Programación Lineal con Matlab
|
|
|
- Ernesto Chávez Vázquez
- hace 9 años
- Vistas:
Transcripción
1 Arturo Vega González Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22
2 Contenido 1 Programación Lineal Método gráfico Universidad de Guanajuato, DCI, Campus León 2 / 22
3 Programación Lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. Para su solución se cuenta con: 1 Método gráfico 2 Método algebraico 3 Método simplex Universidad de Guanajuato, DCI, Campus León 3 / 22
4 Ecuaciones Generales Función objetivo a minimizar o maximizar Restricciones (sujeta a:) Z = c 1 x 1 + c 2 x 2 + c 3 x c n x n a i1 x 1 + a i2 x a in x n = b i i = 1, 2,, p a i1 x 1 + a i2 x a in x n b i i = p + 1,, r a i1 x 1 + a i2 x a in x n b i i = r + 1,, m x j 0 j = 1, 2,, n Universidad de Guanajuato, DCI, Campus León 4 / 22
5 Ecuaciones Generales Donde: x 1, x 2,..., x n : niveles de actividad sujetas a alguna manipulación, variables reales o variables de decisión. c i : coeficientes de costo a ij : coeficientes estructurales b i : disponibilidad de recursos Universidad de Guanajuato, DCI, Campus León 5 / 22
6 Método gráfico Método gráfico Determinación del espacio de soluciones que define todas las soluciones factibles del modelo. Representación gráfica de cada restricción y determinar el espacio que cumple con todas las restricciones. Determinación de la solución óptima, entre todos los puntos factibles del espacio de soluciones. 1 Evaluar la función objetivo Z en cada una de las esquinas del espacio de soluciones factibles. 2 Usando la función objetivo para determinar la esquina del espacio de soluciones factible que la optimiza. Universidad de Guanajuato, DCI, Campus León 6 / 22
7 Método gráfico Método Gráfico (1) Utilizando plot pause on ; x = 1:1:7; % i n t e r v a l o para g e n e r a r l a s r e c t a s z =(21 5. x ) / 4 ; % f u n c i ó n a maximizar % r e s t r i c c i o n e s R1 = (24 6. x ) / 4 ; R2 = (6 x ) / 2 ; R3 = 1+x ; f o r r =1: l e n g t h ( x ) % c o n s t a n t e s R4 ( r ) = 2 ; R5 ( r ) = 0 ; R6 ( r ) = 0 ; end %g r a f i c a de l a s f u n c i o n e s c o n s i d e r a n d o i g u a l d a d e s f i g u r e ( 1 ) ; p l o t ( x, z, k ) ; h o l d on ; p l o t ( x, R1, b, x, R2, b, x, R3, m, x, R4, m ) ; p l o t ( R5, x, r, x, R6, r ) ; g r i d on Universidad de Guanajuato, DCI, Campus León 7 / 22
8 Método gráfico Método Gráfico (1) Universidad de Guanajuato, DCI, Campus León 8 / 22
9 Método gráfico Método Gráfico (1) Universidad de Guanajuato, DCI, Campus León 9 / 22
10 Método gráfico Método Gráfico (2) Utilizando area y meshgrid %problema de l a s p i n t u r a s x = 0 : 8 ; % rango para l a g r a f i c a y1 = max ((24 6 x ) / 4, 0 ) ; % 6x + 4y <= 24 y2 = max((6 x ) / 2, 0 ) ; % x + 2y <= 6 y3 = max(1 + x, 0 ) ; % x + y <= 1 y4 = max(2,0) ones ( 1, 9 ) ; % y <= 2 ytop = min ( [ y1 ; y2 ; y3 ; y4 ] ) ; % v e c t o r de minimos a r e a ( x, ytop ) ; % se r e l l e n a l a a r e a hold on ; [ u v ] = meshgrid ( 0 : 8, 0 : 8 ) ; % rango de l a g r a f i c a c o n t o u r ( u, v, 5 u + 4 v ) ; % e v a l u a r z en e l rango d e f hold o f f ; Universidad de Guanajuato, DCI, Campus León 10 / 22
11 Método gráfico Método Gráfico (2) Universidad de Guanajuato, DCI, Campus León 11 / 22
12 Usando linprog El comando linprog del toolbox de optimización implementa el algoritmo simplex Soluciona problemas de la forma Minimizar: Restricciones (sujeta a:) Z = c 1 x 1 + c 2 x 2 + c 3 x c n x n a i1 x 1 + a i2 x a in x n b i i = 1, 2,, m Universidad de Guanajuato, DCI, Campus León 12 / 22
13 Usando linprog Parámetros Minimizar: Restricciones (sujeta a:) Z = f x A x b f: vector con los coeficientes costo c i A: Matriz con los coeficientes estructurales a ij b: vector con la disponibilidad de recursos b i Universidad de Guanajuato, DCI, Campus León 13 / 22
14 Ejemplo Problema de las pinturas: Maximizar: Z = 5x 1 + 4x 2 Restricciones (sujeta a:) 6x 1 + 4x 2 24 x 1 + 2x 2 6 x 1 + x 2 1 x 2 2 x j 0 j = 1, 2 Universidad de Guanajuato, DCI, Campus León 14 / 22
15 Ejemplo 1 Si es problema de maximización se convierte en un problema de minimización Minimizar: Restricciones (sujeta a:) Z = 5x 1 4x 2 6x 1 + 4x 2 24 x 1 + 2x 2 6 x 1 + x 2 1 x 2 2 x j 0 j = 1, 2 Universidad de Guanajuato, DCI, Campus León 15 / 22
16 Ejemplo Codificación: se definen los vectores y se invoca el comando linprog %problema de l a s p i n t u r a s f = [ 5 4] ; % c o e f i c i e n t e s de c o s t o (Z) A=[6 4 ; 1 2; 1 1 ; 0 1; 1 0 ; 0 1] ; % r e s t r i c c i o n e s b = [ 2 4 ; 6 ; 1 ; 2 ; 0 ; 0 ] ; % r e c u r s o s r=l i n p r o g ( f, A, b ) ; % r c o n t i e n e s o l. x i Z = f r ; % v a l o r óptimo de Z ( g a n a n c i a ) Universidad de Guanajuato, DCI, Campus León 16 / 22
17 Ejemplo Salida >> r r = >> Z Z = >> Universidad de Guanajuato, DCI, Campus León 17 / 22
18 Problema 1 Considere: Maximizar: Z = x 1 + x 2 Restricciones (sujeta a:) 5x 1 + 3x x 1 + 5x 2 15 x j 0 j = 1, 2 1 Utilice Matlab para graficar las restricciones 2 Utilice linprog para encontrar la solución Universidad de Guanajuato, DCI, Campus León 18 / 22
19 Problema 2 Considere: Maximizar: Restricciones (sujeta a:) Z = 143x x 2 x 1 + x x x x x x j 0 j = 1, 2 1 Utilice Matlab para graficar las restricciones 2 Utilice linprog para encontrar la solución Universidad de Guanajuato, DCI, Campus León 19 / 22
20 Problema 3 Considere: Problema de la dieta (libro) Minimizar: Restricciones (sujeta a:) Z = 0.3x x 2 x 1 + x x 1 0.3x x x x j 0 j = 1, 2 1 Utilice Matlab para graficar las restricciones 2 Utilice linprog para encontrar la solución Universidad de Guanajuato, DCI, Campus León 20 / 22
21 Más sobre linprog Minimizar: Restricciones (sujeta a:) Z = f x A x b A eq x = b eq lb x ub x = linprog(f,a,b,a eq,b eq,lb,ub) x = linprog(f,a,b,a eq,b eq,lb,ub,x 0 ) x = linprog(f,a,b,a eq,b eq,lb,ub,x 0,opciones) Universidad de Guanajuato, DCI, Campus León 21 / 22
22 Más sobre linprog Minimizar: Restricciones (sujeta a:) Z = f x A eq x = b eq x 0 x = linprog(f,[],[],a eq,b eq, zeros(size(f)),[]) Universidad de Guanajuato, DCI, Campus León 22 / 22
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
Optimización lineal con R José R. Berrendero
Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias
Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual
7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI
Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y
El Método Simplex. H. R. Alvarez A., Ph. D. 1
El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia
PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1
M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser
Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal
Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales
CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado
IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para
PASO 1: Poner el problema en forma estandar.
MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta
UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:
GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:
Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.
Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.
PROBLEMA DEL TRANSPORTE VRP (VEHICLE ROUTING PROBLEM)
PROBLEMA DEL TRANSPORTE VRP (VEHICLE ROUTING PROBLEM) Contenido Entorno. Definición VRP. Instancia de VRP. Formulación con PLE (modelo). Ejemplo instancia VRP con PLE. Variantes del problema de VRP. Técnicas
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George
1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500
1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3
Sistema de ecuaciones algebraicas. Eliminación de Gauss.
Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co En PL un sistema de producción se representa
Método Simplex: Encontrado una SBF
Método Simplex: Encontrado una SBF CCIR / Matemáticas [email protected] CCIR / Matemáticas () Método Simplex: Encontrado una SBF [email protected] 1 / 31 Determinación de SBF Determinación de SBF El método
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2
Problemas de Programación Lineal: Método Simplex
Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
TEMA 3: EL MÉTODO SIMPLEX
TEMA 3: EL MÉTODO SIMPLEX El uso de este procedimiento gráfico para resolver problemas de PL queda limitado a problemas con dos variables de decisión, de manera que el problema pueda representarse en un
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)
MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional
MÉTODO SIMPLE POFESOA: LILIANA DELGADO HIDALGO Lilianadelgado@correounivalleeduco Minimizar 4x + x Sueto a: x + x 4x + x 6 x + x 4 x, x Estandarización Tradicional Minimizar 4x + x Sueto a: x + x 4x +
4. Método Simplex de Programación Lineal
Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción
Nombre de la asignatura : Investigación de operaciones I. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9306
. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Investigación de operaciones I Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB-906 Horas teoría-horas práctica-créditos
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura
Módulo Programación lineal. 3 Medio Diferenciado
Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora
Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011
Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,
DUALIDAD EN PROGRAMACION LINEAL
DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX
6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción
Qué es la programación lineal?
Qué es la programación lineal? En infinidad de aplicaciones de la industria, la economía, la estrategia militar, etc... Se presentan situaciones en las que se exige maximizar o minimizar algunas funciones
Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.
Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este
Sistema de ecuaciones algebraicas
Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM
MATEMÁTICAS PARA LA ECONOMÍA III
MATEMÁTICAS PARA LA ECONOMÍA III CÁLCULO INTEGRAL. Tema 1. - Funciones primitivas. 1.1 - Funciones primitivas e integral indefinida de una función real de variable real. 1.2 - Primitivas de las funciones
Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras
Tercera edición Álgebra lineal y programación lineal Con aplicaciones a ciencias Administrativas, contables y financieras Francisco Soler Fajardo Fabio Molina Focazzio Lucio Rojas Cortés Contenido Introducción...XIX
Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I
Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,
Opción A. Alumno. Fecha: 23 Noviembre 2012
Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A
PROBLEMAS de Programación Lineal : Resolución Gráfica
PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x
En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.
Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la
Programación Lineal. Unidad 1 Parte 2
Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA SINTÉTICO
CARRERA: Ingeniería en Sistemas Computacionales. PROGRAMA SINTÉTICO ASIGNATURA: Investigación de Operaciones. SEMESTRE: Séptimo. OBJETIVO GENERAL: El alumno aplicará las herramientas metodológicas de la
Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.
Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo
Resolución. Resolución gráfica de problemas de optimización
Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema
UNIDAD III. INVESTIGACIÓN DE OPERACIONES
UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas
Carrera: INB-0406 4-0-8. Participantes. Representante de las academias de ingeniería industrial de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de operaciones I Ingeniería Industrial INB-0406 4-0-8 2.- HISTORIA
www.klasesdematematicasymas.com
1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +
Capítulo 3 Método Gráfico
Capítulo 3 Método Gráfico Introducción En el presente capítulo se muestra la solución a varios tipos de problemas de programación lineal que solamente tienen en su formulación dos variables empleando el
optimización: programación lineal y entera
UNIVERSIDAD PERUANA LOS ANDES Facultad de Ciencias i Administrativas i ti y Contables METODOS CUANTITATIVOS DE NEGOCIOS capítulo 2. modelos de optimización: programación lineal y entera Objetivos de Aprendizaje:
Formulación de un Modelo de Programación Lineal
Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para
Planeación Didáctica Nivel: LICENCIATURA
Planeación Didáctica Nivel: LICENCIATURA Campus: TLALPAN Docente: ANTONIO RAMON CAMELO PEREZ División: NEGOCIOS Asignatura: INVESTIGACION DE OPERACIONES I Periodo: 2-2014 Competencia: El estudiante desarrollará
Computación Científica
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2012 1 / 19 Capítulo 2 Métodos Gradientes 2 / 19 1 Métodos Gradiente Introducción El método del gran descenso "steepest descent") Criterios
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.
Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la
Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías.
Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Planificación correspondiente al Ciclo Académico 2011 Asignatura : Modelos Matemáticos I Responsable de Cátedra:
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA
RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA PROGRAMACIÓN LINEAL ETAPA BACHILLERATO Resumen Este artículo trata de cómo resolver problemas de
TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS
TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma
Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2
Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores
Programación lineal: Algoritmo del simplex
Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b
Tema # 7. método simplex matricial o revisado
IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex
PROGRAMACIÓN LINEAL ENTERA
PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,
Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:
MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
PROGRAMA DE ESTUDIO. Básico ( ) Profesional ( X ) Especializado ( ) Práctica ( )
PROGRAMA DE ESTUDIO Nombre de la asignatura: INVESTIGACIÓN DE OPERACIONES 1 Clave: IIN11 Fecha de elaboración: marzo 2015 Horas Semestre Horas semana Horas Teoría Ciclo Formativo: Básico ( ) Profesional
Análisis de sensibilidad 1
Análisis de sensibilidad Planteamiento general Cambios en el vector de recursos 3 Cambios en el vector de costes 4 Cambios en un vector a j no básico 5 Nuevas variables 6 Nuevas restricciones Planteamiento
EBook: Apuntes y Ejercicios Resueltos de Programación Lineal
EBook: Apuntes y Ejercicios Resueltos de Programación Lineal www.gestiondeoperaciones.net Libro de Apuntes para estudiantes de Investigación Operativa que considera la revisión de modelos de Programación
MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez
MÁXIMOS Y MINIMOS Marco Antonio Cruz Chávez UAEM Av. Universidad 11 Col. Chamilpa C.P. 61 Cuernavaca Morelos, México Agosto 18 del [email protected] Abstract. En este trabajo se presentan algunos
PROGRAMACIÓN LINEAL CON EXCEL: ESTABILIDAD DE LA SOLUCIÓN
Programación Lineal con Excel: estabilidad de la solución PROGRAMACIÓN LINEAL CON EXCEL: ESTABILIDAD DE LA SOLUCIÓN Inmaculada Lekubarri y José Mª Eguzkitza (*) El objetivo principal que se persigue en
Investigación Operativa I. Programación Lineal. Informática de Gestión
Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una
Ejemplo : PROGRAMACIÓN LINEAL
PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices
36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas
Tema 9. Espacio de Estados : Representación y propiedades importantes
Ingeniería de Control Tema 9. Espacio de Estados : Representación y propiedades importantes Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Esquema del tema 9.1. Representación de sistemas discretos en
PROBLEMAS DE OPTIMIZACIÓN LINEAL
PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio
I IDENTIFICACION DE LA ASIGNATURA
UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA DEPARTAMENTO DE FISICA I IDENTIFICACION DE LA ASIGNATURA NOMBRE : ALGEBRA CODIGO : 25003 NIVEL : 1º año T-E-L : 4-4-0 CARRERA : INGENIERÍA FÍSICA CARACTER
2 Operaciones de producto y división de polinomios
I. TELECOMUNICACION. ALGEBRA LINEAL Sesión de laboratorio 1. Polinomios y algoritmo de Horner Esta primera sesión intenta familiarizar al estudiante con la representación y manejo de los polinomios en
Programación Lineal. Optimización de la combinación de cifras comerciales en una red lineal de distribución de agua.
Programación Lineal La Programación Lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función
Tema 7: Problemas clásicos de Programación Lineal
Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número
Modelado y Optimización de Proyectos
1. Red de actividades Modelado y Optimización de Proyectos 2. Camino crítico (CPM Critical Path Method) 3. CPM con costes 4. Probabilidad de acabar un proyecto a tiempo (PERT Program Evaluation and Review
Figura 1: Esquema de las tablas simplex de inicio y general.
RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar
problema de la dieta
La programación lineal es una herramienta de la investigación de operaciones y muy útil para la toma de decisiones. Esta es una herramienta genérica que sirve para resolver problemas lineales. De acuerdo
Sistema de ecuaciones algebraicas. Eliminación de Gauss.
Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com
Programcaión Básica. Secuencias de Control y Repetición. Arturo Vega González.
Programación Básica Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Sesión 5 Universidad de Guanajuato, DCI, Campus León 1 / 31 Universidad
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
