APUNTE: Introducción a la Programación Lineal
|
|
|
- Sergio Ojeda Navarro
- hace 9 años
- Vistas:
Transcripción
1 APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La Programación Lineal (PL) es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas de optimización. La palabra programación se refiere a programar, en el sentido de cómo resolver un problema de asignación de recursos. La palabra lineal indica que en el planteo del problema se utilizarán ecuaciones e inecuaciones, todas ellas lineales. Desigualdades lineales en dos variables Una desigualdad lineal con las variables x e y, es una expresión que tiene alguna de las siguientes formas: ax + by + c < 0 ax + by + c > 0 ax + by + c 0 ax + by + c 0 donde a, b y c son constantes y a y b no pueden ser nulas simultáneamente. Geométricamente, la solución (o gráfica) de una desigualdad de este tipo consiste en todos los puntos (x ; y) del plano cuyas coordenadas satisfacen dicha desigualdad. Por ejemplo: dada la desigualdad x + y 3 < 0, los puntos ( ½ ; 0), (0 ; ) y ( 4 ; ) son algunas soluciones de esta desigualdad pues: = < = < 0 ( 4) + 3 = 0 < 0 En cambio, los puntos ( ; ), (0 ; 5) y ( ; 0) no son soluciones pues: + 3 = 0 = = > = > 0 Se ve que existe un número infinito de soluciones. Para graficar la solución de una desigualdad es recomendable graficar primero la recta ax + by + c = 0 y luego analizar si la región del plano que verifica la desigualdad se encuentra por encima o por debajo de la recta. En caso de desigualdades estrictas, los puntos sobre la recta no formarán parte de la solución. Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06
2 Ejemplo: vamos a hallar la solución de la desigualdad: 3x 4y 0 Primero graficamos la recta 3 x 4y = 0 o bien 3 x 4y = Para saber si la solución es la región por encima o por debajo de la recta, tomamos un punto cualquiera, por ejemplo el origen (0 ; 0) y remplazamos en la desigualdad. Si se cumple, significa que el origen pertenece a la solución. Sino, la solución es la otra región. Para nuestro ejemplo: 3x 4y = 0 Por lo tanto, la solución, es la región por encima de la recta, incluyendo la misma recta. Supongamos ahora que tenemos un sistema de dos desigualdades lineales en dos variables. Para hallar la solución, graficamos ambas desigualdades. La región común será la solución del sistema. Ejemplo: Sea el sistema x y > 4 3x + y < 3 Gráfica Gráfica Gráfica 3 En la Gráfica se representa la solución de la primera inecuación. En la Gráfica la solución de la segunda inecuación del sistema. Por último, en la Gráfica 3 se muestra la solución del sistema, que es la región común entre las dos regiones anteriores. Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06
3 Aplicaciones de las desigualdades lineales Les proponemos resolver los siguientes problemas: ) Juan dispone de 0$ para comprar caramelos y chicles. Cada caramelo cuesta quince centavos y cada chicle cuesta cuarenta centavos. Qué cantidad de chicles y caramelos puede comprar? a) Escribir una inecuación que describa esta situación. b) Indicar algunas posibles soluciones. c) Graficar la solución de la desigualdad. Solución ) Una agencia de turismo vende dos tipos de excursiones A y B. Para cubrir los gastos generales debe vender al menos 50 excursiones por semana, y debido a que la Secretaría de Turismo desea promocionar el destino de la excursión A, debe vender al menos el doble de excursiones tipo A que de tipo B. Qué cantidad de excursiones A y B puede debe vender para cumplir con lo solicitado? a) Escribir un sistema de desigualdades para describir la situación. b) Graficar la región que representa la solución de este sistema. c) Indicar algunas posibles soluciones. Solución Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 3
