Módulo Programación lineal. 3 Medio Diferenciado
|
|
|
- Antonio Parra Valdéz
- hace 9 años
- Vistas:
Transcripción
1 Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora bien, una inecuación lineal de dos variables tiene una de las siguientes formas: Y representa un semiplano determinado por la recta cuya ecuación corresponde al primer miembro de la inecuación igualado a cero. Para saber cuál de los dos semiplanos determinados por la recta corresponde a la solución de la inecuación tenemos el siguiente teorema. Teorema: Sea P un punto de uno de los de los dos semiplanos en que la gráfica de la ecuación divide al plano. Si en P, entonces en todos los puntos del semiplano al que pertenece P En forma análoga se obtiene la solución para las inecuaciones. Ejemplo: Grafiquemos el conjunto solución de: Solución: 1 grafiquemos la ecuación asociada. x y
2 Elegimos un punto cualquiera, por ejemplo (0,0), que está en el semiplano inferior y vemos que no satisface la inecuación ya que es falso. Esto nos indica en virtud del teorema anterior, que son los puntos del semiplano superior aquellos que satisfacen la inecuación, en efecto, (3,0) está en el semiplano superior y nos queda entonces verdadero Así la solución de es el semiplano superior (sin incluir la recta ya que es y no ) Solución Ejercicios a) b) c) d) e) f) g) h) i) j) k) l) Soluciones
3 Sistemas de inecuaciones lineales con dos incógnitas Un sistema de inecuaciones lineales con dos incógnitas es la reunión de dos o más inecuaciones de primer grado, con dos incógnitas y coeficientes reales Son sistemas de inecuaciones lineales con dos incógnitas: Gráficamente, el conjunto solución de un sistema de inecuaciones lineales con dos incógnitas es la región del plano que se obtiene al interseectar los semiplanos o conjuntos solución correspondientes a cada una de las inecuaciones. Ejemplos 1. Determinar graficamente la región del plano o conjunto solución correspondiente a cada uno de los siguientes sistemas. Primero graficamos el semiplano correspondiente a cada inecuación, y luego intersectamos los semiplanos o conjunto solución de las inecuaciones, superponiendo ambos gráficos. De esta forma, determinamos la región solución (S) del sistema.
4 Ejemplo 2 Ejercicios 1. Determinar gráficamente la región del plano o conjunto solución, para cada sistema: a) b) c) d) e) f) g) h) Soluciones
5 1. Verifica que puntos pertenecen al semiplano sombreado a) (-1, 1) b) (3, -5) c) (0, 0) d) (5, 1) e) (-1,10) f) (10,5)
6 2. Comprueba qué pares (x, y) satisfacen la inecuación respectiva: a) x y 8 (2,3); (3,4); (4,4); (-2,11) 4 1 b) y 2x 0 (2,1); (, ) ; (5,2) ; (-1,-1) 5 2 c) 6 x y (10,4); (5,2) ; (-1,-3);(0,0) 4 d) 3( x 2) y 1 (2,1) ; (3,-1) ; (2, ) ; (0,6) d) y x (0,0); (, ) ; (5,6) ; ( 2, 3) 3 2 1) Determina qué puntos satisfacen la respectiva inecuación a) x y 8 A(2, 3) ; B(4, 4) ; C(-2,11) b) y 2x A(2, 1); B(, ) ; C(-1,-1) 5 2 c) 6 x-y A(10,4) ; B(-1,-3) ; C(0,0) d) y x 1 1 A(, ) ; B(5,6) ; C( 2, 3 ) 2 3 e) 2( x 1) y 1 A(1,3) ; B(3,1) ; C(-1,1)
7 f) 4x 3 y 5 A( 0,0) ; B(1,1) ; C(-10,2 g) x 3 2x 1 A(0,0) ; B(1,1) ; C(5,2) h) y+5<2+3y A( 0,0); B(2,1); C(-4,3) 1) Considera la función objetivo F(x, y)= 30x+25y, determina su valor en cada vértice del polígono. A(0,0); B(25,0);C(25,12) ;D(10,21); E(0,18) 2) Encuentre los valores máximo y mínimo de las expresiones dadas F( x, y) 3x 7y
