Qué es la programación lineal?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Qué es la programación lineal?"

Transcripción

1 Qué es la programación lineal? En infinidad de aplicaciones de la industria, la economía, la estrategia militar, etc... Se presentan situaciones en las que se exige maximizar o minimizar algunas funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones. La Programación Lineal (PL) es una de las principales ramas de la Investigación Operativa. En esta categoría se consideran todos aquellos modelos de optimización donde las funciones que lo componen, es decir, función objetivo y restricciones, son funciones lineales en las variables de decisión. Los modelos de Programación Lineal por su sencillez son frecuentemente usados para abordar una gran variedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización. Un modelo de Programación Lineal (PL) considera que las variables de decisión tienen un comportamiento lineal, tanto en la función objetivo como restricciones del problema. En este sentido, la Programación Lineal es una de las herramientas más utilizadas en la Investigación Operativa debido a que por su naturaleza se facilitan los cálculos y en general permite una buena aproximación de la realidad. Los Modelos Matemáticos se dividen básicamente en Modelos Determistas (MD) o Modelos Estocásticos (ME). En el primer caso (MD) se considera que los parámetros asociados al modelo son conocidos con certeza absoluta, a diferencia de los Modelos Estocásticos, donde la totalidad o un subconjunto de los parámetros tienen una distribución de probabilidad asociada. Los cursos introductorios a la Investigación Operativa generalmente se enfocan sólo en Modelos Determistas.

2 Supuestos Básicos de la Programación Lineal: Linealidad, Modelos Deterministas, Variables reales, No Negatividad. APLICACIONES 1. Problema de la Dieta: (Stigler, 1945). Consiste en determinar una dieta de manera eficiente, a partir de un conjunto dado de alimentos, de modo de satisfacer requerimientos nutricionales. La cantidad de alimentos a considerar, sus características nutricionales y los costos de éstos, permiten obtener diferentes variantes de este tipo de modelos. Por ejemplo: Leche Legumbre Naranjas Requerimientos (lt) (1 porción) (unidad) Nutricionales Niacina 3,2 4,9 0,8 13 Tiamina 1,12 1,3 0,19 15 Vitamina C Costo 2 0,2 0,25 Variables de Decisión: X1: Litros de Leche utilizados en la Dieta X2: Porciones de Legumbres utilizadas en la Dieta X3: Unidades de Naranjas utilizadas en la Dieta Función Objetivo: (Minimizar los Costos de la Dieta) Min 2X1 + 0,2X2 + 0,25X3

3 Restricciones: Satisfacer los requerimientos nutricionales Niacina: 3,2X1 + 4,9X2 + 0,8X3 >= 13 Tiamina: 1,12X1 + 1,3X2 + 0,19X3 >=15 Vitamina C: 32X1 + 0X2 + 93X3 >= 45 No Negatividad: X1>=0; X2>=0; X3>=0 2. Problema de Dimensionamiento de Lotes: (Wagner y Whitin, 1958). Consiste en hallar una polìtica óptima de producción para satisfacer demandas fluctuantes en el tiempo, de modo de minimizar los costos de producción e inventario, considerando la disponibilidad de recursos escasos. Considere que una fabrica puede elaborar hasta 150 unidades en cada uno de los 4 periodos en que se ha subdividido el horizonte de planificación y se tiene adicionalmente la siguiente información: Periodos Demandas Costo Prod. (unidades)(us$/unidad) Costo de Inventario (US$/unidad) Adicionalmente considere que se dispone de un Inventario Inicial de 15 unidades y no se acepta demanda pendiente o faltante, es decir, se debe satisfacer toda la demanda del período. Variables de Decisión: Xt: Unidades elaboradas en el período t (Con t =1,2,3,4) It: Unidades en inventario al final del período t (Con t =1,2,3,4) Función Objetivo: (Minimizar los Costos de Producción e Inventarios) Min 6X1 + 4X2 + 8X3 + 9X4 + 2I1 + 1I2 + 2,5I3+ 3I4 Restricciones: Capacidad de Producción por Período: Xt <= 150 (Con t =1,2,3,4) Satisfacer Demanda Período 1: X1 + I0 - I1 = 130 (I0 = 15) Satisfacer Demanda Período 2: X2 + I1 - I2 = 80 Satisfacer Demanda Período 3: X3 + I2 - I3 = 125 Satisfacer Demanda Período 4: X4 + I3 - I4 = 195 No Negatividad: Xt >=0, It >=0

4 Solución Óptima utilizando Solver de MS Excel (Para ver una aplicación de esta herramienta ingrese AQUI): X1=115, X2=150, X3=100, X4=150, I1=0, I2=70, I3=45, I4=0. Valor Óptimo V(P)=3.622,5 PREGUNTAS FRECUENTES (FAQ) 1. Cómo puedo constatar que un problema de Programación Lineal tiene infinitas soluciones? R: Un problema de PL tiene infinitas soluciones si en la tabla final del Método Simplex un costo reducido asociado a una variable no básica igual a cero. 2. Utilizando el Método Simplex de 2 Fases, Cómo compruebo que el problema asociado es infactible? R: Esto se comprueba si el valor de la función objetivo terminada la Fase I es distinto de cero. 3. Puede existir una restricción activa con precio sombra asociado igual a cero? R: Si. Sin embargo, este caso es más la excepción que la regla. 4. Es incorrecto considerar como variable que entra a la base alguna variable no básica con costo reducido negativo, pero no el "más negativo" de todos? (Método Simplex) R: No es incorrecto. En general, se utiliza como criterio seleccionar como variable entrante a la base aquella variable no básica con costo reducido más negativo, de modo de que en menos iteraciones podamos alcanzar el óptimo en caso que éste exista (rapidez de convergencia). 5. Utilizando el Método Simplex, Cómo se puede detectar que un problema de Programación Lineal es no acotado? R: Esta situación se detecta cuando al realizar el cálculo de la variable que deja la base, todos los elementos Ykj de la columna j en la tabla son negativos, para j el índice de una variable no básica con costo reducido negativo. 6. Si el problema Dual asociado a un modelo de Programación Lineal es no acotado, Qué situación se verifica con el modelo Primal? R: Si el modelo Dual es no acotado, entonces el Primal es infactible. 7. Cómo se verifica que un problema lineal es infactible? R: Si todas las entradas en la columna correspondiente a una variable no básica con costo reducido negativo son negativas o igual a cero. 8. Qué significa que un modelo de programación lineal sea infactible? R: Básicamente consiste en que no existen valores que puedan adoptar las variables de decisión de modo que se verifique el cumplimiento de todas las restricciones del modelo.

5 Para hacernos una idea más clara de estos supuestos, veamos dos ejemplos: Ejemplo 1: Problema de máximos. En una granja se preparan dos clases de piensos, P y Q, mezclando dos productos A y B. Un saco de P contiene 8 kg de A y 2 de B, y un saco de Q contiene 10 kg de A y 5 de B. Cada saco de P se vende a 300 ptas. y cada saco de Q a 800 ptas. Si en la granja hay almacenados 80 kg de A y 25 de B, cuántos sacos de cada tipo de pienso deben preparar para obtener los máximos ingresos? Ejemplo 2: Problema de mínimos. Una campaña para promocionar una marca de productos lácteos se basa en el reparto gratuito de yogures con sabor a limón o a fresa. Se decide repartir al menos yogures. Cada yogur de limón necesita para su elaboración 0.5 gramos de un producto de fermentación y cada yogur de fresa necesita 0.2 gramos de este mismo producto. Se dispone de 9 kilogramos de este producto para fermentación. El coste de producción de un yogur de limón es de 30 pesetas y 20 pesetas uno de fresa. En los dos ejemplos descritos está claro que tanto la cantidad que deseamos maximizar como la cantidad que deseamos minimizar podemos expresarlas en forma de ecuaciones lineales. Por otra parte, las restricciones que imponen las condiciones de ambos problemas se pueden expresar en forma de inecuaciones lineales. Tratemos de plantear en términos matemáticos los dos ejemplos anteriores: 1) Si designamos por x al número de sacos de pienso de clase P y por y el número de sacos de pienso de clase Q que se han de vender, la función: Z = 300x + 800y representará la cantidad de pesetas obtenidas por la venta de los sacos, y por tanto es la que debemos maximizar. Podemos hacer un pequeño cuadro que nos ayude a obtener las restricciones:

6 Nº kg de A kg de B P x 8x Q y 10y 2x 5y Por otra parte, las variables x e y, lógicamente, han de ser no negativas, por tanto: x 0, y 0 Conjunto de restricciones: 8x + 10y 80 2x + 5y 25 x 0, y 0 2) Si representamos por x el número de yogures de limón e y al número de yogures de fresa, se tiene que la función de coste es Z = 30x + 20y. Por otra parte, las condiciones del problema imponen las siguientes restricciones: De número : x + y 80 De fermentación: 0.5x + 0.2y 9000 Las variables x e y han de ser, lógicamente, no negativas; es decir: x 0, y 0 Conjunto de restricciones: x + y x + 0.2y 9000 x 0, y 0 En definitiva: Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente:

7 Optimizar (maximizar o minimizar) una función objetivo, función lineal de varias variables, sujeta a: una serie de restricciones, expresadas por inecuaciones lineales. Un problema de programación lineal en dos variables, tiene la siguiente formulación estándar: puediendo cambiarse maximizar por minimizar, y el sentido de las desigualdades. En un problema de programación lineal intervienen: La función f(x,y) = ax + by + c llamada función objetivo y que es necesario optimizar. En esa expresión x e y son las variables de decisión, mientras que a, b y c son constantes. Las restricciones que deben ser inecuaciones lineales. Su número depende del problema en cuestión. El carácter de desigualdad viene impuesto por las limitaciones, disponibilidades o necesidades, que son: inferiores a... (menores: < o ); como mínimo de... (mayores: > o ). Tanto si se trata de maximizar como de minimizar, las desigualdades pueden darse en cualquiera de los dos sentidos. Al conjunto de valores de x e y que verifican todas y cada una de las restricciones se lo denomina conjunto (o región) factible. Todo punto de ese conjunto puede ser solución del problema; todo punto no perteneciente a ese conjunto no puede ser solución. En el apartado siguiente veremos cómo se determina la región factible. La solución óptima del problema será un par de valores (x 0, y 0 ) del conjunto factible que haga que f(x,y) tome el valor máximo o mínimo. En ocasiones utilizaremos las siglas PPL para indicar problema de programación lineal.

8 Determinación de la región factible La solución de un problema de programación lineal, en el supuesto de que exista, debe estar en la región determinada por las distintas desigualdades. Esta recibe el nombre de región factible, y puede estar o no acotada. Región factible acotada Región factible no acotada La región factible incluye o no los lados y los vértices, según que las desigualdades sean en sentido amplio ( o ) o en sentido estricto (< o >). Si la región factible está acotada, su representación gráfica es un polígono convexo con un número de lados menor o igual que el número de restricciones. El procedimiento para determinar la región factible es el siguiente: 1) Se resuelve cada inecuación por separado, es decir, se encuentra el semiplano de soluciones de cada una de las inecuaciones. Se dibuja la recta asociada a la inecuación. Esta recta divide al plano en dos regiones o semiplanos Para averiguar cuál es la región válida, el procedimiento práctico consiste en elegir un punto, por ejemplo, el (0,0) si la recta no pasa por el origen, y comprobar si las coordenadas satisfacen o no la inecuación. Si lo hacen, la región en la que está ese punto es aquella cuyos puntos verifican la inecuación; en caso contrario, la región válida es la otra. 2) La región factible está formada por la intersección o región común de las soluciones de todas las inecuaciones. Como sucede con los sistemas de ecuaciones lineales, los sistemas de inecuaciones lineales pueden presentar varias opciones respecto a sus soluciones: puede no existir solución, en el caso de que exista el conjunto solución puede ser acotado o no.

9 Veámoslo con un ejemplo: Dibuja la región factible asociada a las restricciones: x + y 4 y 4 y x Las rectas asociadas son: r: x + y = 4; s: y = 4, t: y = x Elegimos el punto O(0,0), que se encuentra en el semiplano situado por debajo de la recta. Introduciendo las coordenadas (0,0) en la inecuación x + y 4, vemos que no la satisface: = 0 < 4. Por tanto, el conjunto de soluciones de la inecuación es el semiplano situado por encima de la recta r : x + y = 4. Procedemos como en el paso anterior. Las coordenadas (0,0) satisfacen la inecuación y 4 ( 0 4). Por tanto, el conjunto de soluciones de la inecuación es el semiplano que incluye al punto O.

10 La recta t asociada a la rectricción pasa por el origen, lo cual significa que si probásemos con el punto O(0,0) no llegaríamos a ninguna conclusión. Elegimos el punto (1,0) y vemos que no satisface la inecuación y x (y = 0 < 1 = x). Por tanto, el conjunto solución de esta inecuación es el semiplano determinado por la recta t que no incluye al punto (1,0). La región factible está formada por los puntos que cumplen las tres restricciones, es decir, se encuentran en los tres semiplanos anteriores. matematicas-29.html

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Ejemplo : PROGRAMACIÓN LINEAL

Ejemplo : PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA

RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA PROGRAMACIÓN LINEAL ETAPA BACHILLERATO Resumen Este artículo trata de cómo resolver problemas de

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones MATEMÁTICAS EJERCICIOS RESUELTOS DE INECUACIONES Juan Jesús Pascual Inecuaciones Índice ejercicios resueltos A. Inecuaciones lineales con una incógnita B. Inecuaciones de segundo grado con una incógnita

Más detalles

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma: MATEMÁTICAS BÁSICAS SISTEMAS DE DESIGUALDADES SISTEMAS DE DOS INECUACIONES Y DOS INCÓGNITAS Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Programación Lineal. Optimización de la combinación de cifras comerciales en una red lineal de distribución de agua.

