El Problema de Transporte
|
|
|
- Inés Navarrete Prado
- hace 8 años
- Vistas:
Transcripción
1 El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008
2 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual se ha desarrollado una versión distinta del método Simplex. 2
3 Principales características Suponga que se dispone de n fábricas y de m centros de consumo, ambos localizados en distintos puntos. Cada fábrica i posee una capacidad de producción O i, y cada centro de consumo j posee una demanda D j. El costo de producir una unidad en la fábrica i es de CP i, y el costo de transportar cada unidad desde la fábrica i al centro de consumo j es de CT ij. El problema es determinar la cantidad a producir en cada fábrica y las cantidades a transportar, al mínimo costo. Luego x ij es la cantidad a producir en la fábrica i para ser llevado al centro de consumo j. 3
4 Red de distribución Fábrica RAAN Centro de consumo RAAS 4
5 RED DE TRANSPORTE 5
6 Modelo de Programación Lineal Se utilizará el siguiente modelo de programación lineal (PPL) MIN costo = s.a. n i m j x ij D j x ij O i n i m j (CPi xij CTij xij) Se satisface toda la Demanda No se puede producir más allá de la capacidad de la fábrica. x ij 0 con i:.. n y j:..m 6
7 Modelo de Programación Lineal Suponiendo que: m j D j n i O i Cap. de Prod. igual a la Dda. y reemplazando C ij =CP i +CT ij queda el siguiente modelo: MIN costo = s.a. n i m j x ij 0 n i x ij D j x ij O i m j C ij x ij con i:.. n y j:..m 7
8 8 Modelo de Programación Lineal Si n i m j j i F D O D entonces se genera un nuevo centro de consumo ficticio. Lo que consuma ese centro no es real, por tanto queda como capacidad de producción ociosa. n i i m j j O D Cap. de Prod. mayor a la Dda.
9 9 Modelo de Programación Lineal Si n i i m j j F O D O entonces se genera una nueva fábrica ficticia. Lo que produzca esa fábrica no es real. Por tanto queda como demanda insatisfecha. n i i m j j O D Cap. de Prod. menor a la Dda.
10 Modelo de Programación Lineal Ejemplo: Suponga que se dispone de 3 bodegas con capacidades de 5000, y 5000 unidades. Por otra parte, se tienen 4 centros de consumo con demandas de 5000, 5000, 5000, y 0000 unidades respectivamente. Encuentre las cantidades óptimas a producir y transportar, tal de minimizar los costos que se muestran a continuación:
11 Procedimiento Para trabajar se utiliza la siguiente tabla: 2... m O i u i h c h 2 c 2 h m c m... O u x x 2 x m h 2 c 2 h 22 c 22 h 2m c 2m 2... O 2 u 2 x 2 x 22 x 2m n h n c n h n2 c n2 h nm c nm... O n u n x n x n2 x nm D j D D 2... D m v j v v 2... v m
12 Solución factible inicial Al igual que en el método Simplex tradicional, el problema de transporte requiere partir de una solución inicial factible. Para ello se necesita asignar las cantidades x ij de manera de cumplir con las restricciones. Para ello existen al menos 3 posibilidades: Solución por tanteo. Método de la esquina Noroeste. Método de Vogel. 2
13 Método de la esquina Noroeste Este método no considera los costos, por eso puede que su solución quede alejada del óptimo. Consiste en asignar la máxima cantidad factible al casillero superior izquierdo que no posea ninguna asignación o marca. La cantidad a asignar es el mínimo entre la oferta disponible y la demanda en dicho momento. Hecha la asignación, se descuenta la cantidad tanto a la oferta como a la demanda. Con esto, una de las dos quedará en cero (fila o columna). Por tanto se marcan todos los casilleros vacíos de ella. 3
14 Método de la esquina Noroeste Ejemplo: O D C=40 4
15 Método de la esquina Noroeste En caso de que al realizar una asignación simultáneamente ambas se hagan cero (fila y columna), entonces se asigna una nueva variable con valor cero en el casillero de la fila o columna que tenga un menor costo. Se producen entonces 2 asignaciones: Una con el valor mínimo y la otra con cero. Esto se debe a que el sistema debe tener n+m- variables básicas definidas. Esto se muestra en el siguiente ejemplo: 5
16 Método de la esquina Noroeste Ejemplo 2: O D
17 Método de Vogel Este método si considera los costos, por tanto entrega una mejor solución factible inicial que la esquina noroeste. Consiste en: para cada fila y columna se calcula la diferencia entre el mayor y el menor costo de los casilleros sin marcar. Calculada la diferencia, se selecciona la fila o columna de mayor valor, en donde se le asigna la máxima cantidad factible a su casillero de menor costo que no posea ninguna asignación o marca. Luego, se actualizan las cantidades disponibles. Hecha la asignación, se descuenta la cantidad de forma similar al método de la esquina noroeste. En caso que la fila y columna se hagan cero, se hace lo mismo que en el método anterior. 7
18 Método de Vogel Ejemplo: O D C=335 8
19 Simplex de Transporte Paso Se encuentra una solución factible inicial O D C=40 9
20 Simplex de Transporte Paso 2 Se determinan los valores de los u i y de los v j. Se plantean n+m- ecuaciones con n+m incógnitas, por lo que a una de ellas se le hace valer cero arbitrariamente, y se resuelve el sistema O u i u u u 3 D v j v v 2 v 3 v 4 C=40 u +v =0 u +v 2 =0 u 2 +v 2 =7 u 2 +v 3 =9 u 2 +v 4 =20 u 3 +v 4 =8 20
21 Simplex de Transporte Paso 3 Se determinan los hij para ver la variable que entra. Para todos los x ij se tiene que h ij =c ij -(u i +v j ). Si x ij es variable básica, entonces h ij = 0 y c ij =u i +v j O u i D v j C=40 u +v =0 u +v 2 =0 u 2 +v 2 =7 u 2 +v 3 =9 u 2 +v 4 =20 u 3 +v 4 =8 2
22 Simplex de Transporte Paso 4 Entra la variable con el h ij más negativo. Si no existe ningún negativo, se llegó al óptimo. Con la variable entrante se forma un circuíto. Entra O u i D v j C=40 22
23 Simplex de Transporte Paso 5 Se determina la variable que sale de entre los xij que presentan un -. Se escoge el de menor valor, y en caso de empate se elige el de mayor costo. toma el valor del xij que sale O u i D v j C=40 =5 Sale 23
24 Simplex de Transporte Paso 6 Se actualizan los valores de los xij sumando o restando en los casos que corresponda y se recalcula el costo. Se vuelve al paso O u i D v j C=335 24
El Problema del Transporte
ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para
- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-
TRANSPORTE Y TRANSBORDO
TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus
Tema 7: Problemas clásicos de Programación Lineal
Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
INVESTIGACIÓN OPERATIVA
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación
1.Restricciones de Desigualdad 2.Procedimiento algebraico
Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un
Problemas de Transbordo
Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos
Dirección de Operaciones
Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar
Investigación de Operaciones I. Problemas de Asignación
Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA
UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N
PROGRAMACION DE REDES. MODELOS DE TRANSPORTE
PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
Programación lineal: Algoritmo del simplex
Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #9 Tema: PROBLEMA DE ASIGNACIÓN Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /201 Objetivos: Resolver problemas de asignación
Figura 1: Esquema de las tablas simplex de inicio y general.
RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex
PROGRAMACIÓN LINEAL MÉTODO GRÁFICO
1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante
INVESTIGACION DE OPERACIONES:
METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema
ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2
INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.
Unidad 6 Método de transporte
Unidad 6 Método de transporte Como ya se vio en la unidad 3, los problemas de transporte son problemas de programación lineal (pl), pero con una estructura muy particular de la matriz de los coeficientes
PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I
PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Julio Rito Vargas Avilés. Método Húngaro: Los problemas de asignación incluyen aplicaciones tales como
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
EL PROBLEMA DE TRANSPORTE
1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede
3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN
El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del
Universidad de Managua Curso de Programación Lineal
Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
Universidad Nacional de Ingeniería
Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas
Prueba de optimalidad con. Métodos de Transporte. Autor : Ing. Germán D. Mendoza R.
Prueba de optimalidad con algoritmo STEPPING-STONE en Métodos de Transporte Autor : Ing. Germán D. Mendoza R. PROBLEMAS DE TRANSPORTE FASE 1: Algoritmos de solución básica Inicial: Método de la esquina
1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda
UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta
Fundamentos de Investigación de Operaciones Modelos de Grafos
Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI
Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Programación Lineal Modelo de transporte Asignación
Programación Lineal Modelo de transporte Asignación Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE ASIGNACIÓN Modelo de Asignación Consiste en asignar al mínimo costo los requerimientos
Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías
Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas
Problemas del transporte
Taller 5 PROBLEA 8.- Problemas del transte Es necesario planear el sistema de energía de un nuevo edificio. Las tres fuentes posibles de energía son electricidad, gas natural, y una unidad de celdas solares.
UNIDAD 7 MODELO DE TRANSPORTE
UNIDAD 7 MODELO DE TRANSPORTE Obtendrá el modelo de transporte asociado a un problema. Construirá el esquema y la tabla inicial asociada al modelo de transporte. Resolverá problemas de transporte utilizando
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
EJERCICIO DE MAXIMIZACION
PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación
CAPÍTULO 6 PROGRAMACIÓN DINÁMICA. Programación Dinámica
CAPÍTULO 6 PROGRAMACIÓN DINÁMICA Programación Dinámica Programación Dinámica En muchos casos las decisiones del pasado afectan los escenarios del futuro. En estos casos se pueden tomar 2 opciones: asumir
FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES
FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES AUTOR: Arturo Yesid Córdoba Berrio Ing. Industrial Administrador de Empresas Especialización en Transporte
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN
Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:
MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica
Método Simplex: Encontrado una SBF
Método Simplex: Encontrado una SBF CCIR / Matemáticas [email protected] CCIR / Matemáticas () Método Simplex: Encontrado una SBF [email protected] 1 / 31 Determinación de SBF Determinación de SBF El método
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George
TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES.
TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. Ing. Manuel Domínguez Alejo 1, MSc. Adriana Delgado Landa 2. 1. Universidad de Matanzas Sede
Listado de Trabajo TRANSPORTE
Listado de Trabajo TRANSPORTE Problema 1 Una compañía de servicios Informáticos, recibe pedidos de sus productos desde tres diferentes ciudades, en las siguientes cantidades: La ciudad A pide 18 Pc portatiles.
Problemas de transporte, asignación y trasbordo
Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado
Fundamentos de Investigación de Operaciones El Problema de Transporte
Fundamentos de Investigación de Operaciones El Problema de Transporte Septiembre 2002 El Problema de Transporte corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo
RESOLUCIÓN INTERACTIVA DEL SIMPLEX
RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación
1 ÁLGEBRA DE MATRICES
1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa
Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1
Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran
Capítulo 4 Método Algebraico
Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,
IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0
IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la
Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:
Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1
Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede
Lección 8. Problemas del transporte, transbordo y asignación
Lección 8. Problemas del transporte, transbordo y asignación 8.1. El problema de transporte 8.1.1.Propiedades del sistema de transporte. 8.1.2.Método general de solución- algoritmo de transporte. 8.1.3.Determinación
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos
Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías
Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as LA REGLA DE LA ESQUINA NOROESTE 2 Esta regla nos permite encontrar una solución n factible básica b inicial (SFBI),
NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN
CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
Universidad de Managua Al más alto nivel
Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas
Tema 5: Análisis de Sensibilidad y Paramétrico
Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9
IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.
Breve introducción a la Investigación de Operaciones
Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de
Universidad Autónoma de Sinaloa
Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:
Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero
Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
UNIDAD 4 Programación Lineal
MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:
Parte 2 / 3 Programación lineal, método Simplex:
Parte 2 / 3 Programación lineal, método Simplex: Programación lineal, método Simplex: Típico ejemplo de maximizar los beneficios o producción de una empresa: la inyectora de plástico Zonda, que produce
RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL
RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL Este material interactivo presenta la resolución interactiva de un ejemplo concreto de un problema de P.L. mediante el método Simplex Dual. Así, partiendo de la
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías
EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia
SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE
UNIDAD III. INVESTIGACIÓN DE OPERACIONES
UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.
Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002
Posible solución al examen de Investigación Operativa de Sistemas de junio de 00 Problema (,5 puntos): Resuelve el siguiente problema utilizando el método Simplex o variante: Una compañía fabrica impresoras
UNIVERSIDAD DE MANAGUA
UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice
Optimización de Problemas de Producción
Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de
Problema de Programación Lineal
Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,
a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le
PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1
M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser
