MATEMÁTICAS TEMA 4. Programación Lineal
|
|
|
- María Jesús Espejo Ponce
- hace 7 años
- Vistas:
Transcripción
1 MATEMÁTICAS TEMA 4 Programación Lineal
2 INDICE 1 INTRODUCCIÓN INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS SISTEMAS DE INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS QUÉ ES UN PROBLEMA DE PROGRAMACIÓN LINEAL? PROBLEMAS DE PROGRAMACIÓN LINEAL CON INFINITAS SOLUCIONES11 6 PROBLEMAS DE PROGRAMACIÓN LINEAL SIN SOLUCIÓN EJERCICIOS Página 2 de 18
3 1 INTRODUCCIÓN En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS) y las potencias aliadas (principalmente, Inglaterra y Estados Unidos). Uno de los episodios más llamativos de esa guerra fría se produjo a mediados de 1948, cuando la URSS bloqueó las comunicaciones terrestres desde las zonas alemanas en poder de los aliados con la ciudad de Berlín, iniciando el bloqueo de Berlín. A los aliados se les plantearon dos posibilidades: o romper el bloqueo terrestre por la fuerza, o llegar a Berlín por el aire. Se adoptó la decisión de programar una demostración técnica del poder aéreo norteamericano; a tal efecto, se organizó un gigantesco puente aéreo para abastecer a la ciudad: en diciembre de 1948 se estaban transportando 4500 toneladas diarias; en marzo de 1949, se llego a las 8000 toneladas, tanto como se transportaba por carretera y ferrocarril antes del corte de comunicaciones. En la planificación de los suministros se utilizó la programación lineal. (el 12 de mayo de 1949 los soviéticos levantaron el bloqueo). Otras aplicaciones de la programación lineal son: El problema de la dieta, que trata de determinar en qué cantidades hay que mezclar diferentes piensos para que un animal reciba la alimentación necesaria a un coste mínimo. El problema del transporte, que trata de organizar el reparto de cualquier tipo de mercancías con un coste mínimo de tiempo o de dinero. El problema de la ruta más corta, que ayuda a ordenar las etapas de un viaje con el propósito de minimizar el recorrido. En este tema antes de pasar a explicar lo que es la programación lineal, explicaremos dos conceptos básicos para la posterior resolución de los problemas de programación lineal, que son: las inecuaciones de 1º grado con dos incógnitas y los sistemas de inecuaciones de primer grado con incógnitas.nos centraremos en la resolución de problemas de programación lineal con dos variables. Página 3 de 18
4 2 INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS Tienen la siguiente forma: ax + by + c > 0 ax + by + c 0 ax + by + c < 0 ax + by + c 0 Se resuelven de la siguiente forma: 1. Dibujamos la recta ax + by + c = 0. - Si las desigualdades no son estrictas, es decir ax + by + c > 0 ax + by + c < 0, la recta no forma parte de la solución y se dibuja discontinua - Si las desigualdades son estrictas, es decir ax + by + c 0 ax + by + c 0, la recta si forma parte de la solución y se dibuja continua 2. Seleccionamos un punto P(x,y) que no esté situado en la recta: - Si el punto P verifica la inecuación, entonces todos los puntos del mismo semiplano también la verificarán y será la solución. - Si el punto P no verifica la inecuación, entonces todos los puntos del mismo semiplano tampoco no la verificarán, por tanto, la solución será el otro semiplano. Ejemplo: Resuelve: 2x+ y 2 Solución x 0 1 Dibujamos la recta 2x + y = 2. Damos dos valores a la x y 2 0 Las infinitas soluciones son los infinitos puntos de uno de los dos semiplanos que determina la recta. Para determinar cuál es, elegimos un punto cualquiera que no pertenezca a la recta, si verifica la inecuación la solución es el semiplano al que pertenece el punto, si no lo cumple es el otro semiplano. En nuestro ejemplo elegimos el origen (0, 0) 2x+ y 2 (0,0) Es Cierto, por tanto la solución es el semiplano al que pertenece el origen Página 4 de 18
5 3 SISTEMAS DE INECUACIONES DE 1º GRADO CON 2 INCÓGNITAS Ejemplo: Resuelve el siguiente sistema de inecuaciones: Solución Resolvemos cada inecuación por separado. x+ y 1 x y 1 1º Inecuación x + y 1 Dibujamos la recta x y 1 + =. Damos dos valores a la x x 0 1 y 1 0 Elegimos el origen (0, 0) x+ y 1 (0,0) Es Cierto, por tanto la solución es el semiplano al que pertenece el origen 2º Inecuación x y 1 Dibujamos la recta x y = 1. Damos dos valores a la x Elegimos el origen (0, 0) x y 1 (0,0) Gráficamente x 0 1 y No es Cierto, por tanto la solución es el semiplano donde no esta el origen Página 5 de 18
6 Por lo tanto Solución 4 QUÉ ES UN PROBLEMA DE PROGRAMACIÓN LINEAL? Consiste en optimizar (maximizar o minimizar ) una función lineal, denominada función objetivo, estando las variables sujetas a una serie de restricciones expresadas mediante inecuaciones lineales En este curso trataremos de resolver problemas de programación lineal bidimensional, es decir, maximizar o minimizar una función lineal con dos variables sujeta a unas restricciones que están dadas por inecuaciones lineales. En este tipo de problemas la función objetivo es una función lineal con dos variables. Se representa por: f ( x, y) = ax + by La región del plano determinada por las distintas desigualdades o restricciones, se llama región factible. La solución óptima es aquella que maximiza o minimiza la función objetivo y se encuentra en la frontera de la región factible. El vector director de la función objetivo f ( x, y) = ax + by es el vector v= ( b,a). Las coordenadas del vector director de una función objetivo se pueden multiplicar o dividir por un mismo número distinto de cero, y su dirección no varía. Ejemplo f( x, y) = 30x+ 20 y v= ( 20,30) v= ( 2,3) Página 6 de 18
7 Métodos de resolución de un problema de programación lineal bidimensional A) Método algebraico ó de los vértices: las soluciones obtenidas algebraicamente se encuentran en los vértices de la región factible. Pasos: 1. Dibujar la región factible. 2. Determinar los vértices de la región factible. 3. Calcular el valor de la función objetivo en cada uno de los vértices. 4. El mínimo se alcanza en el vértice de menor valor y el máximo en el vértice de mayor valor. 5. Interpretación del resultado en cada problema. B) Método gráfico o de las rectas de nivel: consiste en obtener gráficamente la solución. Las rectas de nivel son las rectas paralelas al vector director de la función objetivo que pasan por los puntos de la región factible. Pasos: 1. Dibujar la región factible. 2. Se representa la recta de beneficio nulo f( x, y) = ax+ by = 0y se desplaza paralelamente a ella (rectas de nivel) hasta encontrar el vértice (solución única) o un lado (infinitas soluciones) de la región factible que cumpla la condición de máximo o mínimo. En las rectas que solo corten a la región factible en el vértice, analizamos el signo del coeficiente de la variable y en la función objetivo f ( x, y) = ax + by. Si b>0 Si b<0 El máximo se alcanza en el vértice cuya recta tenga mayor ordenada. El mínimo se alcanza en el vértice cuya recta tenga menor ordenada. El máximo se alcanza en el vértice cuya recta tenga menor ordenada. El mínimo se alcanza en el vértice cuya recta tenga mayor ordenada. Página 7 de 18
8 Ejemplo 1: En una confitería se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de cajas de la siguiente forma. - Caja 1 : 200g de polvorones y 100g de mantecados. Precio: 4 euros. - Caja 2 : 200g de polvorones y 300g de mantecados. Precio: 6 euros. Cuántas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo de ingresos? Solución Veamos la solución por los métodos vistos anteriormente: Método algebraico ó de los vértices La información del ejercicio la podemos organizar mediante una tabla: Nº de Cajas Polvorones (g) Mantecados (g) Ingresos Caja 1 x Caja 2 y Total x+y x+6y Función Objetivo (Ingresos totales) F = 4x+ 6y (maximizar) Restricciones: 200x+ 200y x+ y x+ 300y x+ 3y 150 Simplificando x 0, y 0 x 0, y 0 - El primer paso es representar gráficamente el sistema de inecuaciones formado por las restricciones y obtenemos la región factible. ( ver apartado 2 y 3 del tema): x+ y 120 x Dibujamos la recta x + y = 120. Damos dos valores a la x y Elegimos el origen (0, 0) x+ y 120 (0,0) Es Cierto, por tanto la solución es el semiplano al que pertenece el origen Página 8 de 18
9 x+ 3y 150 x Dibujamos la recta x + 3y = 150. Damos dos valores a la x Elegimos el origen (0, 0) x+ 3y 150 (0,0) y Es Cierto, por tanto la solución es el semiplano al que pertenece el origen x 0, y 0, indica que estamos en el primer cuadrante. Por tanto la región factible es: - Hallamos los vértices de la región factible: A(0,0) B(120,0) x+ y = 120 x= 105 C: C(105,15) x+ 3y = 150 y = 15 D(0,50) RESOLVIENDO EL SISTEMA Página 9 de 18
10 - Hallamos los valores de la función objetivo F = 4x+ 6y en cada uno de los vértices: A(0,0) F = = 0 F= 4x+ 6y B(120, 0) F = = 480 F= 4x+ 6y C(105,15) F = = 510 F= 4x+ 6y D(0,50) F = = 300 F= 4x+ 6y - La solución óptima corresponde al vértice en el que la función objetivo toma el valor máximo, que es el vértice C(105,15). Por tanto, hay que hacer 105 cajas del tipo 1 y 15 del tipo 2, siendo los ingresos máximos totales que se pueden obtener de su venta 510 euros. Método gráfico o de las rectas de nivel: - El primer paso es representar gráficamente el sistema de inecuaciones formado por las restricciones y obtenemos la región factible.( paso realizado antes) - Representamos la recta de nivel de beneficio nulo 4x+6y=0 y la desplazamos paralelamente a ella misma hasta encontrar el vértice (solución única) o un lado (infinitas soluciones) de la región factible que cumpla la condición de máximo o mínimo, en este caso el máximo. Página 10 de 18
11 - Observando la gráfica, la recta de máximo nivel pasa por el punto C(105,15). - Por tanto, hay que hacer 105 cajas del tipo 1 y 15 del tipo 2, siendo los ingresos máximos totales que se pueden obtener de su venta 510 euros. Ejemplo 2: Determinar el máximo de la función z = 3x+ 6y sujeta a las restricciones 2x+ y 4 x y 1 x 0, y 0 Solución O(0,0) z = = 0 A(1, 0) z = = B(, ) z = = 5+ 4= C(0, 4) z = = 24 Se alcanza el máximo en este vértice, por tanto la función objetivo se hace máxima si x= 0 e y = 4 5 PROBLEMAS DE PROGRAMACIÓN LINEAL CON INFINITAS SOLUCIONES Como hemos visto en el apartado anterior, si la región factible está acotada, entonces el máximo o el mínimo de la función objetivo se encuentra en uno de los vértices de la región factible. Pero si el máximo o el mínimo se encuentran en dos vértices adyacentes de la región factible, entonces se alcanzará en los infinitos puntos del lado que los une. Gráficamente este lado es paralelo al vector director de la función objetivo. Página 11 de 18
12 Ejemplo: Determina la solución del siguiente problema de programación lineal para maximizar la función objetivo: Función objetivo: F = x+ y (maximizar) Restricciones: x+ y 5 x y 3 x 0, y 0 Solución - El primer paso es representar gráficamente el sistema de inecuaciones formado por las restricciones y obtenemos la región factible. ( ver apartado 2 y 3 del tema): x+ y 5 x 0 5 Dibujamos la recta x + y = 5. Damos dos valores a la x Elegimos el origen (0, 0) x+ y 5 (0,0) y Es Cierto, por tanto la solución es el semiplano al que pertenece el origen x y 3 x 0 3 Dibujamos la recta x -y = 3. Damos dos valores a la x Elegimos el origen (0, 0) x y 3 (0,0) y Es Cierto, por tanto la solución es el semiplano al que pertenece el origen x 0, y 0, indica que estamos en el primer cuadrante. Por tanto la región factible es: Página 12 de 18
13 - Hallamos los vértices de la región factible: A(0,0) B(3,0) x+ y = 5 x= 4 C: C(4,1) x y 3 RESOLVIENDO = y = 1 EL SISTEMA D(0,5) - Hallamos los valores de la función objetivo F = x+ y en cada uno de los vértices: A(0,0) F = = 0 F= x+ y B(3, 0) F = = 3 F= x+ y C(4,1) F = 4 + 1= 5 F= x+ y D(0,5) F = = 5 F= x+ y Página 13 de 18
14 La función objetivo alcanza el valor máximo en los vértices C y D y, por tanto, en todos los puntos del segmento CD. Hay infinitas soluciones, solución múltiple, que corresponden a los puntos del segmento situados entre el vértice C y el D. 6 PROBLEMAS DE PROGRAMACIÓN LINEAL SIN SOLUCIÓN. Un problema de programación lineal puede que no tenga solución, debido a una de estas dos razones: a) Porque la región factible sea vacía. b) Porque la región factible no éste acotada y no se alcance nunca en ella la solución óptima. Ejemplo 1: Determina la solución del siguiente problema de programación lineal para minimizar y maximizar la función objetivo: Función objetivo: F = 15x+ 25y Restricciones: 2x+ 6y 12 7x+ 3y 21 x 0, y 0 Solución - El primer paso es representar gráficamente el sistema de inecuaciones formado por las restricciones y obtenemos la región factible. ( ver apartado 2 y 3 del tema): 2x+ 6y 12 x 0 6 Dibujamos la recta 2x + 6y = 12. Damos dos valores a la x Elegimos el origen (0, 0) 2x+ 6y 12 (0,0) y No es Cierto, por tanto la solución es el semiplano donde no se encuentra el origen 7x+ 3y 21 x 0 3 Dibujamos la recta 7x +3y =21. Damos dos valores a la x y 7 0 Elegimos el origen (0, 0) 7x+ 3y 21 (0,0) No es Cierto, por tanto la solución es el semiplano donde no se encuentra el origen Página 14 de 18
15 x 0, y 0, indica que estamos en el primer cuadrante. Por tanto la región factible es: - Representamos la recta de nivel de beneficio nulo 15x+25y=0 y la desplazamos paralelamente a ella misma hasta encontrar el vértice (solución única) o un lado (infinitas soluciones) de la región factible que cumpla la condición de máximo o mínimo, - Observando la gráfica, la recta de mínimo nivel pasa por el punto C. Página 15 de 18
16 Calculamos el punto C : 5 x = 2x+ 6y = C: C(, ) 7x 3y 21 RESOLVIENDO + = EL SISTEMA y = 6 - Se observa que la región factible no está acotada y, por tanto, nunca se alcanza en ningún punto de ella el valor máximo. Ejemplo 2: Dado el recinto definido por el siguiente sistema de inecuaciones: x+ y 7 2x+ 3y 12, minimiza en dicho recinto el valor de la función f ( xy, ) = 5x+ 2y x 0, y 0 Solución Se representa la región factible, ver imagen, y se observa que la región factible está vacía, es decir, no hay ningún punto en el plano que verifique las restricciones del enunciado del problema. Página 16 de 18
17 7 EJERCICIOS 1. Resuelve el siguiente sistema de inecuaciones: x y 1. 5 x+ 3 y 15 y x 2 x+ 5y Representa el recinto formado por las siguientes restricciones: x+ 2y 16 2x+ y Determina la solución del siguiente problema de programación lineal para maximizar la función objetivo: Función objetivo: F = 3x+ 6y Restricciones: x+ y 10 0 x 6 x y y 2 4. Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes, le paga 0,07 por impreso. El estudiante lleva dos bolsas: una para los impresos de tipo A, en la que le caben 120, y otra para los de tipo B, en la que caben 100. Ha calculado que cada día puede repartir 150 impresos como máximo. Cuántos impresos habrá de repartir de cada clase para que su beneficio diario sea máximo? 5. Un autobús Madrid-París ofrece plazas para fumadores al precio de 100 y a no fumadores al precio de 60. Al no fumador se le deja llevar 50 kg de peso y al fumador 20 kg. Si el autobús tiene 90 plazas y admite un equipaje de hasta kg, cuál debería ser la oferta de la compañía si se quiere obtener el máximo beneficio? 6. Un comerciante acude a cierto mercado a comprar naranjas con 500. Le ofrecen dos tipos de naranjas: las de tipo A a 0,5 el kg y las de tipo B a 0,8 el kg. Sabemos que solo dispone en su furgoneta de espacio para transportar 700 kg de naranjas como máximo y que piensa vender el kilo de naranjas de tipo A a 0,58 y el de tipo B a 0,9. Cuántos kilogramos de naranjas de cada tipo deberá comprar para obtener beneficio máximo? Página 17 de 18
18 7. Un sastre tiene 80 m 2 de tela de algodón y 120 m 2 de tela de lana. Un traje de caballero requiere 1 m 2 de algodón y 3 m 2 de lana y un vestido de señora necesita 2 m 2 de cada una de las telas. Calcula el número de trajes y vestidos que debe confeccionar el sastre para maximizar los beneficios si un traje y un vestido se venden por 15 cada uno. 8. Un orfebre fabrica dos tipos de joyas. La unidad de tipo A se hace con 1 g de oro y 1,5 g de plata y se vende a 25. La de tipo B se vende a 30 y lleva 1,5 g de oro y 1 g de plata. Si solo se dispone de 750 g de cada metal, cuántas joyas ha de fabricar de cada tipo para obtener el máximo beneficio? 9. Un pastelero fabrica dos tipos de tartas T1 y T2, para lo que usa tres ingredientes, A, B y C. Dispone de 150 kg de A, 90 kg de B y 150 kg de C. Para fabricar una tarta T1 debe mezclar 1 kg de A, 1 kg de B y 2 kg de C, mientras que para hacer una tarta T2 necesita 5 kg de A, 2 kg de B y 1 kg de C. Si se venden las tartas T1 a 10, y las tartas T2 a 23 qué cantidad debe fabricar de cada clase para maximizar sus ingresos? 10. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 y las de madera a 280. La maquinaria del taller condiciona la producción, por lo que no se pueden fabricar al día más de 40 mesas de formica, ni más de 30 de madera, ni tampoco más de 50 mesas en total. Si se vende todo lo que se fabrica. Cuántas mesas de cada tipo les convendría fabricar para ingresar por su venta la máxima cantidad de dinero posible? Página 18 de 18
se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.
TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Departamento de Matemáticas IES Giner de los Ríos
Departamento de Matemáticas IES Giner de los Ríos La programación lineal hace historia: El puente aéreo de Berlín En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS)
Programación lineal. Tema Introducción / motivación
Tema Programación lineal Mientras que para funciones reales de variable real la derivación ha permitido resolver el problema de optimalidad en su conjunto, en este tema, la programación lineal resuelve
Tema 8: Programación lineal. Nociones elementales. Ejemplos.
Tema 8: Programación lineal. Nociones elementales. Ejemplos.. Introducción / motivación: -La optimización en problemas reales depende en general de varias variables -Las técnicas de diferenciabilidad siguen
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices
UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por
INECUACIONES LINEALES CON DOS INCÓGNITAS
pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes
PROGRAMACIÓN LINEAL. 1. Introducción
PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.
I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo
PROGRAMACIÓN LINEAL. Página 102. Página 103
4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior
Nro. de fumadores: Peso transportan : Nro. de no fumadores: Peso transportan: 50y. Ecuaciones para tabla Simplex: Función a optimizar
1- UN AUTOBUS CARACAS- MARACAIBO OFRECE PLAZAS PARA FUMADORES AL PRECIO DE BS. 10.000 Y EN NO FUMADRES PRECIO 6000. BS, AL NO FUMADOR SE LE DEJA LLEVAR 50 KG DE PESO Y AL FUMADOR 20 KG. SI EL AUTOBUS TIENE
ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL
ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita
PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:
PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles
EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN
EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.
PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la
a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2
Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,
EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL
EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,
Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos: > mayor que 2x 1 > 7
TEMA 3: Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos: < menor que x 1 < 7 menor o igual que x 1 7 > mayor que x 1 > 7 mayor o igual que
PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100
PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
EJERCICIOS Y PROBLEMAS RESUELTOS
EJERIIOS PROLEMS RESUELTOS 1. Se tiene una región factible determinada por el polígono de vértices: (2, 1), (, 0), (6, 2), (, ) y E(0, 4) a) Representa gráficamente dicha región, así como las rectas de
Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal
Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:
1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada
4ºB ESO Capítulo 5: Inecuaciones
Matemáticas orientadas a las enseñanzas académicas: 4ºB ESO Capítulo 5: Inecuaciones 136 Índice 1. INTERVALOS 1.1. TIPOS DE INTERVALOS 1.. SEMIRRECTAS REALES. INECUACIONES.1. INECUACIONES EQUIVALENTES:
Colegio Portocarrero. Departamento de matemáticas. PL con solución
PL con solución Problema 1: Un mayorista de frutos secos tiene almacenados 1800 kg de avellanas y 420 kg de almendras para hacer dos tipos de mezclas que embala en cajas como se indica a continuación:
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio
Problemas de programación lineal.
Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante
Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.
A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento
Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo:
Siempre que el problema incluya únicamente dos o tres variables de decisión, podemos representar gráficamente las restricciones para dibujar en su intersección el poliedro convexo que conforma la región
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.
PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde
Investigación Operativa I. Programación Lineal. Informática de Gestión
Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una
EJERCICIOS PROGRAMACIÓN LINEAL
EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para
Problemas resueltos de Programación Lineal
Problemas resueltos de Programación Lineal Problemas de programación lineal con dos variables. Un problema de programación lineal con dos variables tiene por finalidad optimizar (maximizar o minimizar)
APUNTE: Introducción a la Programación Lineal
APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La
Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla
COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.
4ºB ESO Capítulo 5: Inecuaciones LibrosMareaVerde.tk
ºB ESO Capítulo : Inecuaciones 10 1. INTERVALOS 1.1. TIPOS DE INTERVALOS 1.. SEMIRRECTAS REALES. INECUACIONES.1. INECUACIONES EQUIVALENTES: Índice. INECUACIONES CON UNA INCÓGNITA.1. INECUACIONES DE PRIMER
Inecuaciones. Objetivos
5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones
Matemáticas Aplicadas a las Ciencias Sociales II Soluciones
Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón
PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:
PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución
Sistemas de ecuaciones/inecuaciones lineales(clases)
1. Desafío inicial Modelar matemáticamente la siguiente situación: En una pastelería se fabrican dos clases de tortas. La primera necesita 2,4 Kg de harina y horas de elaboración. La segunda necesita 4
Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte
9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.
Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada
Teoría Tema 1 Sistema de inecuaciones - Programación lineal
página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver
PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:
PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto
Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2
Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores
Módulo Programación lineal. 3 Medio Diferenciado
Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos.
Sistemas, matrices, programación lineal resueltos. Problema 1: Sean las matrices Encuentra el valor o valores de x de forma que B 2 = A Problema 2: En la remodelación de un centro de enseñanza se quiera
a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le
SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL
SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema
Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:
UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades
PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener
APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010
Pagina APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 00 Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
4 Programación lineal
Programación lineal TIVIES INIILES.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) ( ) b) > a) 8 8 9, Solución, b) > > > > 8 > > Solución,.II. Resuelve las siguientes inecuaciones de primer
TEMA 4 PROGRAMACIÓN LINEAL
Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente
UNIDAD 4 Programación Lineal
MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:
+ 1, obtenemos x = 2, que divide. . Los puntos de ( 2, + ` ), así como el punto 2, verifican la inecuación dada, por lo que la solución es [ 2, + ` ).
Programación lineal NTES E OMENZR REUER 00 calcula tres valores de x que sean solución de estas inecuaciones. x a) x + 5 < b) 0 c) 3x 3 a) Tres soluciones son: x = 8, x = 9 y x = 0 b) Tres soluciones son:
11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:
11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
5 Pág. Página 5 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice de cada parábola: y a) y = + b) y = c)
TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL
TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos
I N E C U A C I O N E S
I N E C U A C I O N E S DE PRIMER GRADO CON UNA INCÓGNITA Forma general: a + b> 0 a + b 0 a + b< 0 a + b 0 Para resolverlas se siguen los mismos pasos que en las ecuaciones de primer grado con una incógnita:.
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
L A P R O G R A M A C I O N
L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer
PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD)
(3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes,
2 4. c d. Se verifica: a + 2b = 1
Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.
Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad
Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente
2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)
Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) 3. Se considera la función
Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = 2x + y sujeta a las siguientes restricciones: x y 1 x + y 2 x 0 y 0 a) Dibuja la región factible. (1 punto)
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)
Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:
Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad
Análisis, matrices, programación lineal y probabilidad Problema 1: Se considera la curva de ecuación cartesiana y = x 2 + 8x, calcular las coordenadas del punto en el que la recta tangente a la curva es
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1
Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede
PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015
PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata
Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:
Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,
Tema 4: Sistemas de ecuaciones e inecuaciones
Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
CONOCIMIENTOS PREVIOS. Inecuaciones.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución de ecuaciones
I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita.
Inecuaciones Contenidos 1. Inecuaciones de primer grado con una incógnita Definiciones Inecuaciones equivalentes Resolución Sistemas de inecuaciones 2. Inecuaciones de segundo grado con una incógnita Resolución
PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS
PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10
EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.
EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes 010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1_A Sea el recinto del plano