Programación Lineal. Optimización de la combinación de cifras comerciales en una red lineal de distribución de agua. Programación Lineal La Programación Lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de ecuaciones lineales, optimizando la función

Más detalles

Inecuaciones y sistemas de inecuaciones

Inecuaciones y sistemas de inecuaciones UNIDAD Inecuaciones y sistemas de inecuaciones a vista de los edificios de la foto invita a la comparación de sus alturas entre las que L existen grandes diferencias. En matemáticas las desigualdades juegan

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

TEMA 4 PROGRAMACIÓN LINEAL

TEMA 4 PROGRAMACIÓN LINEAL Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

Sistemas de inecuaciones de primer grado con dos incógnitas

Sistemas de inecuaciones de primer grado con dos incógnitas SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL UN POCO DE HISTORIA. Programación Lineal

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL UN POCO DE HISTORIA. Programación Lineal Indicadores PROGRAMACIÓN LINEAL Analiza el conjunto solución de un sistema de inecuaciones lineales graficando la región relacionada al sistema. Calcula los vértices de una región poligonal resolviendo

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

1. INECUACIONES LINEALES CON DOS INCÓGNITAS.

1. INECUACIONES LINEALES CON DOS INCÓGNITAS. TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,

Más detalles

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo. EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

Programación Lineal Introducción

Programación Lineal Introducción Programación Lineal Introducción Curso: Investigación de Operaciones Ing. Javier Villatoro fjvillatoro.wordpress.com Curso: Catedrático: Investigación de Operaciones Ing. Javier Villatoro Comunicación

Más detalles

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,...

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,... El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones.

INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones. INECUACIONES x + y 3 + 2y 1 x+y=3 x+2y=-1 + y 5 3x + y 7 x+y=5 3x+y=7 x 4 y 2 3x + 2y 3 x=4 3x+2y=3 y=2 x + 2y 4 4x + y 10 y 4 4x+y=10 x+2y=4 y=4 Problema 1: Joana y Pedro quiere repartir propaganda para

Más detalles

optimización: programación lineal y entera

optimización: programación lineal y entera UNIVERSIDAD PERUANA LOS ANDES Facultad de Ciencias i Administrativas i ti y Contables METODOS CUANTITATIVOS DE NEGOCIOS capítulo 2. modelos de optimización: programación lineal y entera Objetivos de Aprendizaje:

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

Método Simplex: Encontrado una SBF

Método Simplex: Encontrado una SBF Método Simplex: Encontrado una SBF CCIR / Matemáticas [email protected] CCIR / Matemáticas () Método Simplex: Encontrado una SBF [email protected] 1 / 31 Determinación de SBF Determinación de SBF El método

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte 4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co En PL un sistema de producción se representa

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles

Sistemas de inecuaciones

Sistemas de inecuaciones UNIDAD 14 Sistemas de inecuaciones Los problemas de administración y economía están relacionados frecuentemente con la necesidad de optimizar una función matemática. Puede ser necesario, por ejemplo, optimizar

Más detalles

Capítulo 10. Ecuaciones y desigualdades

Capítulo 10. Ecuaciones y desigualdades Capítulo 10 Ecuaciones y desigualdades Desigualdades lineales simultáneas con dos variables Un conjunto de dos o más desigualdades de las formas ax+by+c> 0 o ax+by+c

Más detalles

Programación lineal. Tema Introducción / motivación

Programación lineal. Tema Introducción / motivación Tema Programación lineal Mientras que para funciones reales de variable real la derivación ha permitido resolver el problema de optimalidad en su conjunto, en este tema, la programación lineal resuelve

