UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
|
|
|
- Eugenio Rafael Blanco Sáez
- hace 9 años
- Vistas:
Transcripción
1 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
2 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura que se suman en cada restricción de tipo <= para conseguir la igualdad de la forma estándar, proporcionan un coeficiente (+1) que es útil para formar la matriz unitaria " I "; se cumple así con la necesidad de la primera solución básica factible que requiere el algoritmo simplex para su inicio. Pero muchas veces, el modelo de programación lineal no tiene forma canónica y presenta restricciones de tipo >= e =, con las cuales no se usan variables de holgura para el propósito de conseguir la forma estándar. Al restar la superávit -1S se convierte a ecuación la restricción tipo >=; y la restricción = ya se cumple; pero en ambos casos no se tiene la aportación del coeficiente + 1. Los problemas de programación lineal expresados con restricciones distintas al tipo <= necesitan un artificio matemático para conseguir una matriz de base artificial, lo cual es posible sumando una variable artificial W i de valor no negativo, i=1,2,...,m en cada restricción i de tipo >= e =, así se proporciona el coeficiente +1 indispensable para la formación de la matriz unitaria I que requiere el algoritmo simplex para ponerlo en marcha. Una variable artificial no tiene significado físico y sólo se utiliza para completar la primera solución básica que requiere el simplex para iniciarse; pero en contraste, a través de las etapas de cálculo, debe procurarse que las artificiales salgan pronto de la base, convirtiéndolas en no básicas, o bien que, como variables básicas valgan cero para poder lograr la solución óptima.
3 Método Simplex penal o de la M grande, Técnica M. El simplex penal es una variante del método simplex aplicable en los casos en que las variables artificiales son necesarias en el problema, ya sea de maximizar o también de minimizar. El nombre de simplex penal se explica porque se penaliza con un coeficiente M, que representa un valor muy grande (mayor que cualquier otro coeficiente del problema), a cada variable artificial W i que se incluya en la función objetivo del problema. Para máximo se utiliza la penalización con signo menos (- M), por otro lado para mínimo se utiliza signo más (+ M). Las variables artificiales se usan para la primera solución básica del simplex, pero el valor muy grande del coeficiente M, procura su rápida salida de la base cuando el problema tiene solución factible. Aunque algún caso degenerado puede tener una variable artificial en la base con valor cero; Por el contrario, si no es posible anular las variables artificiales (W i >0), significa que no hay solución factible al problema.
4
5
6 Método Simplex penal o de la M grande, Técnica M. Primero se prepara el problema convirtiendo a igualdades para forma estándar del modelo propuesto, sumando una variable de holgura H1 en la restricción (1), después se resta una variable S2 de superávit en la (2), la restricción (3) es de tipo = por lo que se deja como está; se condiciona toda variable X j >= 0 y con la función objetivo original ya se tiene este modelo como estándar. Pero así no se completa la matriz cuadrada unitaria I que debe ser de orden m = 3 restricciones, pues sólo se tiene el vector unitario de la variable de holgura H1 que sí aporta el coeficiente +1, faltando dos vectores unitarios. Aquí surge la necesidad de utilizar el artificio matemático ya referido. En las restricciones (2) y (3) que son de >= e =; se suman variables artificiales W2 y W3, aportando cada una de ellas el necesario coeficiente +1, con lo que se completa la matriz I mostrada antes de la tabla simplex, quedando el modelo que se presenta con base artificial.
7 Método Simplex penal o de la M grande, Técnica M. Esta variante del simplex, incluye a las variables artificiales en la función objetivo, pero penalizadas con un coeficiente M, que representa un valor mayor que cualquier otro coeficiente presente en el modelo; para este ejemplo se le asigna -M como coeficiente a las variables artificiales W2 y W3, cumpliendo así con la penalización de la función objetivo la cual se arregla al formato de las restricciones, restando el lado derecho a la variable Z, consiguiendo el término independiente cero en el lado derecho.
8 Método Simplex penal o de la M grande, Técnica M. En segundo lugar debe prepararse la tabla simplex con la primera solución básica "factible", la que se consigue con las variables artificiales W2 y W3, procurando su pronta anulación con los cambios de la base. Se inicia con los renglones y columnas y los encabezados necesarios para copiar ordenadamente los coeficientes del modelo, tal como se presentan en la forma con base artificial y la función Z arreglada con término independiente; los lugares vacíos se llenan con cero. Aquí la matriz I, no necesariamente se forma con sus vectores unitarios colocados juntos escalonadamente; pueden quedar intercalados vectores unitarios (por las variables de holgura y/o artificiales) o no unitarios (por las de superávit); en este ejemplo, hay una intercalación de la variable S2 de superávit, lo cual se podría haber evitado permutando las primeras dos restricciones.