4 Programación Lineal La Programación Lineal (PL) es un procedimiento o algoritmo matemático que consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales. Por ejemplo, puede ser el caso de un fabricante que desee maximizar su función de utilidad sujeta a las restricciones de producción que imponen las limitaciones sobre el uso de la maquinaria y la mano de obra. Definiremos algunos conceptos previamente: Función objetivo Es una expresión matemática lineal que representa el objetivo del problema. Es la función que se desea maximizar o minimizar. Tiene la siguiente forma: donde a i R ; xi son las variables Z = a x + a x a x n n Conjunto de restricciones Es un conjunto de ecuaciones o inecuaciones lineales que representan las limitaciones del problema. Cada restricción tiene la siguiente forma: o bien o bien o bien o bien a x + ax an xn = b a x + a x a x b n n < a x + a x a x n n b a x + ax an xn > b a x + a x a x b n n Región factible Es la región solución del conjunto de restricciones. Puede ser acotada o no, dependiendo de las inecuaciones. Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 4
5 Solución posible Es cualquier conjunto de valores de las variables que satisface el conjunto de restricciones. Solución óptima Es aquella solución posible que optimiza la función objetivo. Resolución de un problema de PL Se recomienda seguir ciertos pasos en la resolución de un problema de PL. Veamos un ejemplo resuelto donde se detallan esos pasos. Una compañía fabrica dos productos X e Y. Cada uno de estos productos requiere cierto tiempo en la línea de ensamblado y otro tiempo más en el departamento de acabado. Cada artículo del tipo X necesita 5 hs. de ensamblado y hs. de acabado, mientras que cada artículo del tipo Y requiere 3 hs. de ensamblado y 4 de acabado. En cualquier semana, la empresa dispone de 05 hs. en la línea de ensamblado y 70 hs. en el departamento de acabado. La empresa puede vender todos los artículos que produce y obtener una utilidad de 00$ por cada artículo de X y 60$ por cada artículo de Y. a) Calcular el número de artículos de cada tipo que deberían fabricarse a la semana con objeto de maximizar la utilidad total. b) Hallar a cuánto asciende esa utilidad total. Primer paso: Tabular los datos Ordenamos la información brindada por el enunciado del problema, obteniendo la siguiente tabla: Ensamblado Acabado Utilidad X 5 00 Y Disponibilidad Segundo paso: Definir las variables Es fundamental tener en claro cuántas variables necesitaremos y el significado de cada una. Para este ejemplo definimos: x: cantidad de artículos del tipo X y: cantidad de artículos del tipo Y Tercer paso: Escribir la función objetivo A continuación, escribimos la expresión de la función que deseamos optimizar, en este caso la función utilidad: Z = 00 x + 60y Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 5
6 Cuarto paso: Escribir el conjunto de restricciones En base a la información tabulada, armamos las inecuaciones. La primera está referida al tiempo de ensamblado. La segunda al tiempo de acabado. La tercera es necesaria, ya que x e y representan cantidades, por lo tanto, deben ser valores no negativos. 5x + 3y 05 ; x 70 ; x, y 0 Quinto paso: Escribir el resumen del problema Resumimos la función objetivo y las restricciones, obteniendo: Maximizar s.a: Z = 00 x + 60y + 3y 05 x 70 x, y 0 s.a. significa sujeta a Sexto paso: Resolver Veremos dos métodos de resolución: el método gráfico y el método analítico. a) Método gráfico Este método permite resolver problemas de dos variables. Se grafican las restricciones, hallando la región factible. Cualquier punto dentro de esta región es una solución posible del problema. La solución óptima se encuentra en uno de los vértices del polígono. A= (0 ; 7,5) B=(5 ; 0) Región factible D=(0 ; 0) C=( ; 0) Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 6
7 Para obtener cuál es el vértice que da la solución óptima, igualamos a cero la función objetivo y se la hace pasar por el origen. Esta recta se llama vector director. Luego se trazan paralelas al vector director que pasen por los distintos vértices. La recta paralela que pasa por el último vértice nos indica que éste es el punto que maximiza la función objetivo, y el punto más cercano es el que la minimiza. Para nuestro ejemplo obtenemos lo siguiente: (5 ; 0) Las rectas marcadas con trazo más grueso son la función objetivo que pasa por el origen (vector director) y una paralela que pasa por el último vértice del polígono, el punto (5 ; 0). Por lo tanto, este es el punto que maximiza la función objetivo. Es decir, deben fabricarse 5 unidades del artículo X y 0 unidades del artículo Y para obtener la mayor utilidad. Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 7