Más detalles

PROGRAMACIÓN LINEAL CON EXCEL: ESTABILIDAD DE LA SOLUCIÓN

PROGRAMACIÓN LINEAL CON EXCEL: ESTABILIDAD DE LA SOLUCIÓN Programación Lineal con Excel: estabilidad de la solución PROGRAMACIÓN LINEAL CON EXCEL: ESTABILIDAD DE LA SOLUCIÓN Inmaculada Lekubarri y José Mª Eguzkitza (*) El objetivo principal que se persigue en

Más detalles

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.1 y método simplex Es una técnica matemática que se ha usado con éxito en la solución de problemas referentes a la asignación personal,

Más detalles

INECUACIONES LINEALES CON DOS INCÓGNITAS

INECUACIONES LINEALES CON DOS INCÓGNITAS pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes

Más detalles

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras Tercera edición Álgebra lineal y programación lineal Con aplicaciones a ciencias Administrativas, contables y financieras Francisco Soler Fajardo Fabio Molina Focazzio Lucio Rojas Cortés Contenido Introducción...XIX

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016 INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN

Más detalles

Capítulo 3 Método Gráfico

Capítulo 3 Método Gráfico Capítulo 3 Método Gráfico Introducción En el presente capítulo se muestra la solución a varios tipos de problemas de programación lineal que solamente tienen en su formulación dos variables empleando el

Más detalles

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo

Más detalles

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación.

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación. UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.2 El modelo de transporte es un problema de optimización de redes donde debe determinarse como hacer llegar los productos desde los

Más detalles

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex. Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo

Más detalles

Nombre de la asignatura : Investigación de operaciones I. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9306

Nombre de la asignatura : Investigación de operaciones I. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9306 . D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Investigación de operaciones I Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB-906 Horas teoría-horas práctica-créditos

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

EBook: Apuntes y Ejercicios Resueltos de Programación Lineal

EBook: Apuntes y Ejercicios Resueltos de Programación Lineal EBook: Apuntes y Ejercicios Resueltos de Programación Lineal www.gestiondeoperaciones.net Libro de Apuntes para estudiantes de Investigación Operativa que considera la revisión de modelos de Programación

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

SISTEMAS DE INECUACIONES LINEALES

SISTEMAS DE INECUACIONES LINEALES SISTEMAS DE INECUACIONES LINEALES I.- Grafique /3 +3 verifique si los siguientes puntos pertenecen o no a la recta: 1) (,) ) (,4) 3. (,) 4) (6,5) 5) (-3,) 6) (6,8) 7) (-6,) 8) (-9,5) Soluciones de Inecuaciones

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

CONVEXIDAD: CONCEPTOS BÁSICOS

CONVEXIDAD: CONCEPTOS BÁSICOS CONVEXIDAD: CONCEPTOS BÁSICOS El estudio de la convexidad de conjuntos y funciones, tiene especial relevancia a la hora de la búsqueda de los óptimos de las funciones, así como en el desarrollo de los

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

UNIDAD 4: PROGRAMACIÓN LINEAL

UNIDAD 4: PROGRAMACIÓN LINEAL UNIDD 4: PROGRMCIÓN LINEL Introducción Inecuaciones lineales con dos incógnitas Sistemas de inecuaciones lineales con dos incógnitas Programación lineal INTRODUCCIÓN Inecuaciones Una inecuación es una

Más detalles

Programación Lineal. Unidad 1 Parte 2

Programación Lineal. Unidad 1 Parte 2 Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

TEMA 2: EL INTERÉS SIMPLE

TEMA 2: EL INTERÉS SIMPLE TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES. INTRODUCCIÓN Qué son? Las ecuaciones y las inecuaciones son expresiones matemáticas que representan problemas reales, por ejemplo : Que carero es el tío del quiosco!, he salido

Más detalles

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2 Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,

Más detalles

MATEMÁTICAS TEMA 4. Programación Lineal

MATEMÁTICAS TEMA 4. Programación Lineal MATEMÁTICAS TEMA 4 Programación Lineal INDICE 1 INTRODUCCIÓN... 3 2 INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 4 3 SISTEMAS DE INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS... 5 4 QUÉ ES UN PROBLEMA DE PROGRAMACIÓN

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Programación Lineal. - Si no: Sea j tal que c

Programación Lineal. - Si no: Sea j tal que c Programación Lineal El objetivo de este documento es hacer una breve introducción a la programación lineal que pueda contribuir al fácil manejo de la aplicación. La programación lineal es un procedimiento

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones 6 Sistemas de ecuaciones Objetivos En esta quincena recordarás la resolución de sistemas de ecuaciones y aprenderás a resolver también algunos sistemas de inecuaciones. Cuando la hayas estudiado deberás

Más detalles