/vi,ci} {D(i-, Q-k* v i )+k} { cae fuera de la tabla} Ejemplo. n=, P= 8, v= (, 4, 6), no límite en c C= C = 4 4 C = 6 9
10 Problema del cambio de monedas Cómo calcular cuántas monedas de cada tipo deben usarse, es decir la solución (x, x,..., x n )? Se usa otra tabla de decisiones tomadas: Aux C = C = 4 C = 6 Algoritmo para obtener una solución: para i=n,n-,..., x i =Aux[i,P] P=P-x i *v i Hacer un programa Perl para este problema.
11 Programación dinámica en Bioinformática Interesa conocer la similaridad entre genes, o de varios genes con determinadas cadenas. La Programación Dinámica se usa para estudiar similaridad entre genes. Veremos el algoritmo de Mayor Subcadena Común (Longest Common Subsequence, LCS) trabajo individual (6 puntos en la calificación final): a partir de la explicación y el programa del LCS: seleccionar otro de los algoritmos de programación dinámica del libro, explicar su uso en bioinformática, explicar el funcionamiento del algoritmo, programarlo y evaluar el funcionamiento
12 Problema de la Distancia de Manhattan Buscamos un camino del Origen al Destino con el que podamos visitar la mayo cantidad de atracciones (*). Solo se puede andar a la derecha y abajo. Origen * * * * * * * * * * * * Destino
13 Problema de la Distancia de Manhattan Se quiere encontrar el camino de longitud mayor en una malla con pesos Entrada: Una malla con pesos G con dos vértices distinguidos, Origen y Destino Salida: Un camino en G de longitud máxima para ir del Origen al Destino
14 Problema de la Distancia de Manhattan origen Coordenada j 4 Coordenada i destino
15 Problema de la Distancia de Manhattan Cómo podría ser un algoritmo de avance rápido para este problema? Se obtendría la solución óptima? Qué tiempo de ejecución tendría? Cómo podría ser un algoritmo por backtracking para este problema? Se obtendría la solución óptima? Qué tiempo de ejecución tendría?
16 Problema de la Distancia de Manhattan j i S, = S, = Para hacerlo por Programación Dinámica: Calcular el peso del camino óptimo para cada vértice de la malla En cada vércice el peso es el máximo del de los vértices anteriores sumado con el peso de la arista que los une 6
17 MTP: Dynamic Programming (cont d) source j i S, = - 4 S, = 4 8 S, = 8 7
18 MTP: Dynamic Programming (cont d) source j i 8 S, = 8-4 S, = 8-9 S, = 9 8 S, = 8 8
19 MTP: Dynamic Programming (cont d) source j 8 i S, = S, = 8 greedy alg. 9 S, = 9 9
20 MTP: Dynamic Programming (cont d) source j 8 i S, = S, = 9
21 MTP: Dynamic Programming (cont d) source j i 8 - Done! (showing all back-traces) S, = 6
22 Problema de la Distancia de Manhattan Se utiliza una ecuación de recurrencia para calcular el valor en cada punto: s i, j = max s i-, j + peso de la arista entre (i-, j) y (i, j) s i, j- + peso de la arista entre (i, j-) y (i, j) El tiempo de ejecución es n x m Y la solución que se obtiene es óptima
23 Problema de la Secuencia Común más Larga (LCS) Dadas dos secuencias v = v v v m y w = w w w n La LCS de v y w es una secuencia de posiciones en v: < i < i < < i t < m y otra secuencia de posiciones en w: < j < j < < j t < n tal que la i t -sima letra de v es igual a la j t -sima letra de w y t es máximo
24 Problema de la Secuencia Común más Larga (LCS) Coord. i: elements of v elements of w Coord. j: A T -- C -- T G A T C -- T G C A T -- A -- C (,) (,) (,) (,) (,) (,4) (4,) (,) (6,6) (7,6) (8,7) Posiciones de v: < < 4 < 6 < 8 Las coincidencias en rojo Posiciones de w: < < < 6 < 7 Cada subsecuencia común es un camino en la malla 4
25 Problema de la Secuencia Común más Larga (LCS) Queremos encontrar la LCS de dos cadenas Entrada: Un grafo con pesos G con dos vértices distinguidos, Origen y Destino. Hay aristas en horizontal, vertical y diagonal, con peso las verticales y horizontales y las diagonales si coincide el carácter Salida: El camino más largo en la malla para ir del Origen al Destino
26 Problema de la Secuencia Común más Larga (LCS) i T G C A T A C j A T C T G A T C Cada camino es una subsecuencia común. Cada elemento añade un carácter a la subsecuencia común. Problema LCS: Encontrar un camino con el máximo número de diagonales. 6
27 Problema de la Secuencia Común más Larga (LCS) La ecuación de recurrencia es: s i, j = max s i-, j s i, j- s i-, j- + si v i = w j Analizar el programa LCS.pl y explicar cómo se ha implementado el algoritmo, cómo se obtiene la subsecuencia y cuál es el coste del tiempo de ejecución. 7
Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios
9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en
Análisis de algoritmos
Tema 09: Programación dinámica Solicitado: Ejercicios 06: Programación dinámica de Fibonacci y Coeficientes Binomiales M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom
Análisis de Algoritmos
Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos
Algoritmos glotones. mat-151
Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente
Teoría de grafos y optimización en redes
Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,
Introducción a la Programación Dinámica. El Problema de la Mochila
Tema 1 Introducción a la Programación Dinámica. El Problema de la Mochila La programación dinámica no es un algoritmo. Es más bien un principio general aplicable a diversos problemas de optimización que
Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.
Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
Problemas de Recursividad
Problemas de Recursividad Problema 1. El factorial de un número entero n 0, denotado como n!, se define! como!!! i = 1 2 n cuando n > 0, y 0! = 1. Por ejemplo 6! = 1 2 3 4 5 6 = 720 Diseñad una método
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Análisis y Diseño de Algoritmos Introducción Elementos de la programación dinámica Principio de optimalidad de Bellman Definición recursiva de la solución óptima Cálculo de la solución óptima Ejemplos
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
PRIMER SIMPOSIO LATINOAMERICANO PARA LA INTEGRACIÓN DE LA TECNOLOGÍA EN EL AULA DE MATEMÁTICAS Y CIENCIA. 9, 10 y 11 de julio
PRIMER SIMPOSIO LATINOAMERICANO PARA LA INTEGRACIÓN DE LA TECNOLOGÍA EN EL AULA DE MATEMÁTICAS Y CIENCIA 9, 10 y 11 de julio ITESO, Guadalajara, Jalisco; México PRIMERA PARTE NIVEL BÁSICO 1. Importancia
Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo
Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten
La segunda observación permite reformular el problema de una manera más simple:
Problema partición Enunciado A: dados N enteros positivos, N>1, decir si estos pueden dividirse en dos grupos cuya suma sea la misma. Ejemplo: si el conjunto es {1,2,3,9,2,11,4}, una forma de partirlo
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de
El TAD Grafo. El TAD Grafo
! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices
Profesor(a): M. A. Zeferino Galarza Hernández
Área Académica: Informática IV Tema: Algoritmos Profesor(a): M. A. Zeferino Galarza Hernández Periodo: Enero-junio de 2012 IV Semestre. Asignatura: Informática IV Tema: Algoritmos Abstract Contains and
C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]
Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos
Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:
Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Coordenadas de un punto
Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.
NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis
Programación. Tema 8: Tablas Hash. Apuntes elaborados por: Eduardo Quevedo, Aaron Asencio y Raquel López Revisado por: Javier Miranda el????
Programación. Tema : Tablas Hash /Mayo/ Apuntes elaborados por: Eduardo Quevedo, Aaron Asencio y Raquel López Revisado por: Javier Miranda el???? Tema : Tabla Hash Las tabla hash aparece para conseguir
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
Programación dinámica p. 1
Técnicas de diseño de algoritmos Programación dinámica Dra. Elisa Schaeffer [email protected] PISIS / FIME / UANL Programación dinámica p. 1 Programación dinámica En programación dinámica, uno
1. Conceptos básicos sobre el problema en cuestión y cuestiones afines. 2. Formulación de los correspondientes algoritmos y su pseudocódigo.
Análisis de Algoritmos Ingeniería Informática, EPS-UAM Información general Organización del curso: 13-15 (mínimo-máximo) semanas docentes: 30-33 clases teóricas. 9-12 clases de problemas 26-30 clases prácticas
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
Materia: Matemática de Tercer Año Tema: Pendiente
Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente
PENDIENTE MEDIDA DE LA INCLINACIÓN
Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando
MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions
MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...
INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES
INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES Vamos a construir una serie de objetos sobre el plano z = 0. Al principio solamente tenemos dicho plano (en verde) Antes de empezar a construir algo, empezamos
3. Técnicas de diseño de algoritmos
3. Técnicas de diseño de algoritmos 1. Métodos Generales de Soluciones de Problemas 2. Técnicas de diseño de algoritmos 1. ecursividad básica 2. Divide y vencerás 3. Backtracking Bibliografía Aho, Hopcroft
Unidad Didáctica 2. Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones
Unidad Didáctica 2 Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones Fundamentos de Programación Departamento de Lenguajes y Sistemas Informáticos Versión 1.0.3 Índice
Relación de prácticas de la asignatura METODOLOGÍA DE LA PROGRAMACIÓN Segundo Cuatrimestre Curso º Grado en Informática
Relación de prácticas de la asignatura METODOLOGÍA DE LA PROGRAMACIÓN Segundo Cuatrimestre Curso 2013-2014. 1º Grado en Informática Práctica 2: Memoria dinámica y Bibliotecas Objetivos Practicar conceptos
Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico
Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se
Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Ingeniería Industrial INB-0412 4-0-8 2.- HISTORIA
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
FUNCIONES REALES DE VARIABLE REAL.
FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A
UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S
UNIDAD V: ARREGLOS BIDIMENSIONALES DIMENSIONALES UNIDAD V: ARREGLOS BIDIMENSIONALES 1.1 GENERALIDADES: Las matrices son una colección finita, homogénea y ordenada de datos. Su información está organizada
Chapter Audio Summary for McDougal Littell Algebra 2
Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación
Algoritmos. Diseño de algoritmos por inducción. Alberto Valderruten. [email protected]. Dept. de Computación, Universidade da Coruña
Divide y Vencerás Diseño de algoritmos por inducción Dept. de Computación, Universidade da Coruña [email protected] Contenido Divide y Vencerás 1 Divide y Vencerás 2 Índice Divide y Vencerás 1
Práctica 3. Paso de parámetros entre subrutinas. 3. Consideraciones sobre el paso de parámetros
Práctica 3. Paso de parámetros entre subrutinas 1. Objetivo de la práctica El objetivo de esta práctica es que el estudiante se familiarice con la programación en ensamblador y el convenio de paso de parámetros
1 SITÚA LOS PUNTOS. Mide las coordenadas de cada punto desde O. X positivo del punto 3. Z positivo del punto 3. Y positivo del punto 3
SOLUCIÓN 1. Sitúa los puntos Mide la primera coordenada (X) en la dirección de la Línea de Tierra, empezando desde la izquierda La segunda coordenada (Y) en perpendicular a la LT, con las positivas hacia
Introducción a la Teoría de Grafos
Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Clases de complejidad
Jueves, 30 de abril. Ejemplo de recursión. Ejemplo de PD. Ejemplo de programación dinámica. Programación dinámica
.0 Jueves, 0 de abril Programación dinámica. Recursión. Principio de optimalidad. Entregas: material de clase. Programación dinámica Transforma un problema de optimización complejo en una secuencia problemas
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
Capítulo 1. Algoritmos, diagramas de flujo y programas.
Capítulo 1. Algoritmos, diagramas de flujo y programas. 1.1 Problemas y algoritmos 1.2 Diagramas de flujo 1.2.1 Reglas para la construcción de diagramas de flujo 1.3 Conceptos fundamentales 1.3.1 Tipos
ELEMENTOS DE GEOMETRÍA ANALÍTICA
Capítulo 3 ELEMENTOS DE GEOMETRÍA ANALÍTICA 3.1. Introducción: La Geometría Analítica es el estudio de figuras o cuerpos geométricos mediante técnicas básicas de análisis matemático y del álgebra en un
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
A RG. Pirámide recta de base cuadrada y altura 50 mm. Pirámide oblicua de base triangular. Pirámide oblicua de base triángulo equilátero
de base de base Para dibujar las pirámides, hay que tener en cuenta que todas sus aristas laterales concurren en un punto denominado vértice de la pirámide. dicho esto veamos el dibujo de los distintos
Hoja de ejercicios del Tema 3
Facultad de Informática Universidad Complutense Fundamentos de la programación Curso 2013 2014 Hoja de ejercicios del Tema 3 1. Conversiones de tipos: Prueba el siguiente programa en tu compilador (copia
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después
Alonso Ramírez Manzanares Computación y Algoritmos 10.03
Recursividad mat-151 1 Ejercicio de recursión: dibujando una regla Queremos dibujar las marcas de diferentes tamaños de una regla. Marcas grandes cada 1/2 cm, marcas más pequeñas cada 1/4 cm... hasta una
Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista
Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
Descripción: dos. función. decreciente. Figura 1. Figura 2
Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
6.1.- Introducción a las estructuras de datos Tipos de datos Arrays unidimensionales: los vectores Operaciones con vectores.
TEMA 6: ESTRUCTURAS DE DATOS (Arrays). CONTENIDO: 6.1.- Introducción a las estructuras de datos. 6.1.1.- Tipos de datos. 6.2.- Arrays unidimensionales: los vectores. 6.3.- Operaciones con vectores. 6.4.-
AYUDAS SOBRE LA LINEA RECTA
AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos
Introducción al tipo Vector Cómo guardar una colección de datos conceptualmente relacionados? - almacenar los 100 primeros números primos, - al
Tema 6. Vectores 1. Introducción y Definiciones 2. Operaciones elementales con vectores 3. Definición y manejo de vectores (arrays arrays) en C 4. Operación de Recorrido secuencial de un vector 5. Operación
greedy (adj): avaricioso, voraz, ávido, codicioso, glotón
Algoritmos Greedy Análisis y Diseño de Algoritmos Algoritmos Greedy Características generales Elementos de un algoritmo greedy Esquema de un algoritmo greedy s Almacenamiento óptimo en cintas Problema
Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas
Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Jesús A. De Loera University of California, Davis trabajo conjunto con Shmuel Onn (Technion Haifa Israel) Cuadrados
Función lineal Ecuación de la recta
Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende
SÍLABO DE MATEMÁTICA I
SÍLABO DE MATEMÁTICA I I. DATOS GENERALES 1.1. Facultad: Ingeniería 1.2. Carrera: Ingeniería de Sistemas 1.3. Área Académica: Formación Básica 1.4. Ciclo: II 1.5. Semestre: 2014-I 1.6. Prerrequisito: Matemática
Algoritmos Recursivos de Búsqueda y Ordenación y sus tiempos
Estructura de Datos y Algoritmos Algoritmos Recursivos de Búsqueda y Ordenación y sus tiempos 1. Algoritmos de ordenación recursivos 1.1. Mergesort, Ordenamiento por fusión Mergesort se ejecuta en un tiempo
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor
Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.
1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el pseudocódigo de un programa que lo resuelva:
1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el a) Problema: pedir la base y la altura de un triángulo y escribir su superficie. b) Problema: pedir cuatro números enteros
La eficiencia de los programas
La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
Grafomotricidad inicial 1
Grafomotricidad inicial 1 Grafomotricidad inicial 2 Grafomotricidad inicial 3 Grafomotricidad inicial 4 Grafomotricidad inicial 5 Grafomotricidad inicial 6 Grafomotricidad inicial 7 Grafomotricidad inicial
Representaciones gráficas: Método del Paralelogramo
Representaciones gráficas: Método del Paralelogramo La relación funcional más simple entre dos variables es la línea recta. Sea entonces la variable independiente x y la variable dependiente y que se relacionan
Tema: Los Grafos y su importancia para la optimización de redes.
Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto
Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal
Algoritmos y solución de problemas Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Introducción Departamento de Electrónica, Sistemas e Informática En las ciencias de la computación
La lección de hoy es sobre cómo encontrar el Punto Medio de un Segmento. Es cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1.
CGT.5.G.1-Jennifer Goff-Midpoint of a Segment. La lección de hoy es sobre cómo encontrar el Punto Medio de un Segmento. Es cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1. Qué es el
Distorsión dinámica temporal Búsqueda Algoritmos de búsqueda gráfica Algoritmos de programación dinámicos
Clase nº 9 Año académico 2003 Distorsión dinámica temporal y búsqueda Distorsión dinámica temporal Búsqueda Algoritmos de búsqueda gráfica Algoritmos de programación dinámicos 6.345 Reconocimiento automático
Programa de teoría. Algoritmos y Estructuras de Datos II. 3. Algoritmos voraces. 1. Análisis de algoritmos 2. Divide y vencerás
Programa de teoría Algoritmos y Estructuras de Datos II 1. Análisis de algoritmos 2. Divide y vencerás 3. Algoritmos voraces 4. Programación dinámica 5. Backtracking 6. Ramificación y poda A.E.D. II 1
LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación
Métodos que devuelven valor Dado el siguiente triángulo rectángulo:
Métodos que devuelven valor Dado el siguiente triángulo rectángulo: hipotenusa altura base Para dibujar este triángulo necesitamos los siguientes datos: base y altura La base y la altura, se utilizarán
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
Introducción a la programación
Introducción a la programación Resolución de Problemas El objetivo principal para que las personas aprendan a programar en algún lenguaje de programación en particular es utilizar el computador como una
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
GPRNV003F2-A16V1. La Caída
GPRNV003F2-A16V1 La Caída ATENCIÓN DESTINAR LOS ÚLTIMOS 20 MINUTOS DE LA CLASE A RESOLVER DUDAS QUE PLANTEEN LOS ALUMNOS SOBRE CONTENIDOS QUE ESTÉN VIENDO EN SU COLEGIO. OBJETIVOS: Determinar las características