8 Para responder a la pregunta del inciso b), reemplazamos estos valores de x e y hallados en la función objetivo, y encontramos a cuánto asciende la utilidad total máxima. Z = 00 x + 60y Z = Z = 4600 b) Método analítico Para resolver el problema en forma analítica, primero debemos transformar el conjunto de restricciones en igualdades. Para esto agregamos nuevas variables (llamadas variables slacks). Es decir: + 3y 05 x 70 x, y 0 + 3y + t = 05 x + u x, y, t, u 0 Ahora iremos anulando de a dos variables, y resolviendo el sistema de ecuaciones que nos quede. Por ejemplo, si anulamos x e y nos queda t=05, u=70. Resolviendo la función objetivo en este caso nos da Z=0. El punto correspondiente del gráfico es el origen (0 ; 0). Ahora anulamos x y t. Entonces nos queda 3y=05 ; 4y+u=70. Es decir: y=35 ; u= 70. Este es un caso no factible ya que obtuvimos una variable con valor negativo, por lo tanto se descarta. Corresponde a un punto fuera de la región factible. La siguiente tabla muestra la resolución analítica completa: Variables anuladas Sistema de ecuaciones Solución Valor de la función objetivo Punto en la gráfica x y t = 05 u t = 05 u Z = 0 D = (0 ; 0) x t 3y = 05 4y + u y = 35 u = 70 No factible Fuera de la región factible x u 3y + t = 05 4y t = 5,5 y = 7,5 Z = 800 A = (0 ; 7,5) y t = 05 x + u x = u = 8 Z = 400 C = ( ; 0) y u + t = 05 x t = 70 x = 35 No factible Fuera de la región factible t u + 3y = 05 x x = 5 y = 0 Z = 4600 B = (5 ; 0) Vemos que llegamos al mismo resultado que en forma gráfica: el punto que optimiza la función de utilidad Z es el punto B = (5 ; 0). Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 8
9 Problemas propuestos Resolver cada uno de los siguientes problemas indicando todos los pasos y por ambos métodos. ) Una compañía produce dos tipos de abrelatas: manuales y eléctricos. Para su fabricación cada uno requiere del uso de tres máquinas A, B y C. Para fabricar un abrelatas manual se necesitan dos horas de uso de la máquina A, una hora de la B y una hora de la C. Para fabricar un abrelatas eléctrico se requiere una hora de la máquina A, dos horas de la B y una hora de la C. El número máximo de horas disponibles por mes para uso de las máquinas A, B y C es de 80, 60 y 00 horas respectivamente. La ganancia por un abrelatas manual es de 4UM y por uno eléctrico es de 6UM. Si la compañía vende todos los abrelatas que puede producir, cuántos de cada tipo debe producir para maximizar las ganancias mensuales? ) Una fábrica de fertilizantes produce dos tipos de abono, A y B, a partir de dos materias primas M y M. Para fabricar tonelada de A hacen falta 500 kg de M y 750 kg de M, mientras que las cantidades de M y M utilizadas para fabricar tonelada de B son 800 kg y 400 kg, respectivamente. Le empresa tiene contratado un suministro máximo de 0 toneladas de cada materia prima y vende a 000 dólares y 500 dólares cada tonelada de abono A y B, respectivamente. Sabiendo que la demanda de B nunca llega a triplicar la de A, cuántas toneladas de cada abono debe fabricar para maximizar sus ingresos y cuáles son estos? 3) Un nutricionista asesora a un individuo que sufre una deficiencia de hierro y vitamina B, y le indica que debe ingerir al menos 400 mg de hierro, 00 mg de vitamina B- (tiamina) y 500 mg de vitamina B- (riboflavina) durante cierto período de tiempo. Existen dos píldoras de vitaminas disponibles, la marca A y la marca B. Cada píldora de la marca A contiene 40 mg de hierro, 0 mg de vitamina B-, 5 mg de vitamina B- y cuesta 6 UM. Cada píldora de la marca B contiene 0 mg de hierro, 5 mg de vitamina B- y 5 mg de vitamina B-, y cuesta 8 UM. Cuáles combinaciones de píldoras debe comprar el paciente para cubrir sus requerimientos de hierro y vitamina B al menor costo? Bibliografía consultada para el armado de este apunte: a) HAEUSSLER, JR. Matemáticas para la administración y economía. Editorial Pearson. México, 008. b) JAGDISH, C. ARYA, Matemáticas aplicadas a la Administración y a la Economía, Editorial Pearson, México, 00 c) d) e) Apunte Prof. Mabel Chrestia Matemática II (Lic. en Administración) UNRN Año 06 9
APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010
Pagina APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 00 Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una
SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL
SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema
UNIDAD 4: PROGRAMACIÓN LINEAL
UNIDD 4: PROGRMCIÓN LINEL Introducción Inecuaciones lineales con dos incógnitas Sistemas de inecuaciones lineales con dos incógnitas Programación lineal INTRODUCCIÓN Inecuaciones Una inecuación es una
Investigación Operativa I. Programación Lineal. Informática de Gestión
Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una
Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:
Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,
1. INECUACIONES LINEALES CON DOS INCÓGNITAS.
TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,
Depto. Matemáticas IES Elaios. Tema: Programación Lineal
Depto. Matemáticas IES Elaios Tema: Programación Lineal Presentación elaborada por el profesor José Mª Sorando, ampliando y adaptando las diapositivas de la Editorial SM Inecuaciones lineales. Interpretación
Programación lineal. Índice del libro. 1. Inecuaciones lineales con dos incógnitas. 2. Programación lineal
1. Inecuaciones lineales con dos incógnitas 2. 3. para dos variables. Métodos de resolución 4. El problema del transporte Índice del libro 1. Inecuaciones lineales con dos incógnitas 1. Inecuaciones lineales
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL
ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita
Tema 4: Programación lineal
Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver
Introducción a la Programación Lineal
Introducción a la Programación Lineal J. Montealegre I. Flores Febrero de 2015 1. Desigualdades en el plano cartesiano Si en un plano P consideramos una recta L éste queda dividido en tres conjuntos: el
Tema 4: Programación lineal
Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver
PRACTICO: : LÍMITES DE FUNCIONES
APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción
PRACTICO: : LÍMITES DE FUNCIONES
APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 15 Introducción
Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange
APUNTE: Etremos condicionados Multiplicadores de Larane UNIVERSIDAD NACIONAL DE RIO NEGRO Asinatura: Matemática Carreras: Lic en Administración, Lic en Turismo, Lic en Hotelería Profesor: Prof Mabel Chrestia
Programación lineal. Los problemas de programación lineal son problemas de optimización.
Programación lineal Los problemas de programación lineal son problemas de optimización. Tenemos un determinado problema, del cuál existen varias soluciones, pero queremos encontrar la mejor verificando
Examen bloque Álgebra Opcion A. Solución
Examen bloque Álgebra Opcion A EJERCICIO 1A (2 5 puntos) Halle la matriz X que verifique la ecuación matricial A2 X = A B C, siendo A, B y C las matrices Halle la matriz X que verifique la ecuación matricial
PROGRAMACIÓN LINEAL. FUNCIÓN OBJETIVO (Beneficio (en euros) obtenido por la venta de los dos tipos de cable):
Ejercicio 159 Para fabricar 2 tipos de cable, A y B, que se venderán a 1,50 y 1 el metro, respectivamente, se emplean 16Kg de plástico y 4Kg de cobre para cada hectómetro del tipo A y 6Kg de plástico y
EJERCICIOS PROGRAMACIÓN LINEAL
EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
MECU 3031 PROGRAMACION LINEAL
MECU 3031 PROGRAMACION LINEAL La Programación Lineal La programación lineal es una técnica matemática. Se usa para determinar la solución de problemas que se plantean muy comúnmente en disciplinas como
ESTALMAT-Andalucía Actividades 16/17
La PROGRAMACIÓN LINEAL trata de resolver situaciones parecidas a esta: La Excursión Una escuela quiere llevar de excursión a 420 personas entre alumnos y profesores. La empresa de transportes tiene 8 autobuses
Problemas de programación lineal.
Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2
INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.
b) x = 3, y = 1 ; 3( 3-1 ) ; ; 6-1 Ö No pertenece al conjunto.
7HPD1ž3URJUDPDFLyQ/LQHDO 1 n Indica si los siguientes pares pertenecen al conjunto solución de la inecuación 3 (x -1 ) 2y -3. Un par de valores x e y es solución de una inecuación si al sustituirlo la
Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal
Programación Lineal Introducción
Programación Lineal Introducción Curso: Investigación de Operaciones Ing. Javier Villatoro fjvillatoro.wordpress.com Curso: Catedrático: Investigación de Operaciones Ing. Javier Villatoro Comunicación
RESOLUCIÓN GEOMÉTRICA DE SISTEMAS DE ECUACIONES
RESOLUCIÓN GEOMÉTRICA DE SISTEMAS DE ECUACIONES La gráfica de una ecuación lineal es una recta, la cual está constituida por todos los pares (, ) que satisfacen la ecuación. Si se grafican las dos ecuaciones
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (011-M-B-1) Se considera el recinto R del plano determinado por las siguientes inecuaciones: 1x + 8y 600; ( x ) ( y ); x 4y 0. a) (1.75 punto) Represente gráficamente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio
PROGRAMACIÓN LINEAL MÉTODO GRÁFICO
1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los
x + y 20; 3x + 5y 70; x 0; y 0
PROGRAMACIÓN LINEAL: ACTIVIDADES 1. Sea el recinto definido por el siguiente sistema de inecuaciones: x + y 20; 3x + 5y 70; x 0; y 0 a) Razone si el punto de coordenadas (4.1, 11.7) pertenece al recinto.
a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le
Ejemplo Como 5 > 2 y 2 > -1 entonces 5 > -1 Como 3<5 y 5<9 entonces 3<9
DESIGUALDADES INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES Una desigualdad son dos expresiones aritméticas relacionadas con los operadores de relación: ,, Ley de la tricotomía: Para cada par de
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #2 Tema: Introducción a la programación lineal Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos: Conocer los
MATEMÁTICAS TEMA 4. Programación Lineal
MATEMÁTICAS TEMA 4 Programación Lineal INDICE 1 INTRODUCCIÓN... 3 2 INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 4 3 SISTEMAS DE INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 5 4 QUÉ ES UN PROBLEMA DE PROGRAMACIÓN
Ejemplo: Buscar el máximo de la función 3x 2y sujeta a las siguientes restricciones: x 0 y 0 5x 4y 40 La región del plano es la calculada en el ejempl
3.3 PROGRAMACIÓN LINEAL La programación lineal sirve para hallar el máximo o el mínimo de una cierta expresión lineal, llamada función objetivo, sometida a una serie de restricciones expresadas como inecuaciones
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
INECUACIONES LINEALES CON DOS INCÓGNITAS
pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes
PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:
PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto
Prof. Pérez Rivas Lisbeth Carolina
Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística
PROGRAMACIÓN LINEAL 1. INTRODUCCIÓN
PROGRAMACIÓN LINEAL 1. INTRODUCCIÓN En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS) las potencias aliadas (principalmente, Inglaterra Estados Unidos). Uno de
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (011-M-B-1) Se considera el recinto R del plano determinado por las siguientes inecuaciones: 1x + 8y 600; ( x ) ( y ); x 4y 0. a) (1.75 punto) Represente gráficamente
EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN
EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente
FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN
FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE
Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal.
Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal. 1. Concepto de problema de programación lineal Un problema de programación lineal consiste en un
PROBLEMAS DEPROGRAMACION LINEAL RESUELTOS
PROBLEMAS DEPROGRAMACION LINEAL RESUELTOS 1) Se considera la región del plano determinada por las inecuaciones:x + 3 y ; 8 x + y ; y x - 3 ; x 0; y 0 a) Dibujar la región del plano que definen, y calcular
PROGRAMACIÓN LINEAL 1. INTRODUCCIÓN
PROGRAMACIÓN LINEAL 1. INTRODUCCIÓN En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS) las potencias aliadas (principalmente, Inglaterra Estados Unidos). Uno de
Unidad 3: Programación lineal
SOLUCIONES A LOS EJERCICIOS COMPLEMENTARIOS 1. Un orfebre fabrica dos tipos de joyas. Las del tipo A precisan 1 gr. de oro y 1,5 gr. de plata, obteniendo un beneficio en la venta de cada una de 40 euros.
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1
Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede
7. PROGRAMACION LINEAL
7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas
se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.
TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias
George Bernard Dantzig
PROBLEMAS RESUELTOS DE PROGRAMACION LINEAL George Bernard Dantzig (8 de noviembre de 1914 13 de mayo de 2005) fue un matemático reconocido por desarrollar el método simplex y es considerado como el "padre
Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:
1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada
Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices
UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por
Después de construir modelos matemáticos de programación
Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar métodos que nos permitan encontrar la solución de estos modelos. En esta unidad se resolverán modelos
Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.
I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo
Tema 1. Modelos lineales y solución gráfica. 1.1 El modelo lineal
Tema 1 Modelos lineales y solución gráfica La programación lineal es una importante rama de la Investigación Operativa. Esta técnica matemática consiste en una serie de métodos que permiten obtener la
Habilidad para lograr aprendizajes efectivos en matemática
Curso: Habilidad para lograr aprendizajes efectivos en matemática Titulo: Programación lineal: Ejercicio Unidad: 2 Ejercicio Grandes tiendas encargan a un fabricante de Indonesia pantalones y chaquetas
2) Existen limitaciones o restricciones sobre las variables de la función objetivo.
1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales
Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.
A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento
UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012
UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 Problemas de PL con varias variables Análisis de Sensibilidad Problema 1: Ken & Larry
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
Programación lineal. Tema Introducción / motivación
Tema Programación lineal Mientras que para funciones reales de variable real la derivación ha permitido resolver el problema de optimalidad en su conjunto, en este tema, la programación lineal resuelve
SOLUCIONES EJERCICIOS PROGRAMACIÓN LINEAL
SOLUCIONES EJERCICIOS PROGRAMACIÓN LINEAL Ejercicio nº 1. a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: 1 0 b) Indica si los puntos (0, 0), (, 1) (1, ) forman parte
TRABAJO PRÁCTICO Nº 2: FUNCIONES ASIGNATURA: MATEMATICA I (Lic. en Economía) U.N.R.N. AÑO: 2014
Página: TRABAJO PRÁCTICO Nº : FUNCIONES ASIGNATURA: MATEMATICA I (Lic. en Economía) U.N.R.N. AÑO: 04 Sabías que... Newton (64-77) fue el primero que se aproimó al concepto de función, utilizando el término
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio
Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios
Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.
UNIDAD II. PROGRAMACIÓN LINEAL
UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción
UTILITARIO SOBRE PROGRAMACIÓN LINEAL POR: Mgtr. CARLOS A. Changmarín R.
