Problemas de Recursividad
|
|
|
- María Luisa Torres Domínguez
- hace 9 años
- Vistas:
Transcripción
1 Problemas de Recursividad Problema 1. El factorial de un número entero n 0, denotado como n!, se define! como!!! i = 1 2 n cuando n > 0, y 0! = 1. Por ejemplo 6! = = 720 Diseñad una método recursiva que lo calcule e implementadlo en Java (junto con un programa que lo utilice) Problema 2. Para calcular el máximo común divisor de dos números enteros puedo aplicar el algoritmo de Euclides, que consiste en ir restando el más pequeño del más grande hasta que queden dos números iguales, que serán el máximo común divisor de los dos números. Por ejemplo, si comenzamos con el par de números 412 y 184, tendríamos: Es decir, m.c.d.(412, 184) = 4 Problema 3. Diseñad un método recursivo tal que, dado un vector de números enteros, retorne la suma de sus elementos. Para poder hacer recursividad, usaremos un índice que indique el trozo de vector a sumar en cada llamada. Es decir, el método a diseñar tendrá la forma: 1 public int sum(int[] elems, int pos) { Diseñad este método así como el que lo utiliza para calcular la suma de todo el vector. Tened en cuenta cómo hacemos para referirnos a un intervalo dentro de un vector. Qué pasa si el vector está vacío (es decir, cuando elems.length vale cero)? Usando el método recursivo, implementad el método que lo usa para calcular la suma de todo el vector, es decir: 1
2 4 public int sum(int[] elems) { 5 return sum(elems,?); 6 } Nota: Podéis considerar dos descomposiciones del vector, una en la que la zona que vais sumando crece de derecha a izquierda y otra en la que lo hace en sentido contrario. Problema 4. Diseñad un método recursivo que escriba al revés la cadena que se le pasa como parámetro, más un índice que se usará para indicar la cadena. Dicho método será de la forma: 1 public void printreversed(string text, int index) { Haced dos versiones del mismo: una en la que la subcadena sobre la que trabaja la función sea el prefijo de la cadena original otra en la que sea el sufijo. En ambos casos implementad la función que llama a la función recursiva diseñada, es decir: 4 public void printreversed(string text) { 5 printreversed(text,?); 6 } Mostrad las secuencias de llamadas que se producen para la cadena abcd en ambos casos. Nota: No se considera una solución válida invertir la cadena y luego escribirla. Problema 5. El ejemplo de la exponenciación mostrado en los apuntes, permite la siguiente descomposición: Si b es par, a! = a! (! div 2) = a! div 2! Si b es impar, a! = a! (! div 2)+1 = a a! div 2! Acabad de diseñar la solución recursiva que la emplea, implementar la solución en Java y hacer el mismo diagrama de llamadas para el caso de 7!". 2
3 Nota: Es muy interesante que intentéis resolver un mismo problema de varias maneras y comparéis entre sí las diferentes soluciones. Problema 6. Ya que estamos, diseñad un método tal que dada una cadena, retorne la cadena invertida (es decir, el primer carácter del resultado será el último de la cadena dada, etc.). Dicho método tendrá la forma: 1 public String invert(string text) { Para hacerlo, debéis diseñar otro tal que dado un vector de caracteres, lo invierta. Como los parámetros que son vectores se pasan por referencia, el método invert sobre vectores puede ser de la forma: 1 public void invert(char[] textchars) { Para encontrar recursividad deberéis hacer otro método que, además del char[], use uno o más índices sobre el vector. Problema 7. Diseñad un método tal que, dados dos vectores de enteros, retorne un booleano indicando si son iguales, es decir, si tienen los mismos valores en las mismas posiciones. Para poder hacerlo recursivamente deberéis, como ya es habitual, hacer otro método que incluya índices para indicar los trozos de subvectores sobre los que se trabaja. Indicad qué llamada se hace al método recursivo para resolver el problema inicial. Problema 8. Diseñad un método tal que calcule el máximo de un vector no vacío de números enteros. De forma similar al problema 4, implementad el método que llama al que habéis definido recursivamente para que se calcule el máximo de todo el vector. Problema 9. El algoritmo chino de multiplicación. Diseñad un método que multiplique dos números enteros usando las siguientes equivalencias: 3
4 x y = 2 x y 2 = 2 x (y div 2), si y es par 2 x y div 2 + x, si y es impar Una cuestión a considerar es la siguiente: la expresión (2*x) puede calcularse de manera no recursiva. Una posibilidad es usar: 2 * x = x + x 2 * x también puede implementarse (y en realidad el código que genera el compilador es lo que hace) desplazando un bit la representación binaria de x. En el tema de Archivos veremos cómo usar los desplazamientos de bits en Java. Problema 10. Dado un vector de números enteros ordenado decrecientemente, diseñad un método tal que compruebe si el valor de alguno de los elementos del vector coincide con su índice. Podéis hacer dos versiones: una que vaya comprobando elemento a elemento si dicha propiedad se cumple (para esta versión, el método recursivo usará, además del vector, un índice). otra que, usando dos índices, sea capaz de descartar a cada llamada la mitad del vector. En ambos casos implementad los métodos que hacen la llamada inicial al que habéis diseñado recursivamente dando valores iniciales a los índices. Pista: podéis pensar qué relación tiene este problema con la búsqueda dicotómica y, si la encontráis, obtendréis la solución. Problema 11. Un problema parecido al anterior se puede plantear cuando el vector de enteros está ordenado crecientemente y no contiene valores repetidos. El razonamiento en este caso es más complicado que en el caso anterior (obviamente cuando se intenta hacer la versión que, a cada paso divide la longitud del intervalo donde buscar por la mitad). Pista: la idea de la solución consiste en darse cuenta de que los valores crecen como mínimo tanto como los índices. Esto es cierto porque el vector no contiene elementos repetidos. Problema 12. La sucesión de Fibonacci viene definida por la siguiente recurrencia: f!!! = f! + f!!! con valores iniciales f! = 0 y f! = 1. 4
5 Diseñad e implementad un método recursivo para calcular el enésimo término de la sucesión y mostrad el árbol de llamadas que se produce al calcular f! con vuestra solución. Problema 13. Mostrad cómo se va modificando el vector int[] v = {7, 8, 1, 3, 5, 4, 1, 6} cuando se ordena utilizando el algoritmo de QuickSort explicado en los apuntes. Mostrad por separado las llamadas que se realizan a la función partition. 5
Estructura de datos y de la información Boletín de problemas - Tema 9
Estructura de datos y de la información Boletín de problemas - Tema 9 1. Dada la siguiente función recursiva: void F(char c) { if (( A
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
Tema 4: Múltiplos y Divisores
Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un
Tema 2 Divisibilidad
1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
Tema 2. Divisibilidad. Múltiplos y submúltiplos.
Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales
Estudio del tiempo de ejecución de algoritmos recursivos a través de relaciones de recurrencia lineal
Estudio del tiempo de ejecución de algoritmos recursivos a través de relaciones de recurrencia lineal Apellidos, nombre Centro Sanabria Codesal, Esther 1 ([email protected]) Casanova Faus, Assumpció
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:
Ejercicios 3A. 2. Implemente un programa que, dados los tres vértices de un triángulo, calcule el área del mismo. Puede aplicar la siguiente fórmula:
Ejercicios 3A 1. Diseñe un programa que lea los coeficientes de un sistema de dos ecuaciones lineales con dos incógnitas y calcule su solución. Se supone que el sistema de ecuaciones es compatible determinado.
MÚLTIPLOS Y DIVISORES
MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque
Algoritmos. Diseño de algoritmos por inducción. Alberto Valderruten. [email protected]. Dept. de Computación, Universidade da Coruña
Divide y Vencerás Diseño de algoritmos por inducción Dept. de Computación, Universidade da Coruña [email protected] Contenido Divide y Vencerás 1 Divide y Vencerás 2 Índice Divide y Vencerás 1
UNIDAD 1: NÚMEROS NATURALES
UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Ejercicios de Excel. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres.
Ejercicios de Excel 1. Hacer una hoja de cálculo que permita calcular el impuesto sobre la renta, partiendo de los ingresos y los gastos, la fórmula necesaria para ello es Impuesto=(Ingresos-Gastos)*0.25,
Programación Orientada a Objetos Métodos Guía de Ejercicios v9.7
Programación Orientada a Objetos Métodos Guía de Ejercicios v9.7 1, Escriba un método llamado puntoscalidad que reciba como entrada el promedio de un estudiante y devuelva 4 si el promedio se encuentra
SESIÓN 8 EXPONENTESY RADICALES
SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y
CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.
Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor
operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Diseñar un algoritmo que lea 3 números e imprima el mayor y el menor valor de los tres. La
Diseñar un algoritmo que lea 3 números e imprima el mayor y el menor valor de los tres. La ALGORITMO MAXMIN_3; entero A, B, C, MAX, MIN; LEER A, B, C; SI A < B ENTONCES SI A < C ENTONCES MIN = A; SI B
GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.
Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,
LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN?
LA DIVISIBILIDAD Qué entendemos por divisibilidad? Es la propiedad de que un número pueda ser dividido por otro un número exacto de veces o que el resto sea cero. Luego, 24 es divisible entre 3. CÓMO SABER
Práctica 2 Métodos de búsqueda para funciones de una variable
Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,
Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción
1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original
Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición
Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente
DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.
CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente
Utiliza los números ordinales al resolver problemas planteados de manera oral.
T G CONTENIDOS APRENDIZAJES ESPERADOS ESTÁNDARES 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2
Números primos y compuestos
Divisibilidad -Números primos y compuestos. -Múltiplos. Mínimo común múltiplo. -Divisores. Máximo común divisor. -Criterios de divisibilidad. -Descomposición factorial. -Aplicaciones. 1 Números primos
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
IV NÚMEROS FRACCIONARIOS.
IV NÚMEROS FRACCIONARIOS.. Qué es una fracción?. Fracciones equivalentes. Definición. Reconocimiento. Obtención.. Simplificación de fracciones.. Comparación de fracciones.. Operaciones con fracciones.
Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor
Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +
Declaración de variables (integer, single, double, boolean, etc.) en Visual Basic. Dim. Ejemplos. (CU00309A)
aprenderaprogramar.com Declaración de variables (integer, single, double, boolean, etc.) en Visual Basic. Dim. Ejemplos. (CU00309A) Sección: Cursos Categoría: Curso Visual Basic Nivel I Fecha revisión:
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas
Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Definición(1) Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos
Recordar las principales operaciones con expresiones algebraicas.
Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números
APLICACIÓN DE ÁRBOLES BINARIOS
PRÁCTICA Nº 6: 2 sesiones (del 22 al 31 de Mayo de 2002) APLICACIÓN DE ÁRBOLES BINARIOS A LA COMPRESIÓN DE FICHEROS DE TEXTO MEDIANTE LA UTILIZACIÓN DE LOS CÓDIGOS DE HUFFMAN 0.- OBJETIVOS El objetivo
TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD
Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo
1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...
Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes
en coma flotante Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006
Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006 4. Representación n de números n en coma flotante Para La números representar fraccionarios números
TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS
TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos
Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística?
Distribución normal Cajón de Ciencias Qué es una variable estadística? Una variable estadística es un parámetro que puede variar de manera aleatoria dentro de un rango de valores. Por ejemplo, la variable
Tema 7: Polimorfismo. Índice
Tema 7: Polimorfismo Antonio J. Sierra Índice Introducción. Sobrecarga de métodos. Objetos como parámetros. Paso de argumentos. Devolución de objetos. Recursividad. Control de acceso. Static. Final. Argumento
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración
Introducción Programación Modular y a Métodos: Consideremos el siguiente ejercicio:
Introducción Programación Modular y a Métodos: Consideremos el siguiente ejercicio: Ejercicio: Escriba una aplicación que requiera un número real como entrada y que muestre el producto del número y tres.
TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.
1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales
LECCIÓN 9 5 PROBLEMAS RESUELTOS
LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
Unidad 1: Números reales.
Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:
Función booleana Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico
Tema 9. Recursividad
Tema 9. Recursividad http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz {badia, bmartine, morales, [email protected] Estructuras de datos y de la información Universitat
Problemas de 4 o ESO. Isaac Musat Hervás
Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................
Práctica 5.- Recursividad
Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Programación Avanzada en Java Prim. 2009 Práctica 5.- Recursividad Datos de la práctica Fecha 6 de marzo de 2009 Conceptos
Expresión, Operador, Operando, Asignación, Prioridad
4. EXPRESIONES Y OPERADORES Conceptos: Resumen: Expresión, Operador, Operando, Asignación, Prioridad En este tema se presentan los siguientes elementos de la programación: las expresiones y los operadores.
Complejidad de algoritmos recursivos
Tema 3. Complejidad de algoritmos recursivos 1. INTRODUCCIÓN... 1 CLASIFICACIÓN DE FUNCIONES RECURSIVAS... 1 DISEÑO DE FUNCIONES RECURSIVAS... 2 2. VENTAJAS E INCONVENIENTES DE LA RECURSIVIDAD... 4 3.
Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE
PROGRAMACIÓN (EUI). Curso 2001-2002 Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE F. Marqués y N. Prieto Índice General 1 Introducción 1 2 El problema 1 2.1 Desarrollo en serie
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico
Capítulo 3: El anillo de los números enteros
Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de
Recursividad. Dept. Ciencias de la Computación e I.A. Universidad de Granada
TEMA Recursividad Dept. Ciencias de la Computación e I.A. Universidad de Granada Índice Introducción a la recursión Recursividad frente a iteración Eficiencia de los algoritmos recursivos Ejemplos y ejercicios
TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:
IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura
Arreglos Unidimensionales En este tipo de arreglo se hace uso de un índice solamente para hacer referencia a una posición particular del arreglo.
Arreglos (Arrays) en Java Definición: Un arreglo es un objeto contenedor que consiste de una cantidad fija de posiciones o celdas para almacenar valores del mismo tipo en ellas. Cada posición o celda del
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
Lógica y compuertas (Parte 2): Circuitos Combinacionales y Secuenciales
Práctica 4 Lógica y compuertas (Parte 2): Circuitos Combinacionales y Secuenciales Objetivos de la práctica: que el alumno domine Circuitos lógicos y diagramas de compuertas Introducción a equivalencias
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
Estructura de datos y de la información Boletín de problemas - Tema 2
Estructura de datos y de la información Boletín de problemas - Tema 2 1. Definir un tipo de datos diassemana capaz de contener cualquier día de la semana y las operaciones diasiguiente, diaanterior y escribedia.
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Eliminación gaussiana y otros algoritmos Departamento de Matemáticas ITESM Eliminación gaussiana y otros algoritmos Álgebra Lineal - p. 1/77 En esta lectura veremos procedimientos
CAPÍTULO 1 INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS
CONTENIDO PRÓLOGO XIX CAPÍTULO 1 INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS 1.1 Introducción 2 1.2 Resolución de problemas mediante la computadora 3 1.3 Conceptos de programación orientada a objetos
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
1 Números racionales
8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 58 REFLEXIONA Óscar y Mónica colaboran como voluntarios en el empaquetado de medicinas. En qué contenedor embalará Óscar los analgésicos? Qué ocurriría si eligiera el que tiene forma de cubo?
Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista
Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
U.E. Colegio Los Arcos Matemáticas Guía #26B Sexto grado Máximo común divisor. Problemas.
GUIA DE TRABAJO Materia: Matemáticas Guía # 6B. Tema: Máximo común Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Función lineal y afín
Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función
Unidad 3: Operaciones y propiedades de los números naturales
Unidad 3: Operaciones y propiedades de los números naturales 3.1. Adición de números naturales Definición: Se llama suma de dos números a y b al número s de elementos del conjunto formado por lo a elementos
Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.
Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Complejidad de Algoritmos
Complejidad de Algoritmos Tema 5 Introducción Un algoritmo es una secuencia de instrucciones que resuelve un problema Puede tener diferentes implementaciones Para comparar las diferentes formas (algoritmos)
EJEMPLO DE CÓDIGO JAVA BÁSICO. CREAR CLASES CON CAMPOS, CONSTRUCTOR Y MÉTODOS. LA PALABRA CLAVE THIS (CU00652B)
APRENDERAPROGRAMAR.COM EJEMPLO DE CÓDIGO JAVA BÁSICO. CREAR CLASES CON CAMPOS, CONSTRUCTOR Y MÉTODOS. LA PALABRA CLAVE THIS (CU00652B) Sección: Cursos Categoría: Curso Aprender programación Java desde
CONCEPTO O DEFINICIÓN DE HERENCIA EN JAVA Y EN PROGRAMACIÓN ORIENTADA A OBJETOS. QUÉ ES? EXTENDS. EJEMPLOS. (CU00684B)
APRENDERAPROGRAMAR.COM CONCEPTO O DEFINICIÓN DE HERENCIA EN JAVA Y EN PROGRAMACIÓN ORIENTADA A OBJETOS. QUÉ ES? EXTENDS. EJEMPLOS. (CU00684B) Sección: Cursos Categoría: Curso Aprender programación Java
RESUMEN DE SUCESIONES. Definición: Una sucesión es un conjunto ordenado de números reales:
RESUMEN DE SUCESIONES Definición: Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4, a 5, a 6,... Los números a 1, a 2, a 3,...a n.. ; se llaman términos de la sucesión. Cada elemento
Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma
Polinomios Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma p(x) = a 0 + a 1 x +... + a n x n (1) donde x es la variable y a 0,
EJERCICIOS RESUELTOS DEL TEMA 5
EJERCICIOS RESUELTOS DEL TEMA 5 MULTIPLICACIÓN 1.- Multiplicar los números 27 y -7 utilizando representación binaria en complemento a 2, con el mínimo número posible de bits y empleando el algoritmo apropiado.
Todo numero es divisible por 2 si y solo si termina en cero o en una cifra par
Revisemos la idea Cuando un número es divisor de un dividendo, bastara sumar dicho divisor en forma continua para alcanzar al dividendo. Basado en este proceso, es simple determinar la multiplicidad de
Programación I. Práctica parcial: el juego de los barquitos (ENTREGA OBLIGATORIA)
Programación I Práctica parcial: el juego de los barquitos (ENTREGA OBLIGATORIA) El objetivo de esta práctica es implementar una variedad del juego de los barquitos o hundir la flota. Como sabréis el juego
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
Tablas Hash y árboles binarios
Tablas Hash y árboles binarios Algoritmos Tablas hash Árboles Binarios Árboles Balanceados Tablas Hash Introducción Las tablas hash son estructuras tipo vector que ayudan a asociar claves con valores o