9 Método Simplex penal o de la M grande, Técnica M. En todos los casos se puede buscar arreglar las restricciones en el orden que convenga para facilitar el análisis posterior de la solución tabular. Las variables básicas deben colocarse en la columna izquierda ordenadas de tal manera, que coincidan en su renglón con el coeficiente +1 del vector unitario, en la columna correspondiente a la misma variable. Toda variable básica debe tener coeficiente indicador cero en el renglón Z; esto significa que tal variable ya no puede aportar alguna cantidad al valor de la función objetivo; pero las variables artificiales W2 y W3 tienen un coeficiente M en dicho renglón; lo cual impide que se tenga una solución básica "factible" en esta tabla, por lo que se procede a conseguir los coeficientes cero faltantes en el renglón Z para las variables artificiales.
10
11 Método Simplex penal o de la M grande, Técnica M. Esto se logra mediante operaciones fila elementales usadas en el proceso de Gauss-Jordan, lo que se muestra en las fórmulas en el lado izquierdo de la tabla: Para calcular el cero en W2, se multiplica el renglón W2 por el número -M (inverso aditivo de M) y se suma el renglón Z, ó sea (RW2)(-M) + RZ = Z', se tiene así cero en la posición de Z' con W2. Luego se multiplica el renglón W3 por el número -M y se suma el renglón Z', ó sea (RW3)(-M) + RZ' = Z'', se determinan así los coeficientes cero necesarios para que las variables W2 y W3 sean básicas. Ahora sí en esta segunda tabla, se tiene la primera solución básica indispensable para que el algoritmo se inicie con la aplicación de los criterios del simplex.
12
13 Método Simplex penal o de la M grande, Técnica M. En tercer lugar, ya determinada la solución de arranque, se aplican los criterios del simplex empezando con el de optimalidad y considerando que el objetivo es máximo, la observación de los indicadores del renglón Z, en esta segunda tabla, existe sólo un coeficiente negativo en la variable no básica de decisión X 1, por lo cual se declara variable entrante a la base. La aplicación de la factibilidad resulta al obtener el mínimo cociente, de dividir los valores actuales de las variables básicas situados en la columna solución a la derecha de la tabla, entre los coeficientes en el mismo renglón i con la columna correspondiente a la variable VE. Así: mínimo (6/1, 0/2, 2/1) = 0, que coincide en el renglón de la variable artificial W 2 que se declara variable saliente.
14 Método Simplex penal o de la M grande, Técnica M. En el cruce de la columna X 1 y el renglón W 2, se localiza el coeficiente 2 como pivote P para calcular con Gauss-Jordan la siguiente tabla simplex (tercera) con la nueva solución básica que debe tener a H 1, X 1 (sustituye a W 2 ) y W 3, como base. Se recomienda cuidar la colocación de las variables en la base, conservando el mismo orden que le corresponde de tabla a tabla, excepto para la nueva VE que ocupa el lugar de la VS.
15 Método Simplex penal o de la M grande, Técnica M.
16 Método Simplex penal o de la M grande, Técnica M. En la tercera tabla simplex, se repite la aplicación del criterio de optimalidad seleccionando entre (-1/2 M - 7/2) y (-1/2 M - 3/2), el coeficiente más negativo para el objetivo de máximo, entonces se declara a la variable no básica X 2 como a la base. Para la factibilidad, vea que el renglón de la variable básica X1 queda descartado debido a que 0 / -1/2 no es válido, en cambio con las otras dos variables en la base se tiene: Mínimo (6 / 3/2, 2 / 1/2) = 4, existe empate que debe romperse teniendo en cuenta, la necesidad de procurar una rápida salida de la base de las variables artificiales, en tal caso se puede elegir a la que ahora, es indeseable variable básica W 3. En el cruce de columna X 2 como VE y renglón W 3 como VS, se localiza el coeficiente pivote 1/2 con el que se inicia el cálculo de la siguiente tabla (cuarta) simplex de este problema ejemplo.
17
18
19 La cuarta tabla simplex comienza por ordenar las tres variables básicas H1, X1 y la nueva X2 que sustituye a la W3, se continúa con el cálculo de coeficientes del renglón RE = RS / P = RS / 1/2 resultando el coeficiente +1 en la posición de pivote, necesario para determinar con el Gauss-Jordan el resto de la tabla, que muestra en el lado izquierdo, las fórmulas empleadas de este método. Esta última tabla tiene en el renglón Z, coeficientes indicadores para las variables de valor no negativo, lo cual significa una solución óptima pues, además, todas las variables artificiales ya salieron de la base.
20
21 2. TAREA 3. Minimizar: Z = 0.05X X 2 Sujeto a: 2X 1 + X 2 40 X 1 + X 2 30 X 1, X 2 0
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI
Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia
Programación Lineal. Unidad 1 Parte 2
Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado
IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.
Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la
Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual
7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal
PASO 1: Poner el problema en forma estandar.
MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad
CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada
4. Método Simplex de Programación Lineal
Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción
Método Simplex: Encontrado una SBF
Método Simplex: Encontrado una SBF CCIR / Matemáticas [email protected] CCIR / Matemáticas () Método Simplex: Encontrado una SBF [email protected] 1 / 31 Determinación de SBF Determinación de SBF El método
MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional
MÉTODO SIMPLE POFESOA: LILIANA DELGADO HIDALGO Lilianadelgado@correounivalleeduco Minimizar 4x + x Sueto a: x + x 4x + x 6 x + x 4 x, x Estandarización Tradicional Minimizar 4x + x Sueto a: x + x 4x +
El Método Simplex. H. R. Alvarez A., Ph. D. 1
El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1
M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales El sistema de ecuaciones lineales como modelo matemático de problemas Los sistemas de ecuaciones lineales permiten el planteamiento de problemas y soluciones que toman en
Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.
Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:
MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica
Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...
MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones
TEMA 3: EL MÉTODO SIMPLEX
TEMA 3: EL MÉTODO SIMPLEX El uso de este procedimiento gráfico para resolver problemas de PL queda limitado a problemas con dos variables de decisión, de manera que el problema pueda representarse en un
Cómo resolver el Método Simplex, con penalizaciones, o gran M
Cómo resolver el étodo Simple, con penalizaciones, o gran aterial de apoyo realizado por Sebastián Fellenberg C Estudiante de Ingeniería Industrial Universidad de las Américas Chile Introducción Antes
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.
EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones
DUALIDAD EN PROGRAMACION LINEAL
DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones
En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.
Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX
6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma
Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.
Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación
Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.
Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.
PROGRAMACIÓN LINEAL ENTERA
PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,
Determinantes. Primera definición. Consecuencias inmediatas de la definición
Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Eliminación gaussiana y otros algoritmos Departamento de Matemáticas ITESM Eliminación gaussiana y otros algoritmos Álgebra Lineal - p. 1/77 En esta lectura veremos procedimientos
La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:
Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los
PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,...
El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la
DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.
DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un
Problemas de Programación Lineal: Método Simplex
Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con
ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta
ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras
Tercera edición Álgebra lineal y programación lineal Con aplicaciones a ciencias Administrativas, contables y financieras Francisco Soler Fajardo Fabio Molina Focazzio Lucio Rojas Cortés Contenido Introducción...XIX
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co En PL un sistema de producción se representa
Tema # 7. método simplex matricial o revisado
IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex
TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS
TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO
3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI
TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Matrices escalonadas y escalonadas reducidas
Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
Problemas de transporte, asignación y trasbordo
Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y
Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales
Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 2011 Resumen
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a
Sistema de ecuaciones algebraicas
Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM
Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I
Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:
GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo
Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011
Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,
Programación Lineal. - Si no: Sea j tal que c
Programación Lineal El objetivo de este documento es hacer una breve introducción a la programación lineal que pueda contribuir al fácil manejo de la aplicación. La programación lineal es un procedimiento
Ing. Ramón Morales Higuera
MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez
MÁXIMOS Y MINIMOS Marco Antonio Cruz Chávez UAEM Av. Universidad 11 Col. Chamilpa C.P. 61 Cuernavaca Morelos, México Agosto 18 del [email protected] Abstract. En este trabajo se presentan algunos
Distribuciones bidimensionales. Regresión.
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos
Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la aplicación en la programación lineal.
Unidad IX: Programación lineal Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la aplicación en la programación lineal. Conceptos a desarrollar
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
Demostración de la Transformada de Laplace
Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada
Matrices y determinantes
Matrices y determinantes Matrices y determinantes Matrices Una matriz es un grupo de números organizados en filas y columnas, limitados por un paréntesis: 1 2 3 n columnas a11 a12 a13 a1 n a21 a22 a23
Figura 1: Esquema de las tablas simplex de inicio y general.
RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Inversas Generalizadas
Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
CLASE Nº7. Patrones, series y regularidades numéricas
CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series
Ejemplo : PROGRAMACIÓN LINEAL
PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Optimización lineal con R José R. Berrendero
Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011
Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. (1.1)
El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. x + 5y + z = x y + z = 8 x + y = 10 (1.1) Una manera de resolver este problema consiste en aplicar el método de reducción
Determinante de una matriz
25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto
Programación Lineal con Matlab
Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico
Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.
Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn
Notas del curso de Introducción a los métodos cuantitativos
Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una