UNIVERSIDAD DE PANAMÁ FACULTAD DE ADMINISTRACIÓN DE EMPRESAS Y CONTABILIDAD ESCUELA DE ADMINISTRACIÓN DE EMPRESAS INFORMÁTICAS PARA LA ADMINISTRACIÓN DE EMPRESAS II UTILITARIO SOBRE PROGRAMACIÓN LINEAL
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. CURSO 2008/2009. PRUEBA ESCRITA DEL BLOQUE DE ÁLGEBRA. 9 de diciembre de 2008.
IES Salduba MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II CURSO 008/009 PRUEBA ESCRITA DEL BLOQUE DE ÁLGEBRA 9 de diciembre de 008 Bloque I Unidades y Sistemas de ecuaciones lineales Matrices Ejercicio
3. Reserva Opción B a) (2 puntos) Represente gráficamente la región factible definida por las siguientes restricciones:
Enunciados Ejercicio 1 Programación Lineal Selectividad 1. Junio 2015 Opción A (2.5 puntos) Con motivo de su inauguración, una heladería quiere repartir dos tipos de tarrinas de helados. El primer tipo
Análisis Matemático II Curso 2018 Práctica introductoria
Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)
Tema 8: Programación lineal. Nociones elementales. Ejemplos.
Tema 8: Programación lineal. Nociones elementales. Ejemplos.. Introducción / motivación: -La optimización en problemas reales depende en general de varias variables -Las técnicas de diferenciabilidad siguen
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de
Programación Lineal. Julio Yarasca. 13 de diciembre de 2015 CEPREUNI. Julio Yarasca (CEPREUNI) Programación Lineal 13 de diciembre de / 21
Programación Lineal Julio Yarasca CEPREUNI 13 de diciembre de 2015 Julio Yarasca (CEPREUNI) Programación Lineal 13 de diciembre de 2015 1 / 21 Introducción Figura: George Dantzing Julio Yarasca (CEPREUNI)
UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera.
UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA de programación lineal entera. lineal entera. Investigación de operaciones Introducción En la unidad aprendimos a resolver modelos de P. L. por el método símple y el
5.1. Algoritmo en modelos de maximización
5.1. Algoritmo en modelos de maximización El primer tipo de modelo que vamos a resolver por el método símplex es el que tiene como objetivo maximizar a una función lineal, la cual está sujeta a una serie
EJERCICIOS Y PROBLEMAS RESUELTOS
EJERIIOS PROLEMS RESUELTOS 1. Se tiene una región factible determinada por el polígono de vértices: (2, 1), (, 0), (6, 2), (, ) y E(0, 4) a) Representa gráficamente dicha región, así como las rectas de
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
Módulo Programación lineal. 3 Medio Diferenciado
Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora
---oo0oo--- A( 0, 0 ) ; B ( 0, 1) ; C ( 2, 5 ) ; D ( 4, 5) ; E ( 5, 1) ; F ( 5, 0 ) Usamos la ecuación de la recta que pasa por dos puntos :
7HPD1ž3URJUDPDFLyQ/LQHDO 17 5HVROXFLyQGH(MHUFLFLRV\SUREOHPDVSiJ\VLJ n Determina la región del plano de la figura mediante inecuaciones lineales : 7 Coordenadas de los vértices ---oo0oo--- A( 0, 0 ) ; B
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.
UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar
SOLUCIÓN GRAFICA APLICACIONES ADMINISTRATIVAS DE LA PL
Semana 2 SOLUCIÓN GRAFICA APLICACIONES ADMINISTRATIVAS DE LA PL 1. Solución de modelos de programación lineal: método gráfico. 2. Determinación de la región factible. 3. Determinación de la solución óptima
TEMA 2: PROGRAMACIÓN LINEAL.
TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una
3.1. La Optimización Lineal El Planteamiento
Gerardo Febres Última revisión: 2016.03.23 3.1. La Optimización Lineal 3.1.1.- El Planteamiento Planteemos un problema extremadamente sencillo. Hacer máximas las ganancias obtenidas al vender tornillos.
