Complejidad de Algoritmos
|
|
|
- José Ramón Castellanos Sandoval
- hace 9 años
- Vistas:
Transcripción
1 Complejidad de Algoritmos Tema 5
2 Introducción Un algoritmo es una secuencia de instrucciones que resuelve un problema Puede tener diferentes implementaciones Para comparar las diferentes formas (algoritmos) de resolver un problema debe ser posible medirlos : Tiempo y memoria. La medida de la eficiencia requiere determinar la complejidad de un algoritmo.
3 Factores del tiempo Datos de entrada:la dimensión del vector a ordenar o el tamaño de las matrices a multiplicar Calidad del código generado por el compilador Arquitectura del procesador (cisc, risc) Complejidad intrínseca del algoritmo Medidas: A priori (Acotación teórica del algoritmo) A posteriori (empírica o práctica) para un conjunto de datos y para un ordenador concreto.
4 Factores del tiempo II La unidad de tiempo no puede ser concreta, no existe un ordenador estándar al que puedan hacer referencia todas las medidas. T(n) el tiempo de ejecución para una entrada de tamaño n. Principio de Invarianza Dado un algoritmo y dos implementaciones suyas I1 e I2, que tardan T1(n) y T2(n) segundos respectivamente, el Principio de Invarianza afirma que existe una constante real c > 0 y un número natural n0 tales que para todo n >= n0 se verifica que T1(n) <= ct2(n). Nota : a priori un algoritmo de orden cuadrático es mejor que uno de orden cúbico T1(n) = 10 el primero sólo será mejor que el segundo para tamaños de la entrada superiores a
5 Mejor,peor y tiempo medio El comportamiento de un algoritmo puede cambiar notablemente para diferentes entradas (lo ordenados que se encuentren ya los datos a ordenar). Se Estudian tres casos : Caso peor: mayor número posible de instrucciones ejecutadas por el algoritmo. Caso mejor :menor número posible de instrucciones ejecutadas por el algoritmo. Caso medio (o general):número de instrucciones igual a la esperanza matemática de la variable aleatoria definida por todas las posibles trazas del algoritmo para un tamaño de la entrada dado, con las probabilidades de que éstas ocurran para esa entrada
6 Operaciones Elementales Las Operaciones Elementales (OE): Medida básica de complejidad de algoritmos las operaciones aritméticas básicas: +,-,/,*,... asignaciones a variables los saltos (llamadas funciones y procedimientos, retorno desde ellos, etc.) las comparaciones y operaciones lógicas (2 > 5 AND 5 == 3) El acceso a vectores y matrices. Ejemplos : a++ 2 OE (=,+) b = a*5 Vector[2*2] 5 OE (=,*,-,[],*) b += suma(a,b<2) 4 OE (=,+,salto,<) C++ == E[1] AND B>3 6 OE (=,+,==,[],AND,>)
7
8 Análisis del caso caso mejor :línea (1) y (2) sólo la primera mitad de la condición: 2 OE (expresiones se evalúan de izquierda a derecha, y con cortocircuito ) + (5) a (7). T(n)=1+2+3=6. caso peor: (1) bucle se repite n 1 veces hasta que se cumple la segunda condición (5) hasta línea (7). Cada iteración del bucle compuesta (2) y (3), + ejecución adicional de la línea (2)
9 Análisis del caso II
10 Calculo de OE II - CASE C OF v1:s1 v2:s2... vn:sn END T = T(C)+max{T(S1),T(S2),...,T(Sn)}. - IF C THEN S1 ELSE S2 END T = T(C) + max{t(s1),t(s2)}. _ WHILE C DO S END T = T(C) + (nº iteraciones)*(t(s) + T(C)). ojo tanto T(C) como T(S) pueden variar en cada iteración Para resto de sentencias iterativas (FOR,etc...) basta expresarlas como un bucle WHILE.