8 3) F( x, y) 3x 5y 4) F( x, y) 40x 75y La aplicación más directa de los sistemas de inecuaciones lineales es la Programación lineal. Una de las utilidades de la programación lineal es resolver problemas en los que se requiere realizar una asignación eficiente de recursos limitados para optimizarlos; por ejemplo, en economía, calcular máximas ganancias y costos mínimos. En el planteamiento del problema se manejan varios conceptos esenciales: Las incógnitas Las restricciones que se imponen, expresadas por inecuaciones lineales. Estas pueden ser de dos tipos: o
9 La función objetivo, del tipo lineal, que se describe el problema. Esta es de la forma: El grupo de las soluciones posibles recibe el nombre de conjunto restricción o conjunto solución factible. La solución debe situarse en el área definida por las inecuaciones de restricción, que se conoce por la región factible. La región factible puede estar acotada o no acotada. Cuando está acotada, se representa gráficamente como un polígono con un número de lados menor o igual que el de las restricciones. Se llama solución óptima a la que maximiza o minimiza la función objetivo. Esta solución, si es única, siempre se encuentra en un vértice o punto extremo. El siguiente teorema permite resolver este tipo de problemas: Si existe una única soluci n que optimice (maximice o minimice) la función objetivo, esta se encuentra en uno de los vértices de la región factible Método algebraico de resolución Para resolver un problema de programación lineal por método algebraicos, se aplica el siguiente procedimiento operativo, llamado método de los vértices. Ejemplo 1 Dos artistas poseen una fábrica de esculturas. Durante este mes deben modelar dos: Una figura del Quijote y otra de un padre con su hijo. Su fabricación cuenta con dos fases armado y pintura. El armado del Quijote demora 16 horas y la pintura 6. El armado de la escultura del padre con su hijo demora 4 horas y la pintura 9. El maestro armador trabaja como máximo 64 horas y el pintor 54. Si la ganancia que se obtiene por vender una escultura del Quijote es de $ y por la del padre y el hijo $ , cómo podrían los artistas maximizar su ganancia semanal? 1º Representación del problema Quijote Padre con su hijo Tiempo máximo Armado (horas) Pintura (horas) Ganancia (pesos) º. Definición de las variables. X: la cantidad de quijotes que se van armar Y: la cantidad de Padres con su hijo que se van armar.
10 3º Definición de la función objetivo correspondiente a la optimización del problema En este caso, máxima ganancia F( x, y) x y 4º Asignación de las restricciones para las variables x e y; en este caso, asociadas al número de horas que lleva realizar el trabajo 16x 4y 64 6x 9y 54 Considera que x 0 y 0, ya que el número de esculturas que se fabrican no puede ser negativo. 5 Resolución del sistema de manera gráfica, determinando los puntos del plano que satisfacen las restricciones anteriores. 6 Reemplazo de las coordenadas de los puntos correspondientes a los vértices de la región determinada por la solución del sistema en la función objetivo. Vértice Función objetivo F(x,y)= x y A(0,0) 0 B(0,6) C(3,4) D(4,0) Por último, la selección del vértice que permite optimizar el problema. Para el ejemplo, el vértice D(3,4) entrega una ganancia más alta.
11 Por lo tanto, la cantidad de esculturas que se deben realizar para maximizar la ganancia son tres del Quijote y cuatro del Padre con su hijo. Problemas de programación Lineal. 1. Se intenta programar una dieta con dos alimentos, A y B. Una unidad del alimento A contiene 500 calorías y 10 gramos de proteínas; una unidad de B contiene 500 calorías y 20 gramos de proteínas. La dieta requiere como mínimo calorías y 80 gramos de proteínas. Si el precio de una unidad de A es 8 y de una unidad de B es 12, qué cantidad de unidades de A y B se debe comprar para satisfacer las exigencias de la dieta a un costo mínimo? R: El costo mínimo para lograr esto es 56. con esta cantidad, se puede adquirir 4 unidades del alimento A y 2 del B. 2. Una industria fabrica dos productos diferentes, P y Q, los que son elaborados en un proceso que requiere el uso de dos máquinas, A y B. El primer producto requiere 30 minutos de uso de la máquina A y 20 minutos de la B; el segundo producto requiere 30 minutos de la máquina A y 40 minutos de la B. El producto P da una ganancia o utilidad de 25 y el producto Q una ganancia de 35. Determinar la cantidad óptima de unidades P y Q que es necesario producir para obtener el máximo de utilidad, sabiendo que la máquina A puede funcionar durante 3 horas y la B durante 4 horas únicamente. R: La mayor utilidad se obtiene con x=0 e Y=6 (utilidad 210) que se interpreta así: es necesario producir 6 unidades del producto Q y ninguno de P 3. En una industria se fabrican dos artículos, A y B, los cuales deben pasar por los procesos P 1, P2 y P 3 para su elaboración. La fabricación del artículo A requiere de 6 horas en P 1, 4 horas en P 2 y ninguna en P 3. En cambio, la fabricación del artículo B demora 5 horas en P 1, 7 horas en P 2 y 8 horas en P 3.
12 En los procesos P1, P2 y P 3 se puede trabajar como máximo 40, 36 y 32 horas a la semana, respectivamente. La función objetivo está determinada por la relación lineal existente entre la utilidad por cada artículo y la cantidad que se fabrica de él. Si la utilidad que se obtiene por cada artículo A es de $ y por cada artículo B, de $ , se quiere determinar la cantidad optima de producción semanal de cada artículo, para obtener la utilidad máxima. R: por lo tanto, el número óptimo de artículos que deben fabricarse en una semana, es de 2 artículos A y 4 artículos B 4. Una distribuidora de confites vende hasta 60 cajas de chocolates al año; tienen chocolates de leche y chocolate con almendras. Se vende por lo menos el doble de cajas de chocolates de leche que de chocolates con almendras. La caja de chocolate de leche deja $ 50 de ganancia; la de chocolate con almendras deja $60. Cuál es el número de cajas de cada tipo que conviene vender para obtener el máximo de ganancia? R: Si se vende 40 cajas de chocolate de leche y 20 cajas de chocolate con almendras y el máximo de ganancia es de $ 3.200
Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2
Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
PROBLEMAS DE OPTIMIZACIÓN LINEAL
PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio
La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.
Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la
INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:
RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:
PROBLEMAS de Programación Lineal : Resolución Gráfica
PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x
Opción A. Alumno. Fecha: 23 Noviembre 2012
Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
TEMA 4 PROGRAMACIÓN LINEAL
Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente
Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:
MATEMÁTICAS BÁSICAS SISTEMAS DE DESIGUALDADES SISTEMAS DE DOS INECUACIONES Y DOS INCÓGNITAS Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales
RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA
RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA PROGRAMACIÓN LINEAL ETAPA BACHILLERATO Resumen Este artículo trata de cómo resolver problemas de
Qué es la programación lineal?
Qué es la programación lineal? En infinidad de aplicaciones de la industria, la economía, la estrategia militar, etc... Se presentan situaciones en las que se exige maximizar o minimizar algunas funciones
Resolución. Resolución gráfica de problemas de optimización
Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema
4. Método Simplex de Programación Lineal
Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a
SISTEMAS DE INECUACIONES LINEALES
SISTEMAS DE INECUACIONES LINEALES I.- Grafique /3 +3 verifique si los siguientes puntos pertenecen o no a la recta: 1) (,) ) (,4) 3. (,) 4) (6,5) 5) (-3,) 6) (6,8) 7) (-6,) 8) (-9,5) Soluciones de Inecuaciones
Inecuaciones y sistemas de inecuaciones
UNIDAD Inecuaciones y sistemas de inecuaciones a vista de los edificios de la foto invita a la comparación de sus alturas entre las que L existen grandes diferencias. En matemáticas las desigualdades juegan
L A P R O G R A M A C I O N
L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta
Capítulo 3 Método Gráfico
Capítulo 3 Método Gráfico Introducción En el presente capítulo se muestra la solución a varios tipos de problemas de programación lineal que solamente tienen en su formulación dos variables empleando el
Sistemas de inecuaciones
UNIDAD 14 Sistemas de inecuaciones Los problemas de administración y economía están relacionados frecuentemente con la necesidad de optimizar una función matemática. Puede ser necesario, por ejemplo, optimizar
UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)
UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos
Inecuaciones en dos variables
Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado
CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO
MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada
INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones.
INECUACIONES x + y 3 + 2y 1 x+y=3 x+2y=-1 + y 5 3x + y 7 x+y=5 3x+y=7 x 4 y 2 3x + 2y 3 x=4 3x+2y=3 y=2 x + 2y 4 4x + y 10 y 4 4x+y=10 x+2y=4 y=4 Problema 1: Joana y Pedro quiere repartir propaganda para
Ejemplo : PROGRAMACIÓN LINEAL
PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.
Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal
Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha
Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011
Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George
Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.
Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: + 5 + 3 9 0, Representar la región factible que determina el sistema de inecuaciones anterior hallar de forma
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos
SISTEMAS DE ECUACIONES Y DE INECUACIONES
SISTEMAS DE ECUACIONES Y DE INECUACIONES SISTEMAS DE ECUACIONES 1.- Sistemas de ecuaciones lineales Un sistema ( ecuaciones y incógnitas) es un sistema de la forma: a11xa1 y b1 a1xa y b donde a11, a1,
5. Al simplificar. expresión se obtiene:
ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo
EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones
MATEMÁTICAS EJERCICIOS RESUELTOS DE INECUACIONES Juan Jesús Pascual Inecuaciones Índice ejercicios resueltos A. Inecuaciones lineales con una incógnita B. Inecuaciones de segundo grado con una incógnita
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Problemas de Programación Lineal: Método Simplex
Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION
2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)
Sistemas de inecuaciones de primer grado con dos incógnitas
SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus
TEMA 8 GEOMETRÍA ANALÍTICA
Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,
EJERCICIOS PAU MAT II CC SOC. ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
PROGRAMACIÓN LINEAL 1- a) Dadas las inecuaciones 5; 2 4; 410 ; 0, represente el recinto que limitan y calcule sus vértices. b) Obtenga el máximo y el mínimo de función, en el recinto anterior, así como
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003
SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo
Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se
Formulación de un Modelo de Programación Lineal
Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para
MICROECONOMÍA II. PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro
MICROECONOMÍA II Problema 1 PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro PRIMERA PARTE: La Caja de Edgeworth y la Curva de Contrato El conjunto de asignaciones eficientes está
Colegio Portocarrero. Curso 2015-2016. Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución)
Álgebra, programación lineal y análisis (con solución) Problema 1: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 2: Sea la función f definida por a) Estudia la continuidad
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL UN POCO DE HISTORIA. Programación Lineal
Indicadores PROGRAMACIÓN LINEAL Analiza el conjunto solución de un sistema de inecuaciones lineales graficando la región relacionada al sistema. Calcula los vértices de una región poligonal resolviendo
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual
7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal
Capítulo 10. Ecuaciones y desigualdades
Capítulo 10 Ecuaciones y desigualdades Desigualdades lineales simultáneas con dos variables Un conjunto de dos o más desigualdades de las formas ax+by+c> 0 o ax+by+c
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
Cálculo vectorial en el plano.
Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores
INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. 1) Resuelve las siguientes inecuaciones de primer grado con una incógnita:
º ESO Inecuaciones sistemas de inecuaciones INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. ) Resuelve las siguientes inecuaciones de primer grado con una incógnita:.) 7.).).) ( ) ( ) ( ).) 8.) ( ).7)
3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI
TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es
INECUACIONES LINEALES CON DOS INCÓGNITAS
pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA
PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Programación lineal. Los problemas de programación lineal son problemas de optimización.
Programación lineal Los problemas de programación lineal son problemas de optimización. Tenemos un determinado problema, del cuál existen varias soluciones, pero queremos encontrar la mejor verificando
Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE
TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos
MATEMÁTICAS TEMA 4. Programación Lineal
MATEMÁTICAS TEMA 4 Programación Lineal INDICE 1 INTRODUCCIÓN... 3 2 INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 4 3 SISTEMAS DE INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 5 4 QUÉ ES UN PROBLEMA DE PROGRAMACIÓN
PASO 1: Poner el problema en forma estandar.
MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
1. Sistemas lineales. Resolución gráfica
5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o
Modelo Académico de Calidad para la Competitividad AIND-01 92/98
9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,
EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.
EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte
4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co En PL un sistema de producción se representa
PROBLEMA DE FLUJO DE COSTO MINIMO.
EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
Instituto Tecnologico Metropolitano Metodo simplex Ejercicios
Instituto Tecnologico Metropolitano Metodo simplex Ejercicios April 16, 2016 Contenido 1 Contenido 2 Envases S.A 3 Grangero 4 Televisores 5 Agua Mineral 6 Problema de la Dieta Envases S.A Una empresa desea
815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250
Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.
Frontera de posibilidades de producción y coste de oportunidad
Frontera de posibilidades de producción y coste de oportunidad ENUNCIADO PROBLEMA 3 Supongamos la siguiente tabla donde se resumen las posibilidades de producción de una economía que produce dos bienes:
REACTIVOS MATEMÁTICAS 3
REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.
APUNTE: Introducción a la Programación Lineal
APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La
Desigualdades de dos variables
Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.
Clase 8 Sistemas de ecuaciones lineales
Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Considere el siguiente sistema de dos ecuaciones lineales con dos incógnitas x e y:
Tema Contenido Contenidos Mínimos
1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los
Ejercicios Resueltos de Derivadas y sus aplicaciones:
Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA
EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a
ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO
ECUACIONES ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO 1.- IGUALDADES Y ECUACIONES Las expresiones compuestas de dos miembros enlazados por el signo = se llaman igualdades, y ponen de manifiesto
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICAAS A LAS CIENCIAS SOCIALES EJERCICIO Nº Páginas 2 OPTATIVIA: EL ALUMNO EBERÁ ESCOGER UNA E LAS OS OPCIONES
TEMARIO EXAMEN MATEMÁTICA SÉPTIMO AÑO BÁSICO 2012 3 DE DICIEMBRE
SÉPTIMO AÑO BÁSICO 2012 NÚMEROS Ejercicios combinados con enteros, con y sin paréntesis. Solución de problemas con enteros Solución de problemas, aplicando proporción directa e inversa. Propiedades de
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Programación lineal. Índice del libro. 1. Inecuaciones lineales con dos incógnitas. 2. Programación lineal
1. Inecuaciones lineales con dos incógnitas 2. 3. para dos variables. Métodos de resolución 4. El problema del transporte Índice del libro 1. Inecuaciones lineales con dos incógnitas 1. Inecuaciones lineales
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
Guía - Funciones de Varias Variables (II)
Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física Mayo de 2015 Guía - Funciones de Varias Variables (II) Regla de la cadena 1. En los siguientes problemas, obtenga
1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.
UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido
3. Reserva Opción B a) (2 puntos) Represente gráficamente la región factible definida por las siguientes restricciones:
Enunciados Ejercicio 1 Programación Lineal Selectividad 1. Junio 2015 Opción A (2.5 puntos) Con motivo de su inauguración, una heladería quiere repartir dos tipos de tarrinas de helados. El primer tipo
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después
