Introducción a la programación lineal
|
|
|
- María del Rosario Moreno Ramos
- hace 9 años
- Vistas:
Transcripción
1 Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una amplia variedad de casos, en los campos de agricultura, industria, transporte, economía, salud, ciencias sociales y de la conducta, y militar. También produce algoritmos eficientes de cómputo para problemas con miles de restricciones y variables. En realidad, debido a su tremenda eficiencia de cálculo, la programación lineal forma la columna vertebral de los algoritmos de solución para otros modelos de investigación de operaciones, como las programaciones entera, estocástica y no lineal. Este capítulo comienza con el caso de un modelo de dos variables, y presenta su solución gráfica. Esta solución gráfica permite tener una perspectiva del desarrollo del método símplex, técnica algebraica general. También presenta ideas concretas para el desarrollo y la interpretación de análisis de sensibilidad en programación lineal. MODELO DE PROGRAMACIÓN LINEAL CON DOS VARIABLES Esta sección explicará la solución gráfica de una programación lineal con dos variables. Aunque en la práctica casi no existen problemas con dos variables, la presentación aportará ideas concretas para el desarrollo del algoritmo de solución general que se presentará en el capítulo 3. Ejemplo (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y exteriores, M1 y M2. La tabla siguiente proporciona los datos básicos del problema. Ton de materia prima de Pinturas para Pinturas para máxima exteriores interiores disponibilidad diaria Materia prima M Materia prima M Utilidad por Ton (miles de $) 5 4 Una encuesta de mercado indica que la demanda diaria de pintura para interiores no puede ser mayor que 1 tonelada más que la de pintura para exteriores. También, que la demanda máxima diaria de pintura para interiores es de 2 toneladas. Reddy Mikks desea determinar la mezcla óptima (la mejor) de productos para exteriores y para interiores que maximice la utilidad diaria total. El modelo de programación lineal, como en cualquier modelo de investigación de operaciones, tiene tres componentes básicos. 1. Las variables de decisión que se trata de determinar. 2. El objetivo (la meta) que se trata de optimizar. 3. Las restricciones que se deben satisfacer. 1
2 La definición correcta de las variables de decisión es un primer paso esencial en el desarrollo del modelo. Una vez hecha, la tarea de construir la función objetivo y las restricciones se hace en forma más directa. Para el problema de Reddy Mikks, se necesita determinar las cantidades a producir de pinturas para exteriores e interiores. Así, las variables del modelo se definen como sigue: x 1 = Toneladas producidas diariamente, de pintura para exteriores x 2 = Toneladas producidas diariamente, de pintura para interiores Para formar la función objetivo, la empresa desea aumentar sus utilidades todo lo posible. Si z representa la utilidad diaria total (en miles de dólares), el objetivo de la empresa se expresa así: Maximizar z = 5x 1 + 4x 2 A continuación se definen las restricciones que limitan el uso de las materias primas y la demanda. Las restricciones en materias primas se expresan verbalmente como sigue: Uso de una materia Prima Disponibilidad máxima para ambas pinturas de materia prima Según los datos del problema, Uso de la materia prima M1, por día = 6x 1 + 4x 2 toneladas Uso de la materia prima M2, por día = 1x 1 + 2x 2 toneladas Ya que la disponibilidad de las materias primas M1 y M2 se limita a 24 y 6 toneladas, respectivamente, las restricciones correspondientes se expresan como sigue: 6x 1 + 4x 2 24 (Materia prima M1) x 1 + 2x 2 6 (Materia prima M2) La primera restricción de la demanda indica que la diferencia entre la producción diaria de pinturas para interiores y exteriores, x 2 x 1 no debe ser mayor que 1 tonelada, y eso se traduce en x 2 x 1 1. La segunda restricción de la demanda estipula que la demanda máxima diaria de pintura para interiores se limita a 2 toneladas, y eso se traduce como x 2 2. Una restricción implícita (o que se sobreentiende ) es que las variables x 1 y x 2 no pueden asumir valores negativos. Las restricciones de no negatividad, x 1 0 y x 2 0, expresan ese requisito. El modelo de Reddy Mikks completo es Maximizar z = 5x 1 + 4x 2 s.a. 6x 1 + 4x 2 24 x 1 + 2x 2 6 2
3 x 1 + x 2 1 x 2 2 x 1, x 2 0 Cualquier valor de x 1 y x 2 que satisfaga todas las restricciones del modelo es una solución factible. Por ejemplo, la solución x 1 = 3 toneladas diarias y x 2 = 1 tonelada diaria es factible, porque no viola alguna de las restricciones, incluyendo las de no negatividad. Para comprobar este resultado se sustituye (x1 = 3, x 2 = 1) en el lado izquierdo de cada restricción. Por ejemplo, en la primera restricción, 6x 1 + 4x 2 = = 22, que es menor que 24 en el lado derecho. El valor de la función objetivo correspondiente a la solución (x 1 = 3, x 3 = 1) es z = = 19 (miles de dólares). Desde el punto de vista de todo el modelo, nos interesa determinar la solución óptima factible que produzca la utilidad total máxima y al mismo tiempo satisfaga todas las restricciones. No se acepta enumerar las soluciones factibles, porque el modelo tiene una cantidad infinita de ellas. En su lugar, se necesita un procedimiento sistemático que ubique con eficiencia la solución óptima. El método gráfico de la sección 2.3, y su generalización algebraica en el capítulo 3, resuelven este punto. En el ejemplo anterior, las funciones objetivo y restricciones son lineales, todas. La linealidad implica que la programación lineal debe satisfacer dos propiedades: proporcionalidad y aditividad. 1. La proporcionalidad requiere que la contribución de cada variable de decisión en la función objetivo, y sus requerimientos en las restricciones, sea directamente proporcional al valor de la variable. Por ejemplo, en el modelo de Reddy Mikks, las cantidades 5x 1 y 4x 2 expresan las utilidades por producir x 1 y x 2 toneladas de pintura para exteriores y para interiores, respectivamente, y las utilidades unitarias por tonelada son 5 y 4, que definen las constantes de proporcionalidad. Si, por otra parte, Reddy Mikks ofrece alguna clase de descuentos por cantidad cuando las ventas son mayores que ciertas cantidades, la utilidad ya no será proporcional a las cantidades producidas x 1 y x La aditividad estipula que la contribución total de todas las variables en la función objetivo y sus requerimientos en las restricciones, sean la suma directa de las contribuciones o requerimientos individuales de cada variable. En el modelo de Reddy Mikks, la utilidad total es igual a la suma de dos componentes individuales de utilidad. Sin embargo, si los dos productos compiten por la misma parte de mercado en forma tal que un aumento de ventas de uno afecte negativamente al otro, ya no se satisface la propiedad de aditividad. SOLUCIÓN GRÁFICA DE LA PROGRAMACIÓN LINEAL El procedimiento de solución gráfica comprende dos pasos: 1. Determinación del espacio de soluciones que define todas las soluciones factibles del modelo. 2. Determinación de la solución óptima, entre todos los puntos factibles del espacio de soluciones. Usaremos dos ejemplos en el procedimiento, para mostrar cómo se manejan las funciones objetivo de maximización y de minimización. 3
4 2.2.1 Solución de un modelo de maximización Ejemplo En este ejemplo se resolverá el modelo de Reddy Mikks, de la sección 2.1. Paso 1. Determinación del espacio de soluciones factibles: Primero, se tendrán en cuenta las restricciones de no negatividad x 1 0 y x 2 0. En la figura 2.1, el eje horizontal x 1 y el eje vertical x 2 representan las variables pintura para exteriores y pintura para interiores, respectivamente. En consecuencia, las restricciones de no negatividad limitan el área del espacio de soluciones al primer cuadrante: arriba del eje x 1 y a la derecha del eje x 2. Para tener en cuenta las otras cuatro restricciones, primero se sustituye cada desigualdad con una ecuación, y a continuación se gráfica la recta resultante, ubicando dos puntos diferentes de ella. Por ejemplo, después de sustituir 6x 1 + 4x 2 24 con la recta 6x 1 + 4x 2 = 24, se pueden determinar dos puntos distintos, primero igualando x 1 = 0 para obtener x 2 = 24/4 = 6 y después igualando x 2 = 0 para obtener x 1 = 24/6 = 4. De este modo, la recta que pasa por los dos puntos (0, 6) y (4, 0) es la que se identifica con (1) en la figura 2.1. A continuación consideraremos el efecto de la desigualdad. Todo lo que hace la desigualdad es dividir al plano (x 1, x 2 ) en dos semiespacios que en este caso son semi-planos, uno a cada lado de la línea graficada. Sólo una de esas dos mitades satisface la desigualdad. Para determinar cuál es el lado correcto, se elige cualquier punto de referencia en el primer cuadrante. Si satisface la desigualdad, el lado en el que está es el semiplano factible. En caso contrario, quiere decir que es el otro lado. Desde el punto de vista de los cálculos, es cómodo seleccionar a (0,0) como el punto de referencia, a menos que la recta pase por el origen; si así fuera, se debería elegir otro punto. El uso del punto de referencia (0,0) se ilustra con la restricción 6x 1 + 4x Como = 0 es menor que 24, el semiplano que representa la desigualdad incluye al origen (lo que se indica con la flecha en la figura 2.1). Para demostrar el uso de otros puntos de referencia, investigaremos (6, 0). En este caso = 36, que es mayor que el lado derecho de la primera restricción, y eso indica que el lado en el que está (6,0) no es factible para la desigualdad. Este resultado es consistente con el que se obtuvo usando (0,0) como punto de referencia. Con la aplicación del procedimiento del punto de referencia a todas las restricciones del modelo se obtiene el espacio factible que se indica en la figura 2.1. Paso 2. Determinación de la solución óptima: El espacio factible de la figura 2.1 está delimitado por los segmentos de recta que unen a los vértices A, B, C, D, E y F. Todo punto dentro o en la frontera del espacio ABCDEF es factible, porque satisface todas las restricciones. Ya que el espacio factible ABCDEF está formado por una cantidad infinita de puntos, es obvio que se necesita un procedimiento sistemático para identificar la solución óptima. Para identificar la solución óptima se requiere identificar la dirección en la que aumenta la función utilidad z = 5x 1 + 4x 2 (recuérdese que se está maximizando a z). Para hacerlo se asignan valores arbitrarios crecientes a z. Por ejemplo, si z = 10 y z = 15 equivaldría a 4
5 Figure 1: graficar las dos rectas 5x 1 + 4x 2 = 10 y 5x 1 + 4x 2 = 15. En consecuencia, la dirección de aumento en z es la que se ve en la figura 2.2. La solución óptima se encuentra en C, que es el punto, en el espacio de soluciones, más allá del cual cualquier aumento en z saca a uno de las fronteras de ABCDEF. Los valores de x 1 y x 2, correspondientes al punto óptimo C se calculan resolviendo las ecuaciones asociadas a las rectas (1) y (2), esto es, resolviendo 6x 1 + 4x 2 = 24 x 1 + 2x 2 = 6 La solución es x 1 = 3 y x 2 = 1.5 y en ese caso z = = 21. Eso equivale a una mezcla de productos de 3 toneladas de pintura para exteriores y 1.5 toneladas de pintura para interiores. La utilidad diaria correspondiente es $ No es por accidente que la solución óptima se encuentre en un punto de esquina (vértice) del espacio de soluciones, donde se cruzan dos líneas. En realidad, si se cambia la pendiente de la función utilidad z (cambiando sus coeficientes), se verá que la solución óptima siempre se encuentra en esos puntos de esquina. Esta observación es clave para desarrollar el algoritmo símplex general 5
6 Figure 2: que se presenta en el capítulo Solución de un modelo de minimización Ejemplo (Problema de la dieta) En Granjas Modelo se usa diariamente un mínimo de 800 libras (Ib) de un alimento especial, que es una mezcla de maíz y soya, con las composiciones siguientes: lb por lb de alimento Alimento Proteínas Fibras Costo ($/lb) Maíz Soya Las necesidades dietéticas del alimento especial son un mínimo de 30% de proteínas y un máximo de 5% de fibras. Granjas Modelo desea determinar las proporciones de alimento que produzcan un costo diario mínimo. Como la mezcla de alimentos consiste en maíz y soya, las variables de decisión del modelo se definen como sigue: x 1 = lb de maíz en la mezcla diaria x 2 = lb de soya en la mezcla diaria 6
7 La función objetivo trata de minimizar el costo (en dólares) diario total de la mezcla de alimentos, y en consecuencia se expresa como sigue: Minimizar z = 0.3x x 2 Las restricciones del modelo reflejan la cantidad diaria necesaria y los requerimientos dietéticos. Como Granjas Modelo necesita un mínimo de 800 Ib diarias de alimento, la restricción correspondiente se puede expresar como sigue: x 1 + x En cuanto a la restricción dietética de necesidades de proteína, la cantidad de proteína que contienen x 1 lb de maíz y x 2 lb de soya es (0.09x x 2 ) lb. Esta cantidad debe ser cuando menos igual al 30% de la mezcla total de alimentos, (x 1 + x 2 ) lb; esto es 0.09x x 2 0.3(x 1 + x 2 ) De manera similar, la restricción de la fibra se define como 0.02x x (x 1 + x 2 ) Las restricciones se simplifican agrupando todos los términos en x 1 y x 2 y pasándolos al lado izquierdo de cada desigualdad, para que sólo quede una constante en el lado derecho. Así, el modelo completo viene a ser Minimizar z = 0.3x x 2 s.a. x 1 + x x x x x 2 0 x 1, x 2 0 La figura 2.3 muestra la solución gráfica del modelo. A diferencia del modelo de Reddy Mikks (Ejemplo 2.2-1), la segunda y la tercera restricciones pasan por el origen. Para graficar las rectas correspondientes sólo se necesita un punto adicional, que se puede obtener asignando un valor a una de las variables y despejando la otra. Por ejemplo, en la segunda restricción x 1 = 200 produce x 2 = 0, es decir, x 2 = 140. Eso quiere decir que la recta 0.21x 1 0.3x 2 = 0 pasa por (0,0) y (200, 140). También obsérvese que no se puede usar (0,0) como punto de referencia en las restricciones 2 y 3, porque ambas rectas pasan por el origen. En lugar de ellos se puede usar cualquier otro punto, por ejemplo (100, 0) o (0, 100) para ese propósito. Ya que en este modelo se busca minimizar la función objetivo, necesitamos reducir todo lo posible el valor de z, en la dirección que muestra la figura 2.3. La solución óptima es la intersección de las dos rectas, x 1 + x 2 = 800 y 0.21x 1 0.3x 2 = 0; así se obtienen x 1 = lb y x 2 = lb. El costo mínimo correspondiente, de la mezcla de alimentos, es z = = $ diarios. 7
8 Figure 3: 8
3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN
El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del
Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1
Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran
Introducción a la Programación Lineal
UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
Programación Lineal (PL)
Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de
Gráfica de Sistemas de desigualdades lineales en dos variables
Gráfica de Sistemas de desigualdades lineales en dos variables Una ecuación lineal con dos variables x y y, es de la forma: ax+by+c=0, a,b ambos no iguales a cero Donde tiene un conjunto solución que se
Derivadas Parciales (parte 2)
40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene
Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015
Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
PROGRAMACIÓN LINEAL MÉTODO GRÁFICO
1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los
EJERCICIO DE MAXIMIZACION
PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación
Integradora 3. Modelos de Programación Lineal
Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices
UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Sistemas de ecuaciones
Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados
PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:
PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto
Universidad de Managua Curso de Programación Lineal
Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4
Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
PROGRAMACION CUADRATICA
PROGRAMACION CUADRATICA Programación convexa La programación convexa abarca una amplia clase de problemas, entre ellos como casos especiales, están todos los tipos anteriores cuando /(x) es cóncava. Las
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
Programación NO Lineal (PNL) Optimización sin restricciones
Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de
TEMA 2: PROGRAMACIÓN LINEAL.
TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una
Jesús Getán y Eva Boj. Marzo de 2014
Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza
Álgebra Matricial y Optimización Ma130
Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
APUNTE: Introducción a la Programación Lineal
APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Herramientas 6 1.1. Factorización
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante
MÉTODO DEL DUAL (TEORIA DE DUALIDAD)
MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de
Esquema conceptual: Unidad IV
Unidad IV Álgebra Esquema conceptual: Unidad IV Ecuaciones dependientes Ecuaciones independientes Ecuaciones incompletas 1. Sistemas de ecuaciones lineales 2. Solución de sistemas de dos ecuaciones lineales
INVESTIGACIÓN OPERATIVA
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación
Clase 9 Programación No Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases
Representaciones gráficas: Método del Paralelogramo
Representaciones gráficas: Método del Paralelogramo La relación funcional más simple entre dos variables es la línea recta. Sea entonces la variable independiente x y la variable dependiente y que se relacionan
Universidad Autónoma de Sinaloa
Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:
Introducción a Programación Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD
4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
1 ÁLGEBRA DE MATRICES
1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa
Programación Lineal Continua
Elisenda Molina Universidad Carlos III de Madrid [email protected] 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Presentación del Programa de Investigación de Operaciones Estudiantes:
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.
UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9
IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes
Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA
Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)
Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
UNIDAD III. INVESTIGACIÓN DE OPERACIONES
UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas
Unidad I: Programación Lineal
Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a
Funciones y sus gráficas
y sus gráficas Marzo de 2006 Índice 1 polinómicas función constante función lineal función afín función cuadrática 2 racionales función de proporcionalidad inversa función racional 3 exponenciales 4 Ejemplos
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
Nro. de fumadores: Peso transportan : Nro. de no fumadores: Peso transportan: 50y. Ecuaciones para tabla Simplex: Función a optimizar
1- UN AUTOBUS CARACAS- MARACAIBO OFRECE PLAZAS PARA FUMADORES AL PRECIO DE BS. 10.000 Y EN NO FUMADRES PRECIO 6000. BS, AL NO FUMADOR SE LE DEJA LLEVAR 50 KG DE PESO Y AL FUMADOR 20 KG. SI EL AUTOBUS TIENE
Unidad 6. Análisis costo-volumen-utilidad. Objetivos específicos de aprendizaje
Unidad 6 Análisis costo-volumen-utilidad Objetivos específicos de aprendizaje Al terminar de estudiar este capítulo, el estudiante será capaz de: Explicar el concepto de punto de equilibrio. Calcular el
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
Inecuaciones. Objetivos
5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.
INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN
INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN Carlos Julio Vidal Holguín UNIVERSIDAD DEL VALLE FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INDUSTRIAL Y ESTADÍSTICA 1. FORMULACIÓN DE MODELOS DE
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
Teoría Tema 1 Sistema de inecuaciones - Programación lineal
página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad
Función lineal Ecuación de la recta
Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.
EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
Programación Lineal con Matlab
Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico
T7. PROGRAMACIÓN LINEAL
T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL
Dirección de operaciones. SESIÓN # 2: Programación lineal
Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora
PREPARACIÓN Y EVALUACIÓN DE PROYECTOS. AUTOR : NASSSIR SAPAG CHAIN REYNALDO SAPAG CHAIN QUINTA EDICION 2008 Msc. Javier Carlos Inchausti Gudiño 2011
PREPARACIÓN Y EVALUACIÓN DE PROYECTOS AUTOR : NASSSIR SAPAG CHAIN REYNALDO SAPAG CHAIN QUINTA EDICION 2008 Msc. Javier Carlos Inchausti Gudiño 2011 Capítulo 8 LA DETERMINACION DEL TAMAÑO DE UN PROYECTO
Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES
Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Sistemas de Ecuaciones Lineales Muchos problemas en administración y economía envuelven dos o mas ecuaciones en uno o más variables. Decimos
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