11 Fórmulas I Sumatorias 1) La sumatoria de una suma es igual a la suma de las sumatorias: a + b = a + b 2) Cuando el cuerpo de la sumatoria es independiente de los índices, el valor es el número de valor diferentes que toma el índice multiplicado por el valor del cuerpo: n 1 i= 0 n 1 i= 0 a = a.n n a + f(i) = 1 i= 0 n a + 1 i= 0 n f(i) = a.n + 1 i= 0 f(i)
12 Fórmulas II 3) Cuando el cuerpo de la sumatoria se puede expresar como una constante independiente de los índices multiplicada por una expresión, el valor es el valor de la constante multiplicada por la sumatoria de la expresión: n 1 i= 0 n af(i) = a 1 i= 0 f(i) 4) Suma de los valores de una progresión aritmética: Ej:( ),( ),( ) = incremento a 0 = primer elemento a n-1 = último elemento n = número de elementos progresión aritmética: a n = a 0 + n n 1 i= 0 a i = ((a i +a n-1 )n)/2 El primer elemento más el último, multiplicado por el número de elementos y dividido por 2
13 Formulas III ) Suma de los valores de una progresión geométrica: Ej:( ), ( ) = razón 0 = primer elemento = número de elementos rogresión geométrica: a n = a 0 Π n r-1)(1 + r r n-1 ) = r n - 1 n 1 n 1 n a i = i= 0 a 0 Π i = a 0 1 Π i = a 0 (Π n -1)/( Π-1) i= 0 i= 0 El primer elemento multiplicado por la razón elevada al número de elementos menos 1 y todo dividido or la razón menos 1
14 Ejemplo Asignación Suma Comparación 3OE { Asignación Suma Comparación 3OE { Comparacion 4 OE 3 OE 4 OE 2 OE aso Mejor :la condición será falsa, no se cuta (4)a (6). el bucle interno (n i) iteraciones Comp Inc 3OE} Comp Inc 3OE} aso Peor :la condición será verdadera, se cuta (4)a (6). el bucle interno (n i) iteraciones
15 Ejemplo II Asignación Suma Comparación 3OE { Asignación Suma Comparación 3OE { Comparacion 4 OE 3 OE 4 OE 2 OE Comp Inc 3OE} Comp Inc 3OE} aso Medio :la condición será verdadera un % de las veces
16 Análisis Búsqueda Máximo Busca el máximo en un vector empezando en la posición i hasta la j, por lo que el tamaño de la entrada T(n) = T(j-i) 1 OE Asignación Suma Comparación 3OE { 3 OE + P *1 Comp Inc 3OE} 1 OE
17 Análisis Búsqueda Máximo II Asignación 1 OE Asignación Suma Comparación 3OE { 3 OE + P *1 Asignación 1 OE Salto 1 OE Comparación Incremento 3OE}
18 Coste de Intercambio Método que intercambia dos contenidos en el vector dadas sus posiciones. temp:=a[i]; 2 OE a[i]:=a[j]; 3OE 7 OE a[j]:=temp ; 2 OE Utilizaremos este método y el de búsqueda de máximos y mínimos en un vector para facilitar el análisis de algoritmos de ordenación
19 Selección En cada paso (i=1...n 1) este método busca el mínimo elemento del subvector a[i..n] y lo intercambia con el elemento en la posición i: Asignación Resta Comparación 3OE { Salto 1OE + Intercambia 7 OE Caso peor Salto 1OE + PosMinimo Comparación Incremento 3OE}
20 Burbuja Asignación Resta Comparación 3OE { Asignación suma Comparación 3OE { comparación 4 OE Salto 1OE + Intercambia 7 OE resta 1OE Comparación Incremento 3OE} Comparación Incremento 3OE} }
21 Cota Superior O(f) Asignación Resta Comparación 3OE { Asignación suma Comparación 3OE { comparación 4 OE alto 1OE + Intercambia 7 OE resta 1OE Comparación Incremento 3OE} Comparación Incremento 3OE} }
22 Propiedades de O
23 Recurrencia T(n) = E(N) donde en E(n) aparece una expresión de T(n) Algoritmos recursivos Se expresa el algoritmo en base a las condiciones iniciales necesarias y una expresión recursiva T(n) = T(n-1) + T(n-2) Para n > 1 T(n) = 1 Para n=1 T(n) =0 Para n= 0
24 Ecuaciones Homogeneas
25 Raíces distintas
26 Raíces distintas II
27 Raíces Multiplicidad > 1 Ejemplo:
28 No Homogeneas
29 Ecuación característica los coeficientes ai y b son números reales, y p(n) es un polinomio en n de grado d Solución Ejemplo: Torres de Hanoi
30 Ecuación generalizada Solución Ejemplo
31 Cambio de variable n es una potencia de 2 (n > 3), T(1) = 1, y T(2) = 6. b =2 d = 0
Complementos de Matemáticas, ITT Telemática
Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos
Análisis de algoritmos
Tema 05: no recursivos M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido no recursivos La notación de Landau O La notación O Principio
Introducción a las sentencias de control
INSTRUCCIONES DE CONTROL CONTENIDOS 1. Introducción a las sentencias de control. 2. Instrucciones o sentencias condicionales: IF, IF-ELSE, SWITCH. 3. Instrucciones o sentencias repetitivas o iterativas:
Algoritmos: Algoritmos sobre secuencias y conjuntos de datos
Algoritmos: Algoritmos sobre secuencias y conjuntos de datos Alberto Valderruten LFCIA - Departamento de Computación Facultad de Informática Universidad de A Coruña, España www.lfcia.org/alg www.fi.udc.es
La eficiencia de los programas
La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos
Complejidad algorítmica. Algoritmos y Estructuras de Datos II (Programación I) Mgter. Vallejos, Oscar A.
Complejidad algorítmica Complejidad Algorítmica En particular, usualmente se estudia la eficiencia de un algoritmo en tiempo (de ejecución), espacio (de memoria) o número de procesadores (en algoritmos
Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE
PROGRAMACIÓN (EUI). Curso 2001-2002 Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE F. Marqués y N. Prieto Índice General 1 Introducción 1 2 El problema 1 2.1 Desarrollo en serie
Estructuras de control. Secuencial, condicional y repetitivas.
Estructuras de control. Secuencial, condicional y repetitivas. 1 Estructuras de control. Hemos visto en los diagramas de flujo y pseudo-código que: 1) Se piden datos de entrada (al usuario) Asiganción
Tema Contenido Contenidos Mínimos
1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los
Práctica 2 Métodos de búsqueda para funciones de una variable
Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,
UNIDAD I. ALGORITMOS
UNIDAD I. ALGORITMOS 1.1 Definición Un algoritmo es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema específico. 1.2 Tipos Cualitativos: Son aquellos
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Polinomios de grado 2 Una ecuación cuadrática es una ecuación
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
Notación Asintótica. Temas. Introducción Notación O Notación Omega Notación Theta. Análisis de Algoritmos
Notación Asintótica Análisis de Algoritmos Temas Introducción Notación O Notación Omega Notación Theta 1 Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime) Determinar
2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS
2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS 2.1 Tipos De Datos Todos los datos tienen un tipo asociado con ellos. Un dato puede ser un simple carácter, tal como b, un valor entero tal como
TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.
TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A
Valores y Vectores Propios
Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................
λ autovalor / valor propio v autovector / vector propio
1. INTRODUCCIÓN Problema estándar Problema generalizado CÁLCULO DE AUTOVALORES λ autovalor / valor propio v autovector / vector propio Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada
5. RECURRENCIAS LINEALES
. RECURRENCIAS LINEALES.1. Recurrencias lineales homogéneas Definiciones Una relación o fórmula de recurrencia de orden k 1 para una sucesión {a 0,a 1,a,...,a n,...} es una expresión que relaciona cada
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
Algorítmica y Lenguajes de Programación. Eficiencia y notación asintótica (i)
Algorítmica y Lenguajes de Programación Eficiencia y notación asintótica (i) Eficiencia y notación asintótica. Introducción Para resolver un problema pueden existir varios algoritmos. Por tanto, es lógico
Algoritmos. Diseño de algoritmos por inducción. Alberto Valderruten. [email protected]. Dept. de Computación, Universidade da Coruña
Divide y Vencerás Diseño de algoritmos por inducción Dept. de Computación, Universidade da Coruña [email protected] Contenido Divide y Vencerás 1 Divide y Vencerás 2 Índice Divide y Vencerás 1
Estructuras de control
Estructuras de control El flujo secuencial de acciones en un algoritmo puede ser alterado por medio de las denominadas estructuras de control, las cuales se resumen a continuación: Estructuras de selección
Análisis y Diseño de Algoritmos
Análisis y Diseño de Algoritmos Notación Asintótica DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime)
Multiplicación de enteros Algoritmo clásico 1234*5678 = 1234* (5*1000 + 6*100+7*10+8) = 1234*5*1000 + 1234*6*100 + 1234*7*10 + 1234*8 Operaciones bási
Algoritmos Divide y Vencerás Análisis y Diseño de Algoritmos Algoritmos Divide y Vencerás Ejemplo: Multiplicación de enteros grandes La técnica divide y vencerás Características Método general divide y
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura
Introducción a MATLAB
Introducción a MATLAB Sistemas Conexionistas - Curso 07/08 MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería. Se pueden resolver problemas numéricos relativamente
Unidad 1. Las fracciones.
Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO METROPOLITANO
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO METROPOLITANO I. TITULO : LENGUAJE C CODIGO : CMIS3330 CREDITAJE : 3 CREDITOS REQUISITOS : CMIS 2200 II. DESCRIPCION DEL CURSO: Estudio del lenguaje de
Métodos Numéricos (SC 854) Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales c M Valenzuela 2007 (2 de agosto de 2007) Matrices Definición Una matriz n m es un arreglo rectangular de elementos con n filas (o renglones) y m columnas en
Tema 2. Sistemas de ecuaciones lineales
Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades
Seminario 1: Resolución de recurrencias
Grado en Ingeniería Informática Algoritmos Seminario 1: Resolución de recurrencias c Óscar Fontenla Romero y Elena Henández Pereira {oscar.fontenla, elena.hernandez}@udc.es 1/42 Introducción Cuando se
3. Estructuras iterativas
3. Estructuras iterativas Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 Índice Estructura iterativas 1. Análisis de algoritmos iterativos 2. Ej11: While 3. Ej12:
Optimización en Ingeniería
Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: [email protected] Método de Búsqueda de Fibonacci Algoritmo
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
Tema 3. Análisis de costes
Tema 3. Análisis de costes http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz {badia, bmartine, morales, sanchiz}@icc.uji.es Estructuras de datos y de la información
Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO
Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : Página Internet : http://math.uprag.edu I. Título
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
PROGRAMACIÓN ALGORITMOS y DIAGRAMAS
PROGRAMACIÓN ALGORITMOS y DIAGRAMAS ALGORITMO DEFINICIÓN: CONSISTE EN LA DESCRIPCIÓN CLARA Y DETALLADA DEL PROCEDIMIENTO A SEGUIR PARA ALCANZAR LA SOLUCIÓN A UN PROBLEMA ESTABLECIENDOSE UNA SECUENCIA DE
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico
Expresión, Operador, Operando, Asignación, Prioridad
4. EXPRESIONES Y OPERADORES Conceptos: Resumen: Expresión, Operador, Operando, Asignación, Prioridad En este tema se presentan los siguientes elementos de la programación: las expresiones y los operadores.
Programación Lineal. Unidad 1 Parte 2
Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Funciones algebraicas
Funciones algebraicas Las funciones polinomiales tienen una gran aplicación en la elaboración de modelos que describen fenómenos reales. Algunos de ellos son: la concentración de una sustancia en un compuesto,
Tema 9. Recursividad
Tema 9. Recursividad http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz {badia, bmartine, morales, [email protected] Estructuras de datos y de la información Universitat
Flujo del programa. Este flujo puede alterarse mediante: El ordenador ejecuta cada sentencia y va a la siguiente hasta el final del programa.
Flujo del programa El flujo del programa hace referencia al orden en que se ejecutan las instrucciones. El flujo por defecto de un programa es el secuencial: El ordenador ejecuta cada sentencia y va a
Tema 01: Fundamentos del Análisis Asintótico de Algoritmos
Tema 01: Fundamentos del Análisis Asintótico de Algoritmos Noviembre, 2003 CS0218: Algoritmos y Programación II Introducción En Ciencias de la Computación se presenta con frecuencia la situación de analizar
Algoritmos y Diagramas de flujo
Algoritmos y Diagramas de flujo En los pasos a seguir para el desarrollo de un problema, existen básicamente dos tipos de elementos con los cuales es posible especificar un problema en forma esquemática
CAPÍTULO 10 ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA. 10.7. Búsqueda en listas 10.8. Resumen 10.9. Ejercicios 10.10. Problemas
CAPÍTULO 10 ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA C O N T E N I D O 10.1. Ordenación 10.2. Ordenación por burbuja 10.3. Ordenación por selección 10.4. Ordenación por inserción 10.5. Ordenación Shell 10.6.
1. Ecuaciones de recurrencia
PRÁCTICA NO 3. ALGORITMOS RECURRENTES 1. Ecuaciones de recurrencia Una ecuación de recurrencia es una expresión finita que define explícitamente una sucesión, en el cual un elemento de la sucesión se determina
Análisis de algoritmos.
Análisis de algoritmos. - Introducción. - Notaciones asintóticas. - Ecuaciones de recurrencia. - Ejemplos. 1 Introducción Algoritmo: Conjunto de reglas para resolver un problema. Su ejecución requiere
Dirección de Desarrollo Curricular Secretaría Académica
PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Álgebra PERIODO I CLAVE BCMA.01.05-10 HORAS/SEMANA 5 CRÉDITOS 10 Secretaría
λ = es simple se tiene que ( )
Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6,
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos
Problemas de Recursividad
Problemas de Recursividad Problema 1. El factorial de un número entero n 0, denotado como n!, se define! como!!! i = 1 2 n cuando n > 0, y 0! = 1. Por ejemplo 6! = 1 2 3 4 5 6 = 720 Diseñad una método
Universidad de Valladolid. Departamento de informática. Campus de Segovia. Estructura de datos Tema 4: Ordenación. Prof. Montserrat Serrano Montero
Universidad de Valladolid Departamento de informática Campus de Segovia Estructura de datos Tema 4: Ordenación Prof. Montserrat Serrano Montero ÍNDICE Conceptos básicos Elección de un método Métodos directos
Práctica: Métodos de resolución de ecuaciones lineales.
Práctica: Métodos de resolución de ecuaciones lineales. Objetivo: Aplicar dos técnicas de resolución de sistemas de ecuaciones lineales: Un método finito basado en la descomposición LU de la matriz de
CAPITULO II. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS
CAPIULO II. ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS 2.1 ipos de datos 2.2 Expresiones 2.3 Operadores y operandos 2.4 Identificadores como localidades de memoria OBJEIVO EDUCACIONAL: El alumno:
PRIMERA PARTE PROGRAMACION MATEMATICA
CONTENIDO CAPITULO 1 Toma de decisiones en la investigación de operaciones (IO) 1 1.1 Arte y ciencia de la investigación de operaciones. 1 1.2 Elementos de un modelo de decisión.. 2 1.3 Arte de la representación
Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual
7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,
Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto
1. Introducción al análisis de algoritmos
1. Introducción al análisis de algoritmos 1. Introducción al concepto de algoritmia 2. Eficiencia de un algoritmo 3. Notación asintótica 4. Reglas generales Bibliografía Brassard y Bratley, 97; capítulos
VOCABULARIO HABILIDADES Y CONCEPTOS
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9.doc 1 DE 7 Nombre: Fecha: VOCABULARIO A. Valor absoluto de un número complejo B. Eje de simetría C. Completar el cuadrado D. Número complejo E. Plano de números
PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1
M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser
Análisis de algoritmos
Tema 02: Complejidad de los algoritmos M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido Algoritmo Algoritmo vs. Proceso Computacional
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Lenguaje C, segundo bloque: Sentencias de control
Lenguaje C, segundo bloque: Sentencias de control José Otero 1 Departmento de informática Universidad de Oviedo 23 de octubre de 2007 Índice 1 Sentencia if 2 Sentencia if-else 3 if e if-else anidados 4
MANUAL DE EXCEL AVANZADO
MANUAL DE EXCEL AVANZADO 1. CONSOLIDACIÓN DE CONCEPTOS... 1 1.1. FÓRMULAS (BUENAS PRÁCTICAS)... 1 1.1.1. Tipos de operandos... 1 1.1.2. Tipos de operadores... 2 1.1.3. PRECEDENCIA DE OPERADORES ARITMÉTICOS...
Introducción a MATLAB
Introducción a MATLAB Sistemas Conexionistas - Curso 08/09 MATLAB es un sistema interactivo basado en matrices que se utiliza para cálculos científicos y de ingeniería. Puede resolver problemas numéricos
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
Universidad Central Del Este U.C.E. Facultad de Ciencias Administrativas y de Sistemas Escuela de Ingeniería de Sistemas
Universidad Central Del Este U.C.E. Facultad de Ciencias Administrativas y de Sistemas Escuela de Ingeniería de Sistemas Programa de la asignatura: SIS-085 MATEMÁTICA PARA INFORMÁTICOS Total de Créditos:
Etapas para la solución de un problema por medio del computador
Algoritmos. Definición Un algoritmo se puede definir como una secuencia de instrucciones que representan un modelo de solución para determinado tipo de problemas. O bien como un conjunto de instrucciones
Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición
Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente
Introducción al Análisis del Coste de Algoritmos
1/11 Introducción al Análisis del Coste de Algoritmos Josefina Sierra Santibáñez 7 de noviembre de 2017 2/11 Eficiencia de un Algoritmo Analizar un algoritmo significa, en el contexto de este curso, predecir
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 8 vo grado periodo 11 al 22 de agosto
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS Tipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria
ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS ipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria ipos De Datos odos los datos tienen un tipo asociado con
Recordar las principales operaciones con expresiones algebraicas.
Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números
Análisis de problemas
Análisis de problemas La resolución de problemas implica el desarrollo de habilidades del pensamiento. Nuestra capacidad d de enfrentar problemas aumenta con la práctica. Existen algunos textos con problemas
Tablas Hash y árboles binarios
Tablas Hash y árboles binarios Algoritmos Tablas hash Árboles Binarios Árboles Balanceados Tablas Hash Introducción Las tablas hash son estructuras tipo vector que ayudan a asociar claves con valores o
Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson
Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería,
GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2013-1
Módulo de Razonamiento cuantitativo Este módulo evalúa competencias relacionadas con las habilidades en la comprensión de conceptos básicos de las matemáticas para analizar, modelar y resolver problemas
1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices
36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas
Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011
Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................
Algoritmos y Complejidad
Algoritmos y Complejidad Introducción Pablo R. Fillottrani Depto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Primer Cuatrimestre 2017 Introducción Algoritmos y Algoritmia Problemas
AUTORES... 11 PRÓLOGO...13 INTRODUCCIÓN... 15 CAPÍTULO 1. INICIACIÓN A LA PROGRAMACIÓN EN MAPLE...19
ÍNDICE AUTORES... 11 PRÓLOGO...13 INTRODUCCIÓN... 15 CAPÍTULO 1. INICIACIÓN A LA PROGRAMACIÓN EN MAPLE...19 1.1. ESTRUCTURA BÁSICA... 19 1.2. BREVE RECORRIDO POR MAPLE...23 1.2.1. Números, Polinomios y
Análisis de algoritmos
Tema 08: Divide y vencerás (DyV) M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido Introducción Divide y vencerás Observaciones
COMPARACIÓN DE SUPERFICIES DE RESPUESTA CON BÚSQUEDA TABÚ Y ALGORITMOS GENÉTICOS
71 CAPITULO 5 COMPARACIÓN DE SUPERFICIES DE RESPUESTA CON BÚSQUEDA TABÚ Y ALGORITMOS GENÉTICOS En este capítulo se presentan los resultados obtenidos y los comentarios de éstos, al correr algunos ejemplos
Capítulo 1 LA COMPLEJIDAD DE LOS ALGORITMOS
Capítulo 1 LA COMPLEJIDAD DE LOS ALGORITMOS 1.1 INTRODUCCIÓN En un sentido amplio, dado un problema y un dispositivo donde resolverlo, es necesario proporcionar un método preciso que lo resuelva, adecuado
ALGORITMO DE OPTIMIZACIÓN BASADO EN EL APAREAMIENTO DE LAS ABEJAS(HBMO). UN NUEVO ENFOQUE HEURÍSTICO DE OPTIMIZACIÓN.
DE OPTIMIZACIÓN BASADO EN EL APAREAMIENTO DE LAS (HBMO). UN NUEVO ENFOQUE HEURÍSTICO DE OPTIMIZACIÓN. OMID BOZORG HADDAD, ABBAS AFSHAR, MIGUEL A. MARIÑO Víctor Fernández Mora Manuel Sifón Miralles Raquel
[email protected]
Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: [email protected]
RAICES DE ECUACIONES Y SISTEMA DE ECUACIONES
RAICES DE ECUACIONES Y SISTEMA DE ECUACIONES Justo Rojas T. Laboratorio de Simulación Computacional de Materiales Facultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos Abril 24, 2012 Curso
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
3. POLINOMIOS, ECUACIONES E INECUACIONES
3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución
