Programación Lineal. El método simplex
|
|
|
- María Jesús Rivas Lara
- hace 9 años
- Vistas:
Transcripción
1 Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación lineal. Forma estándar de programación lineal (PL) y sus soluciones básicas El empleo de las soluciones básicas para resolver el modelo de PL requiere poner el problema en una forma estándar, cuyas propiedades son: 1. Todas las restricciones (con excepción de las restricciones de no negatividad sobre las variables) son ecuaciones con un lado derecho no negativo. 2. Todas las variables son no negativas. 3. La función objetivo puede ser del tipo de maximización o de minimización. a. Conversión de desigualdades a ecuaciones Una desigualdad del tipo = (=) se convierte a una ecuación aumentando su lado izquierdo con una variable de holgura (superávit) Ejemplos: 1) x 1 + 2x 2 = 3 es equivalente a x 1 + 2x 2 + S 1 = 3 2) x 1 + 2x 2 = 3 es equivalente a x 1 + 2x 2 - S 1 = 3 donde S 1 = 0 b. Conversión de una variable no restringida a variables no negativas Una variable x j no restringida se puede expresar en términos de dos variables no negativas, utilizando la sustitución xj = x j + - x j -, donde x j +,x j - = 0 x j = -5 es equivalente a x j + = 0 y x j - = 5; donde x j +,x j - = 0 c. Conversión de maximización a minimización La maximización de una función f(x 1, x 2,, x n ) es equivalente a la minimización de -f(x 1, x 2,, x n ), en el sentido que ambos problemas producen los mismos valores óptimos x 1, x 2,, x n. Maximizar G = 300 P V Sujeto a: 2V = 12 3P + 2V = 18 P, V = 0
2 Maximizar G = 300 P V Sujeto a: 3P + 2V + + S3 = 18 P, V, S1, S2, S3 = 0 Determinación de soluciones básicas La forma estándar de PL incluye m ecuaciones lineales simultáneas en n incógnitas o variables (m < n). Una solución básica asociada se determina haciendo n m variables iguales a 0 y luego, resolviendo las m ecuaciones con las restantes m variables, siempre que la solución resultante exista y sea única. El número máximo de soluciones básicas factibles = (n m) = n! / m! (n-m)! En la PL nos referimos a las n-m variables que se hacen iguales a cero como variables no básicas y, a las m variables restantes como variables básicas (siempre y cuando exista una solución única). Se dice que una solución básica es factible si todos los valores de su solución son no negativos, en caso contrario es una solución básica infactible. Las soluciones básicas factibles son puntos extremos? n = 5, m = 3 (3 < 5)? una solución básica esta asociada con n m = 5 3 = 2 variables nulas.? número máximo de soluciones básicas factibles: 5! / 3! 2! = 10 Variables: P, V, S1, S2 y S3 P V S1 S2 S3 P X V X X S1 X X X S2 X X X X S3 X X X X X V, P = 0 S1 = 4 S2 = 12 + S3 = 18 Solución básica factible: S1=4, S2=12, S3=18 P, S1 = 0 = 4 2V + + S3 = 18 Solución inconsistente
3 P, S2 = 0 S1 = 4 2V + = 12 2V + + S3 = 18 Solución básica factible: S1=4, V=6, S3=6 P, S3 = 0 S1 = 4 2V + = 18 Solución básica infactible: S1=4, V=9, S2=-6 V, S1 = 0 S2 = 12 3P + + S3 = 18 Solución básica factible: P=4, S2=12, S3=6 V, S2 = 0 = 12 3P + + S3 = 18 Solución inconsistente V, S3 = 0 S2 = 12 3P = 18 Solución básica infactible: P=6, S2=12, S1=-2 S1, S2 = 0 2V = 12 3P + 2V + + S3 = 18 Solución básica infactible: P=4, V=6, S3=-4 S1, S3 = 0 3P + 2V = 18 Solución básica factible: P=4, V=3, S2=6 S2, S3 = 0 2V = 12 3P + 2V = 18 Solución básica factible: V=6, P=2, S1=2
4 El algoritmo del método simplex El método simplex siempre comienza en una solución básica factible y después trata de encontrar otra solución básica factible que mejore el valor del objetivo. Esto es posible sólo si incremento en una variable cero actual (no básica) conduce a un mejoramiento del valor del objetivo. Sin embargo, para que una variable cero actual se convierta en positiva, debe eliminarse una de las variables básicas actuales (volverse no básica a nivel de cero) para garantizar que la nueva solución incluirá exactamente m variables básicas. Forma estándar G S S En la primera tabla se observa las variables básicas actuales S1, S2 y S3 cuyos valores de solución se observan en la columna solución 4, 12, 18. Esto supone que los valores de las variable no básicas P y V son cero, y por tanto la solución es 0. Condición de optimidad: la variable entrante en una maximización (en una minimización) es la variable no básica, con el coeficiente más negativo (más positivo) en la ecuación objetivo. Un empate puede romperse arbitrariamente. El óptimo se alcanza cuando todos los coeficientes no básicos en la ecuación objetivo son no negativos (no positivos). Condición de factibilidad: tanto en los problemas de maximización como de minimización, la variable saliente es la variable básica actual, con la menor intersección (razón mínima con denominador estrictamente positivo) en dirección de la variable entrante. Un empate se rompe arbitrariamente. Pasos del método simplex: 1) Usando la forma estándar (con los segundos miembros no negativos), determine una solución básica factible. 2) Seleccione una variable entrante entre las variables actuales no básicas, usando la condición de optimidad. 3) Determine los valores de las nuevas variables básicas, haciendo a la variable entrante básica y a la variable saliente no básica. Vuelva al paso 1. Variable entrante = V (coeficiente más negativo) Variable saliente = S2 (menor valor en la intersección / se eliminar 0 y <0) G S (12/2) = 6 menor S (18/2) = 9
5 La ecuación S2 es la pivote y 2 es el elemento pivote. Con el método de Gauss-Jordan se efectúa un cambio de base empleando dos operaciones de cálculo: 1. Ecuación pivote: nueva ecuación pivote = ecuación pivote / elemento pivote G S1 V 0,0 0,0 1,0 0,0 0,5 0,0 6,0 S3 2. La demás ecuaciones, incluye G: nueva ecuación: (ecuación anterior) (coeficiente de la columna entrante x nueva ecuación pivote) 1. Ecuación G Ecuación G anterior (-300) x nueva ecuación pivote Nueva ecuación G Ecuación S1 Ecuación S1 anterior (0) x nueva ecuación pivote Nueva ecuación 3. Ecuación S3 Ecuación S3 anterior (2) x nueva ecuación pivote Nueva ecuación S Tabla resultante G V ,5 0 6 S Sale P y entra S3 G V ,5 0 6 S
6 G -300 S1 1 V 0 P /3 1/ Ecuación G Ecuación G anterior (-300) x nueva ecuación pivote Nueva ecuación G Ecuación S1 Ecuación S1 anterior (1) x nueva ecuación pivote /3-1/3-2 Nueva ecuación S /3-2/ Ecuación V Ecuación V anterior / (2) x nueva ecuación pivote Nueva ecuación V /2 0 6 Tabla resultante G S /3-2/3 2 V /2 0 6 P /3 1/3 2 Como no existen variables básicas para salir, en esta tabla tenemos la solución al problema. Resultado:? Cantidad de puertas que se deben producir P = 2? Cantidad de ventanas que se deben producir V = 6? Ganancia Total G = 3.600? Cantidad de recursos que no se utilizaron S1=2
Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:
TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
MATE Método Simplex maximización estándar
MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex
Optimización y Programación Lineal
Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición
Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.
Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación
INGENIERO EN COMPUTACION TEMA: MÉTODO SIMPLEX
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: MÉTODO SIMPLEX ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: MARZO DE 2016 UNIDAD DE APRENDIZAJE
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías Modelos sin solución Degeneración. óptima Soluciones múltiples o alternativas () No acotado: Ocurre cuando el objetivo puede crecer infinitamente
MÉTODO ALGEBRAICO: Obtención de las soluciones básicas:
MÉTODO ALGEBRAICO: El método algebraico es una alternativa de solución a problemas de programación lineal. Sin embargo es muy dispendioso, en razón a que trabaja con todos los datos de las ecuaciones,
Figura 1: Esquema de las tablas simplex de inicio y general.
RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar
1.Restricciones de Desigualdad 2.Procedimiento algebraico
Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un
Programación Lineal. Yolanda Hinojosa
Programación Lineal Yolanda Hinojosa Contenido Formulación primal de un programa lineal. Propiedades Algoritmo del simplex Algoritmo dual del simplex Formulación dual de un programa lineal. Propiedades
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
7. PROGRAMACION LINEAL
7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas
Capítulo 4 Método Algebraico
Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos
3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN
El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del
METODO SIMPLEX. Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar.
METODO SIMPLEX El algoritmo Simplex comprende los siguientes pasos: Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar. Al elaborar el modelo matemático que representa
x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3
EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?
Universidad Nacional de Ingeniería UNI-RUACS 01/09/11
Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Elaborado por: Deall Daniel Irías Estelí, Nicaragua El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso.
MÉTODO SIMPLEX. Introducción
MÉTODO SIMPLEX Introducción El Método Simplex publicado por George Dantzig en 1947 consiste en un algoritmo iterativo que secuencialmente a través de iteraciones se va aproximando al óptimo del problema
5.1. Algoritmo en modelos de maximización
5.1. Algoritmo en modelos de maximización El primer tipo de modelo que vamos a resolver por el método símplex es el que tiene como objetivo maximizar a una función lineal, la cual está sujeta a una serie
Unidad I: Programación Lineal
Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a
Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:
Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
Forma estándar de un programa lineal
Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las
El Problema de Transporte
El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el
4. Métodos de Solución PPL : Solución Algebraica: MÉTODO SIMPLEX Segunda Parte
4. Métodos de Solución PPL : Solución Algebraica: MÉTODO SIMPLEX Segunda Parte Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co MÉTODO SIMPLEX Ejemplo de Simplex: Vamos a
INVESTIGACION DE OPERACIONES:
METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema
La Programación Lineal. H. R. Alvarez A., Ph. D. 1
La Programación Lineal H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución
La Programación Lineal. H. R. Alvarez A., Ph. D. 1
La Programación Lineal H. R. Alvarez A., Ph. D. 1 Aspectos generales Se considera a George Dantzig el padre de la P. L. Su objetivo es el de asignar recursos escasos a actividades que compiten por ellos.
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
Coeficiente objetivo de la variable artificial = +M, para minimización
3.4 SOLUCIÓN ARTIFICIAL DE INICIO Como se demostró en el ejemplo 3.3-1, los programas lineales en los que todas las restricciones son ( ) con lados derechos no negativos ofrecen una cómoda solución factible
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante
Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13
Programación Lineal María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación
Dualidad y postoptimización
Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica
MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL
MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de
Método Simplex. Ing. Ricardo Fernando Otero, MSc
Método Simplex Ing. Ricardo Fernando Otero, MSc Forma estándar de un modelo de programación lineal Dirección de mejora: Maximizar Todas las restricciones deben ser El lado izquierdo debe contener solo
METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL.
METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. El método Simplex es un procedimiento general para resolver problemas de programación lineal. Desarrollado por George Dantzig en 1947, esta
Tema 18. Programación lineal Formulación primal de un programa lineal
Tema 18 Programación lineal 18.1. Formulación primal de un programa lineal Dentro de la programación matemática hablamos de programación lineal (PL) si tanto la función objetivo como las restricciones
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2
INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.
El Problema de Transporte
El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal.
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA UNIDAD CURRICULAR: INVESTIGACIÓN DE OPERACIONES PROFESOR: JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución
84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.
Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se
maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.
UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga
Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2010
Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 200 Matrícula: Nombre:. Una pequeña empresa fabrica artículos de dos tipos a partir de tres materias primas,
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George
Unidad III Teoría de la Dualidad.
Curso de investigación de operaciones http://www.luciasilva.8k.com/5.5.htm Unidad III Teoría de la Dualidad. III.1 FORMULACIÓN DEL PROBLEMA DUAL La Teoría de la Dualidad es una de las herramientas que
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
EJERCICIO DE MAXIMIZACION
PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación
Investigación Operativa I. Programación Lineal. Informática de Gestión
Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
Programación lineal: Algoritmo del simplex
Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b
UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex
UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal
Tema 3 Optimización lineal. Algoritmo del simplex
Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo
Integradora 3. Modelos de Programación Lineal
Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas
Método Simplex: Variaciones (Caso Minimización)
Método Simplex: Variaciones (Caso Minimización) Existen dos formas de resolver un problema de minimización con método simplex:. Modificar en dos aspectos el algoritmo que se utilizó para el caso de maximización:
Comenzaremos presentando la idea principal del método de Karmarkar, para después describir los detalles de cómputo del algoritmo.
MÉTODO DEL PUNTO INTERIOR DE KARMARKAR Con el método símplex se obtiene una solución óptima siguiendo una ruta de puntos extremos adyacentes, a lo largo de las orillas del espacio de soluciones. Aunque
MÉTODO SIMPLEX. Es un método genérico de solución de problemas lineales, desarrollado por George Dantzig en 1947.
FUNDACIÓN UNIVERSITARIA DE SAN GIL UNISANGIL UNAB Pág. 1 MÉTODO SIMPLEX Es un método genérico de solución de problemas lineales, desarrollado por George Dantzig en 1947. Matricialmente podemos representar
Programación lineal. Índice del libro. 1. Inecuaciones lineales con dos incógnitas. 2. Programación lineal
1. Inecuaciones lineales con dos incógnitas 2. 3. para dos variables. Métodos de resolución 4. El problema del transporte Índice del libro 1. Inecuaciones lineales con dos incógnitas 1. Inecuaciones lineales
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 AVISO Traer para la siguiente clase laptop para desarrollar ejercicios con winqsb, tora, qsb, y otros. Investigación de Operaciones
Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1
Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran
TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES.
TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. Ing. Manuel Domínguez Alejo 1, MSc. Adriana Delgado Landa 2. 1. Universidad de Matanzas Sede
Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga
Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9
IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución
Matemáticas.
[email protected] El método gráfico de solución de problemas de programación lineal (PL) sólo aplica a problemas con dos variables de decisión; sin embargo, ilustra adecuadamente los conceptos que nos permitirán
Repaso del algoritmo SIMPLEX
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante
Tema 3. El metodo del Simplex.
Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento
Algebra lineal y conjuntos convexos 1
Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)
TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo?
TEST IO-I T1. CONCEPTOS PREVIOS C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? a) Puede tener puntos extremos. b) Puede no tener puntos extremos. c) Puede tener vértices. C1.2. Es convexo
La Programación Lineal. H. R. Alvarez A., Ph. D. 1
La Programación Lineal H. R. Alvarez A., Ph. D. 1 Aspectos generales Se considera a George Dantzig el padre de la P. L. Su objetivo es el de asignar recursos escasos a actividades que compiten por ellos.
Guía de Problemas para el Control 2
Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.
PROGRAMACION CUADRATICA
PROGRAMACION CUADRATICA Programación convexa La programación convexa abarca una amplia clase de problemas, entre ellos como casos especiales, están todos los tipos anteriores cuando /(x) es cóncava. Las
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado
IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para
Programación Lineal. - Si no: Sea j tal que c
Programación Lineal El objetivo de este documento es hacer una breve introducción a la programación lineal que pueda contribuir al fácil manejo de la aplicación. La programación lineal es un procedimiento
Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile
IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11
RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY
25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación
Auxiliar 7: Dualidad
IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad
Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I
Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,
Introducción.- Problema dual.-
30 Unidad 3 Análisis de dualidad y sensibilidad Competencia-el estudiante debe convertir un modelo estático en dinámico a través del análisis de sensibilidad basado en dos situaciones cambios en la función
La lección de hoy de febrero de Notación. Solución factible básica
1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso
