Práctica 0 Cálculo con Mathematica
|
|
|
- Ángela Contreras Casado
- hace 10 años
- Vistas:
Transcripción
1 Práctica 0 Cálculo con Mathematica 1.- Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas, cálculo simbólico, gráficos, Las últimas versiones del programa incorporan un editor de texto (bastante aceptable) y permi-ten el manejo de paletas de símbolos que facilitan el uso de los comandos e instrucciones del programa y la utilización de la simbología habitual en las fórmulas y operaciones matemáticas. El programa Mathematica está estructurado en 2 partes: 1.- El Front End: es la interface que permite la comunicación con el usuario. Presenta las entradas y salidas y permite crear y editar ficheros que contienen texto, cálculos, gráficas, etc. Estos ficheros tienen la extensión.nb y se denominan Notebooks (Cuadernos de notas). La información que contienen estos ficheros se estructura mediante un sistema de celdas de diferentes tipos (título, subtítulo, sección, texto, input, output,.). 2.- El Kernel (núcleo): constituye la estructura interna del programa y es el que se encarga de la realización de los cálculos y operaciones matemáticas que solicita el usuario. Las posibilidades que ofrece el programa Mathematica son muy variadas: a) Cálculo numérico: Realización de operaciones de cálculo simples o muy complicadas. El programa nos devuelve el resultado como si se tratara de una calculadora científica. La diferencia es que permite trabajar con la precisión que queramos. In[1]:= 2^100 Mathematica nos devuelve el valor exacto y no una aproximación como haría una calculadora. Out[1]= In[2]:= 2^100 N así nos da un valor aproximado Out[2]= In[3]:= N 2^100 de esta forma también nos da un valor aproximado Out[3]= En las entradas anteriores hemos introducido un comentario en una celda input y el programa lo ha ignorado al ejecutar la celda. Los comentarios son interesantes ya que permiten aclarar lo que realiza una determinada instrucción. Se considera comentario todo lo que hay escrito entre (* texto del comentario *). b) Cálculo simbólico: Permite trabajar y operar con expresiones simbólicas.
2 2 practica0_0708-v52-out.nb b) Cálculo simbólico: Permite trabajar y operar con expresiones simbólicas. In[4]:= Expand a b ^3 Out[4]= a 3 3 b a 2 3 b 2 a b 3 In[5]:= Out[5]= In[6]:= D x^n, x n x n 1 1 x Log x x 0 Out[6]= 1 4 c) Gráficos: Permite visualizar gráficos en dos o tres dimensiones In[7]:= Plot Sin x, x, 0, 2 Π Out[7]= In[8]:= Graphics Plot Sin x, x, 0, 2 Π ;
3 practica0_0708-v52-out.nb 3 In[9]:= Plot3D x^2 y^2, x, 2, 2, y, 2, Out[9]= SurfaceGraphics d) Definición de variables y funciones: Permite definir y operar con variables y funciones definidas por el usuario. In[10]:= Out[10]= 10 In[11]:= Out[11]= 21 a 7; b 3; a b a b In[12]:= f x : x^2 5 x 6 In[13]:= Out[13]= 0 In[14]:= f 3 f' x Out[14]= 2 x 5 In[15]:= Out[15]= 2 x 5 D f x, x e) Confección de programas: Mathematica incorpora su propio lenguaje de programa-ción que puede utilizarse para implantar algoritmos de cálculo, bucles, procesos itera-tivos,
4 4 practica0_0708-v52-out.nb In[16]:= x 1 2; For n 1, n 5, n n 1, 2. x n x n ; Print N x n In[18]:= x 1 2; For n 5, 5 n 10, n n 1, x n x n ; Print N x n Primeros pasos con Mathematica Como hemos indicado con anterioridad la información contenida en los Notebooks se estructura mediante un sistema de celdas de distintos tipos. Por defecto Mathematica asigna a las celdas el tipo Input (entrada). Estas celdas contienen las órdenes (comandos, instrucciones, operaciones, etc.) que el usuario quiere realizar. Para que el programa ejecute la instrucción contenida en una celda Input hay que pulsar la tecla Intro (o la combinación: Mayúscula+Return). Si escribimos 2+7 y pulsamos Intro, el programa nos devuelve: In[20]:= 2 7 Out[20]= 9 Asociada a cada celda Input el programa genera una celda Output (salida) donde muestra el resultado de la operación requerida. Ambas celdas aparecen con los indicadores In[n]:= y Out[n]. El número n se genera automáticamente y de manera secuencial a lo largo de una sesión de trabajo, desde que se inició el programa hasta que salimos de él. Este número puede sernos de utilidad si queremos utilizar un cálculo previamente obtenido, dado que el programa Mathematica almacena en el Kernel (núcleo) todas las evaluaciones y cálculos que hemos realizado durante nuestra sesión de trabajo. El signo % se utiliza para referirnos al resultado que figura en la celda Output inmediatamente anterior. Si escribimos %*5 y pulsamos Intro, el programa nos devuelve:
5 Asociada a cada celda Input el programa genera una celda Output (salida) donde muestra el resultado de la operación requerida. Ambas celdas aparecen con los indicadores In[n]:= y Out[n]. El número n se genera automáticamente y de manera secuencial a lo largo de una sesión de trabajo, desde que se inició el programa hasta que salimos de él. Este número puede sernos de utilidad si queremos utilizar un cálculo previamente obtenido, dado que el programa Mathematica almacena en el Kernel (núcleo) todas las evaluaciones y cálculos que hemos realizado durante nuestra sesión de trabajo. practica0_0708-v52-out.nb 5 El signo % se utiliza para referirnos al resultado que figura en la celda Output inmediatamente anterior. Si escribimos %*5 y pulsamos Intro, el programa nos devuelve: In[21]:= 5 Out[21]= 45 dado que el % hace referencia al resultado que figura en la celda Output anterior, es decir en la celda Out[20] Pueden utilizarse también los símbolos %%, %%%, etc. para referirnos al resultado que figura en la penúltima, antepenúltimo, etc. celda Output. Sin embargo, la forma más cómoda es utilizar %n si queremos referirnos al resultado contenido en la celda Out[n]. Si escribimos %13-3 y pulsamos Intro, el programa nos devuelve: In[22]:= 23 3 Out[22]= 23 3 A parte de las celdas Input y Output, Mathematica puede también trabajar con otros tipos de celdas: Títle, Section, Subsection, Text, Se trata de celdas cuyo contenido no es evaluable y que se utilizan para dar a nuestro Notebook un aspecto más agradable en cuanto a la presentación del texto: permitiendo incluir un título, organizar el contenido en secciones, mostrar comentarios, etc. Como hemos indicado Mathematica supone por defecto que todas las celdas son de tipo Input. Para cambiar el tipo para una determinada celda utilizamos el menú desplegable: Format Style seleccionando con el cursor el estilo deseado. Por ejemplo: si queremos incluir una celda de Título seguiremos los siguiente pasos: 1) Escribimos el título: (por ejemplo: Práctica 1) 2) Seleccionamos la celda: botón izquierdo del ratón sobre el corchete que figura en la parte derecha de la celda. 3) Desplegamos el menú: Format Style y seleccionamos la opción Title Si hemos escrito texto sin indicarlo previamente,lo habremos hecho en una línea tipoinput(que son las que el programa crea por defecto), para cambiarla a una celda tipo texto basta con marcarla y en la barra de menú Cell elegir Display As - Text El aspecto final de nuestro Notebook dependerá del estilo de documento que estemos utilizando. Mathematica incorpora una serie de estilos de documento predefinidos: Article-Clasic, Demo, Report, Clasroom, etc. Cada uno de estos estilos asigna distintos tipos de letra, de fondo, de combinaciones de color, etc, a nuestro documento y a cada uno de los tipos de celda. Para seleccionar el estilo del documento deseado utilizamos el menú desplegable: Format StyleSheet seleccionando con el cursor el estilo deseado.
6 6 practica0_0708-v52-out.nb 3. Sintaxis general de las instrucciones en Mathematica A la hora de escribir las instrucciones que queremos que ejecute el programa Mathematica, contenidas en una celda Input, hemos de prestar mucha atención a las siguientes reglas: a) Las mayúsculas y las minúsculas: Mathematica distingue unos caracteres de otros. No es lo mismo escribir Expand (instrucción que utilizaremos para desarrollar una determinada expresión matemática) que expand (instrucción no reconocida por el programa y cuya utilización generará un mensaje de error y no el resultado espe-rado). In[23]:= Expand x y ^2 Out[23]= x 2 2 y x y 2 Importante: Todas las funciones, instrucciones, opciones, constantes, etc. incorpora-das en el programa Mathematica empiezan con mayúsculas b) Los espacios: Un espacio colocado entre dos variables o números en una celda Input se interpreta como el signo de multiplicar. In[24]:= 7 5 Out[24]= 35 In[25]:= x x Out[25]= x 2 c) Paréntesis, corchetes y llaves: Los paréntesis ( ) se utilizan para agrupar términos e indicar prioridad. Los corchetes [ ] son para uso exclusivo de las funciones para delimitar sus argumentos. Las llaves { } se utilizan para definir listas de elementos: vectores, matrices, etc. 4. Operaciones aritméticas elementales Mathematica puede utilizarse como una calculadora convencional para la realización aunque con una importante diferencia: la precisión en el cálculo. Las operaciones se realizan en forma exacta o bien aproximada (con el grado de precisión que queramos). Mathematica reconoce los operadores aritméticos habituales: suma (+), diferencia (-), producto (* o espacio en blanco), división (/) y potencia (^). Si intervienen varios de estos operadores en una misma instrucción Mathematica aplica los criterios de prioridad habituales entre ellos: potencias productos y divisiones sumas y rectas.
7 practica0_0708-v52-out.nb 7 In[26]:= 2 5 3^2 Primero se efectúa la potencia, después el producto y por último la suma Out[26]= 47 In[27]:= Out[27]= ^2 Primero se efectúa la suma, después la potencia y por último el producto Las operaciones de potencia y división también pueden indicarse utilizando los iconos que figuran en la paleta. La siguiente operación (2/3-1/5^2)/(3-1/2)^2 In[28]:= Out[28]= ^ ^ Puede escribirse en la forma In[29]:= Out[29]= Tipos de números y precisión en los cálculos Mathematica puede trabajar con todos los tipos de números: enteros (Integer), racionales (Rational), reales (Real) y complejos (Complex). Para saber de qué tipo es un número concreto podemos utilizar la instrucción: Head[número] In[30]:= Out[30]= Head 0.35 Real Mathematica no tiene ninguna limitación en cuanto al tamaño de los números enteros (la única limitación viene impuesta por la memoria del ordenador). Todas las operaciones realizadas con números enteros o racionales se realizan con precisión infinita por lo que el programa siempre nos devuelve un número exacto. In[31]:= Out[31]= 2^
8 8 practica0_0708-v52-out.nb In[32]:= Out[32]= Mathematica asigna el tipo Real a los números decimales. La forma de operar con estos números es completamente distinta. Si en una operación interviene un número decimal Mathematica nos devolverá siempre un valor aproximado (con una precisión de 6 dígitos decimales, aunque internamente el resultado lo realiza con una precisión de 16 cifras decimales). In[33]:= 2.^1000 Out[33]= Mathematica distingue entre el número 2 (entero) y el número 2. (2.0) que es tratado como decimal de ahí que el resultado mostrado sea un número aproximado y no un número exacto como nos muestra en Out[25]. In[34]:= Out[34]= Mathematica nos devuelve un valor exacto In[35]:= Out[35]= Mathematica nos devuelve un valor aproximado 9 Este diferente comportamiento puede resultar chocante las primeras veces que se realizan ciertas operaciones con Mathematica. In[36]:= 1 2 Out[36]= 1 2 Mathematica nos devuelve el valor exacto. En la operación anterior podemos forzar a Mathematica que nos devuelva un valor aproximado de las siguientes maneras: 1) Escribiendo uno de los números en formato decimal. In[37]:= 1. 2 Out[37]= ) Utilizando el comando N[expresión] que es equivalente a escribir expresión//n) In[38]:= 1 2 N Out[38]= ) Pidiendo que nos de el resultado con una determinada precisión mediante la instrucción N[expresión,n] (donde n indica el número de cifras decimales) In[39]:= N 1 2, 30 Out[39]=
9 practica0_0708-v52-out.nb Constantes y funciones incorporadas en Mathematica El programa Mathematica tiene predefinidas una serie de constantes habituales en Matemáticas: El número pi: Pi El número e: E La unidad imaginaria: I Infinito: Infinity Factor de conversión a grados: Degree Asimismo, el programa Mathematica incorpora todas las funciones matemáticas elementales. Sus nombres responden a su abreviatura proveniente del inglés por lo que algunas de ellas tienen una denominación distinta a la usual en español. Sin[x] y ArcSin[x]; Cos[x] Sqrt[x]; Abs[x]; Sign[x] Observaciones: y ArcCos[x]; Tan[x] y ArcTan[x]; Exp[x] y Log[x]; Log[a,x]; 1) Las funciones trigonométricas utilizan el argumento en radianes. In[40]:= Out[40]= Sin Π Si queremos utilizar el argumento en grados utilizamos el factor de conversión Degree (º). In[41]:= Out[41]= 1 Sin 90 Degree 2) Si el argumento utilizado en cualquiera de las funciones es un número exacto Mathematica nos devolverá un valor exacto (como sabemos siempre podemos pedir que nos dé un valor aproximado utilizando el comando N). En cambio, si el argumento es un número decimal, Mathematica nos devolverá un valor aproximado con una precisión de 6 dígitos (internamente trabajará con 16 dígitos). In[42]:= Out[42]= Log 2 log 2 In[43]:= Out[43]= 1 In[44]:= Log E Log 2. Out[44]= In[45]:= Out[45]= ArcSin 1 2 Π 6
10 10 practica0_0708-v52-out.nb In[46]:= ArcSin 0.5 Out[46]= Variables y funciones definidas por el usuario Las variables se utilizan para el almacenamiento temporal de información que vaya a ser utilizada en cálculos posteriores. a) El nombre de la variable tiene que empezar con una letra. Nombres válidos: x, y, radio, longitud, xm, xy, x1, z4, b) No pueden utilizarse como nombres de variable aquellos reservados para designar a las instrucciones, funciones y constantes de Mathematica. Una forma de evitar esto es escribir todos los nombres de las variables utilizadas en minúsculas. c) No es necesario declarar previamente las variables que vamos manejar es el sistema el que se encarga de identificarlas en el momento en que se definen. d) La asignación de valores a una variable se puede realizare de dos formas: Asignación inmediata: In[47]:= a 2 Out[47]= 2 nombredevariable = valor o expresión; In[48]:= Out[48]= 2 x a En el ejemplo anterior hemos realizado dos asignaciones inmediatas. En la primera de ellas asignamos a la variable a el valor 2. En la segunda a la variable x le asignamos el valor que en ese momento tenga la variable a, es decir, 2. Si posteriormente cambiamos el valor de la variable a, la variable x no se verá afectada por este cambio In[49]:= a 4 Out[49]= 4 In[50]:= x Out[50]= 2 Asignación diferida: nombredevariable := valor o expresión In[51]:= y : a In[52]:= y Out[52]= 4 In[53]:= a 6 Out[53]= 6
11 practica0_0708-v52-out.nb 11 In[54]:= y Out[54]= 6 A la variable y se le asocia el valor de la variable a. Sin embargo esta asignación no se hace de manera inmediata sino que, cuando se vaya a utilizar la variable y, el valor que se le asignará será el que tenga en ese momento la variable a, es decir, los cambios posteriores efectuados en la variable a SI repercuten en la variable y. La asignación diferida se utiliza principalmente para definir funciones. La forma de definir una función es la siguiente: nombredefuncion[variable1_,variable2_,,variablen]:=expresión. In[55]:= f x : x^2 In[56]:= Out[56]= 49 f 7 En el ejemplo anterior hemos definido la función f(x)=x^2. Observemos nuevamente que el argumento tiene que indicarse entre corchetes. A partir de este momento podremos utilizar la nueva función para evaluarla en un punto, calcular su derivada, representarla gráficamente, etc. In[57]:= Out[57]= 4 In[58]:= Out[58]= 6 f 2 f' 3 Observemos que no es necesario indicar el tipo de variable que interviene en la función (Entera, real, alfanumérica, ) es el propio programa el que se encarga de atribuir el tipo según el dato que contiene la variable. Sin embargo, podemos indicar el tipo para restringir el tipo de datos válidos para ser almacenados en una determinada variable. Esta asignación de tipo se realiza de la forma: nombredevariable_tipo In[59]:= g x Integer : 2 x x 1 En la instrucción anterior hemos definido una función g de variable entera. Dicha función sólo reconocerá como posible argumento a un número entero. Si intentamos evaluarla en un número no entero, Mathematica no nos devuelve nada. In[60]:= Out[60]= In[61]:= Out[61]= g g 0.5 g 0.5 Observaciones: 1) Para evitar posibles conflictos y resultados inesperados es aconsejable que las variables que figuran como argumento de una función estén limpias, es decir, que no se les haya asignado previamente ningún valor. Para borrar una variable utilizaremos la instrucción: Clear[variable1,variable2,variable3,.] Clear[a,x,y] Borra las variables a, x e y de la memoria del ordenador. Clear[ a* ] Borra las variables y funciones cuyo nombre empiece por a. Clear[ Global,* ] Borra todas las variables y funciones definidas con anterioridad. 2) No existe ninguna limitación sobre el número de variables que pueden utilizarse como argumentos de una función.
12 utilizaremos la instrucción: Clear[a,x,y] Clear[variable1,variable2,variable3,.] 12 practica0_0708-v52-out.nb Borra las variables a, x e y de la memoria del ordenador. Clear[ a* ] Borra las variables y funciones cuyo nombre empiece por a. Clear[ Global,* ] Borra todas las variables y funciones definidas con anterioridad. 2) No existe ninguna limitación sobre el número de variables que pueden utilizarse como argumentos de una función. In[62]:= In[63]:= Clear f f x, y : x^2 2 x y y^3 La instrucción anterior borra la definición de la función f y vuelve a definirla como una función de dos variables. In[64]:= Out[64]= 4 f 3, 1 In[65]:= Clear a, b, x, y In[66]:= 8.- Operaciones usuales en Mathematica 1) Desarrollar una expresión: Expand[expresión] In[67]:= Expand a b ^4 Out[67]= a 4 4 b a 3 6 b 2 a 2 4 b 3 a b 4 2) Simplificar una expresión: Simplify[expresión] In[68]:= Out[68]= In[69]:= Out[69]= Simplify x^2 2 x 1 x^2 1 x 1 x 1 FullSimplify x^2 2 x 1 x^2 1 x 1 x 1 3) Resolver una ecuación o despejar una variable en una igualdad: Solve[expresion1==expresion2,variable] Despeja la variable x en la igualdad expresión1=expresion2. Obsérvese que entre ambas expresiones figura el signo == (doble signo igual) para que el programa no lo confunda con el signo = que como sabemos es utilizado para asignar valores a una variable. In[70]:= Solve x x 2 Out[70]= x 1 Esta expresión es equivalente a In[71]:= Solve x x 2, x Out[71]= x 1 En este caso no es necesario indicar la variable que queremos despejar porque en la igualdad sólo figura la variable x. No ocurre lo mismo con la siguiente ecuación en la que intervienen cuatro variables: a, b, c y x
13 practica0_0708-v52-out.nb 13 En este caso no es necesario indicar la variable que queremos despejar porque en la igualdad sólo figura la variable x. No ocurre lo mismo con la siguiente ecuación en la que intervienen cuatro variables: a, b, c y x In[72]:= Solve a x^2 b x c 0, x Out[72]= x b b2 4 a c 2 a, x b2 4 a c b 2 a Se obtiene un resultado distinto si escribimos: In[73]:= Out[73]= Solve a x^2 b x c 0, a a c b x x 2 En este último caso se ha despejado la variable a en la expresión anterior. 9.- Otras operaciones con Mathematica Factor[expresión] Collect[expresión,variable] Expand[expresión,Trig->True] Factor[expresión,Trig->True] Realiza la descomposición factorial de la expresión dada. Agrupa la expresión algebraica en potencias ordenadas de la variable indicada Desarrolla la expresión trigonométrica utilizando las fórmlas de trigonometría Factoriza expresiones trigonométricas Binomial[m,n] Calcula el número combinatorio m sobre n n! Calcula el factorial del número n
14 14 practica0_0708-v52-out.nb 10.- Ejercicios propuestos 1.- Calcular usando Mathematica: a) 330 b) Un valor aproximado de la raiz cuadrada del número pi con 20 cifras decimales. c) Logaritmo neperiano de 10. d) Logaritmo decimal de 10. e) Seno de 45º. f) 7 sobre 2 g) Valor absoluto de Hallar los siguientes resultados: a) Sen(Π) b) e^3 c) cos(45º) d) Convierte Π radianes en grados e) Ln 2 f) artg(-1) g) 7! 3.- Efectúa las siguientes operaciones, explicando lo que realiza cada una: a) N[10/3] b) x+x^3+7y^2x+8y x c) Collect[%,x] d) Expand[(x+y)^2] e) Simplify[(x-1)2(x+2)/((x+1)(x-3)2))] f) Binomial[5,3]
Práctica 0. Introducción al Mathematica
Práctica 0. Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas, cálculo simbólico,
ELEMENTOS BÁSICOS DE MATHEMATICA
CAPÍTULO 1 ELEMENTOS BÁSICOS DE MATHEMATICA 1.- COMENZANDO A TRABAJAR 2.- OPERADORES MATEMÁTICOS 3.- REPRESTACIÓN DE VALORES NUMÉRICOS 4.- VARIABLES CAPÍTULO 1 7 8 1.- COMENZANDO A TRABAJAR Una vez iniciado
Práctica 1 Cálculo con Mathematica
Práctica 1 Cálculo con Mathematica 1.- Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas,
De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator)
El proyecto Matemáticas y Computación (MAC) se inicia en la década de los años 60 en el MIT (con el apoyo financiero de los Departamentos de Defensa y Energía de los EE.UU.) para atender sus necesidades
Introducción al Cálculo Simbólico a través de Maple
1 inn-edu.com [email protected] Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos
Introducción a la Estadística con Excel
Introducción a la Estadística con Excel En el siguiente guión vamos a introducir el software Excel 2007 y la manera de trabajar con Estadística Descriptiva. Cargar o importar datos En Excel 2007 podemos
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
Concesionario de coches
Realizaremos una práctica que consistirá en informatizar un concesionario de coches. Gestionaremos y mecanizaremos la entrada de datos. Crear el diseño de las tablas Antes de empezar con el diseño de nuestra
CASO PRÁCTICO DISTRIBUCIÓN DE COSTES
CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que
CONSULTAS CON SQL. 3. Hacer clic sobre el botón Nuevo de la ventana de la base de datos. Aparecerá el siguiente cuadro de diálogo.
CONSULTAS CON SQL 1. Qué es SQL? Debido a la diversidad de lenguajes y de bases de datos existentes, la manera de comunicar entre unos y otras sería realmente complicada a gestionar de no ser por la existencia
Cálculo Simbólico también es posible con GeoGebra
www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades
Comenzando con MATLAB
ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.
Vamos a ver las dos formas básicas de arrancar PowerPoint.
Iniciar Powerpoint Vamos a ver las dos formas básicas de arrancar PowerPoint. 1) Desde el botón Inicio situado, normalmente, en la esquina inferior izquierda de la pantalla. Coloca el cursor y haz clic
Complemento Microsoft Mathematics
Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones
MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL
MICROSOFT EXCEL 2007 Qué es y para qué sirve Excel2007? Excel 2007 es una hoja de cálculo integrada en Microsoft Office. Esto quiere decir que si ya conoces otro programa de Office, como Word, Access,
GENERACIÓN DE TRANSFERENCIAS
GENERACIÓN DE TRANSFERENCIAS 1 INFORMACIÓN BÁSICA La aplicación de generación de ficheros de transferencias permite generar fácilmente órdenes para que la Caja efectúe transferencias, creando una base
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL
OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos
TEMA 5. INTRODUCCIÓN AL MANEJO DE ORIGIN 6.1
TEMA 5. INTRODUCCIÓN AL MANEJO DE ORIGIN 6.1!"# 1. Introducción En muchos aspectos, el Origin es muy similar a Excel. Y lo es, más que en su apariencia, en la versatilidad y en las funciones que permite
Centro de Capacitación en Informática
Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.
GENERACIÓN DE ANTICIPOS DE CRÉDITO
GENERACIÓN DE ANTICIPOS DE CRÉDITO 1 INFORMACIÓN BÁSICA La aplicación de generación de ficheros de anticipos de crédito permite generar fácilmente órdenes para que la Caja anticipe el cobro de créditos
1. MANUAL - INTRODUCCIÓN AL USO DE DERIVE.
1. MANUAL - INTRODUCCIÓN AL USO DE DERIVE. 1.1. QUÉ ES UN PROGRAMA DE CÁLCULO SIMBÓLICO? Los programas de cálculo simbólico, como DERIVE son lenguajes de programación muy cercanos al usuario, es decir,
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
INTRODUCCIÓN DÓNDE ENCONTRAR LA CALCULADORA WIRIS
INTRODUCCIÓN La calculadora WIRIS es una plataforma de cálculo matemático online, cuyo acceso es libre. Su manejo es muy sencillo y permite hacer cálculos elementales (mínimo común múltiplo, factorización
LECCIÓN 4ª Operaciones Numéricas
REALIZAR OPERACIONES NUMERICAS LECCIÓN 4ª Operaciones Numéricas Excel es una hoja de cálculo y, como su nombre indica, su función fundamental es trabajar con grandes volúmenes de números y realizar cálculos
Álgebra y Matemática Discreta Sesión de Prácticas 1
Álgebra y Matemática Discreta Sesión de Prácticas 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Estructuras Algebraicas La Estructura como Variable Tenemos una gran
Uso del programa CALC
Uso del programa CALC 1. Introducción. Podemos considerar una hoja de cálculo como una tabla en la que tenemos texto, números y fórmulas relacionadas entre si. La ventaja de usar dicho programa radica
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control
1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática
Capítulo 9. Archivos de sintaxis
Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta
Introducción al sistema Wolfram Mathematica
Introducción al sistema Wolfram Mathematica Expresiones Usamos la interfaz gráfica ( Notebook ) de Wolfram Mathematica. Para calcular una expresión en Notebook, hay que oprimir Shift-Enter (Mayús-Intro).
Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:
Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar
Para crear formularios se utiliza la barra de herramientas Formulario, que se activa a través del comando Ver barra de herramientas.
Formularios TEMA: FORMULARIOS. 1. INTRODUCCIÓN. 2. CREACIÓN DE FORMULARIOS. 3. INTRODUCIR DATOS EN UN FORMULARIO. 4. MODIFICAR UN FORMULARIO 5. MANERAS DE GUARDAR UN FORMULARIO. 6. IMPRIMIR FORMULARIOS.
Basic Object Oriented Programming (BOOP) Gramática del Lenguaje. Ever Mitta Flores
Ever Mitta Flores Índice 1. Clase @Principal...3 2. Comentarios...3 3. Definición de Atributos...3 4. Definición de Métodos...4 5. Declaración de Variables...4 6. Asignación de Valores...5 7. Definición
Hoja1!C4. Hoja1!$C$4. Fila
CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como
SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales
SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo
A25. Informática aplicada a la gestión Curso 2005/2006 Excel Tema 7. Funciones avanzadas de Excel II
DEPARTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS ESCUELA SUPERIOR DE TECNOLOGÍA Y CIENCIAS EXPERIMENTALES A.D.E.M. Segundo Curso A25. Informática aplicada a la gestión Curso 2005/2006 Excel Tema 7. Funciones
ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS
UNA SESIÓN EN SPSS INTRODUCCIÓN. SPSS (Statistical Product and Service Solutions) es un paquete estadístico orientado, en principio, al ámbito de aplicación de las Ciencias sociales, es uno de las herramientas
SISTEMAS DE NUMERACIÓN. Sistema decimal
SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",
Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.
1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla
Tema 4: Empezando a trabajar con ficheros.m
Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos
... Formas alternativas de escribir un texto. Columnas. anfora CAPÍTULO 4
CAPÍTULO 4. Formas alternativas de escribir un texto........ Columnas Para fijar columnas se posiciona el Punto de Inserción donde se desee que comiencen las columnas, o bien se selecciona el texto que
El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.
5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres
Módulo I - Word. Iniciar Word... 2. Finalizar Word... 3. Definición de elementos de pantalla... 4. Escribir texto en un documento... 5. El cursor...
Módulo I - Word Índice Iniciar Word... 2 Finalizar Word... 3 Definición de elementos de pantalla... 4 Escribir texto en un documento... 5 El cursor... 5 Control de párrafos... 5 Nuevos párrafos... 5 Abrir
MINI MANUAL PARA CREAR FORMULARIOS CON PHP Marzo 2007
MINI MANUAL PARA CREAR FORMULARIOS CON PHP Marzo 2007 Servicio de Informática y Comunicaciones Para poder diseñar un formulario y que éste nos envíe los resultados a nuestro correo electrónico, necesitamos
SOLUCIÓN CASO GESTIÓN DE PERSONAL I
SOLUCIÓN CASO GESTIÓN DE PERSONAL I Empezaremos abriendo un nuevo libro de trabajo que podemos guardar como Nóminas e introducimos los datos que nos proporciona el enunciado relativos a coste por hora
La ventana de Microsoft Excel
Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft
GESTINLIB GESTIÓN PARA LIBRERÍAS, PAPELERÍAS Y KIOSCOS DESCRIPCIÓN DEL MÓDULO DE KIOSCOS
GESTINLIB GESTIÓN PARA LIBRERÍAS, PAPELERÍAS Y KIOSCOS DESCRIPCIÓN DEL MÓDULO DE KIOSCOS 1.- PLANTILLA DE PUBLICACIONES En este maestro crearemos la publicación base sobre la cual el programa generará
Guía de Aprendizaje No. 1
MICROSOFT WORD Fundamentos básicos, ejecutar Word, su ventana y sus barras de herramientas Objetivos de la Guía de Aprendizaje No. 1 Obtener fundamentos básicos sobre Procesador de Texto Microsoft Word
Apuntes de ACCESS. Apuntes de Access. Campos de Búsqueda:
Apuntes de ACCESS Campos de Búsqueda: Los campos de búsqueda permiten seleccionar el valor de un campo de una lista desplegable en lugar de tener que escribirlos. El usuario sólo tiene que elegir un valor
En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales
Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos
Instructivo de Microsoft Excel 2003
Instructivo de Microsoft Excel 2003 El presente instructivo corresponde a una guía básica para el manejo del programa y la adquisición de conceptos en relación a este utilitario. Que es Microsoft Excel?
Proyecto de Facturación con Filemaker Pro 12
Proyecto de Facturación con Filemaker Pro 12 Autor: Pere Manel Verdugo Zamora Web: http://www.peremanelv.com/pere3/sitio_web_2/bienvenida.html E- Mail: [email protected] Autor: Pere Manel Verdugo Zamora
NORMA 34.14(SEPA) 05/11/2013
NORMA 34.14(SEPA) 05/11/2013 1. Descripción La aplicación de generación de ficheros de transferencias permite generar fácilmente órdenes para que se efectúe el pago de transferencias a los beneficiarios
TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B)
APRENDERAPROGRAMAR.COM TIPOS DE VARIABLES EN PHP. DECLARACIÓN Y ASIGNACIÓN. LA INSTRUCCIÓN ECHO PARA INSERTAR TEXTO O CÓDIGO. (CU00816B) Sección: Cursos Categoría: Tutorial básico del programador web:
Gestión del Stock 1. Creación de referencias 2. Dar de alta a mercancía y proveedores 3. Añadir o eliminar artículos de albarán 4. Etiquetado 5. Consulta de existencias de stock, tipo de proveedor, precio
>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans
Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para
H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS
H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS Una situación que se nos plantea algunas veces es la de resolver un problema hacia atrás, esto es, encontrar
Operación Microsoft Access 97
Trabajar con Controles Características de los controles Un control es un objeto gráfico, como por ejemplo un cuadro de texto, un botón de comando o un rectángulo que se coloca en un formulario o informe
Cómo consultar una base de datos?
Cómo consultar una base de datos? Cómo consultar una base de datos Las bases de datos y los catálogos son fuentes muy valiosas para almacenar y recuperar la información. Las bases de datos muestran qué
VJALQUILER VJALQUILER
VJALQUILER es una aplicación de Gestión Comercial destinada especialmente para su uso en todas las empresas dedicadas al alquiler de materiales, su funcionamiento resulta bastante sencillo, principalmente
BASES DE DATOS - Microsoft ACCESS 2007-
BASES DE DATOS - Microsoft ACCESS 2007- Una base de datos es un archivo estructurado de datos que nos permite almacenarlos, modificarlos, ordenarlos, generar informes etc., de manera rápida. Un listín
Sesión No. 4. Contextualización INFORMÁTICA 1. Nombre: Procesador de Texto
INFORMÁTICA INFORMÁTICA 1 Sesión No. 4 Nombre: Procesador de Texto Contextualización La semana anterior revisamos los comandos que ofrece Word para el formato del texto, la configuración de la página,
POWER POINT. Iniciar PowerPoint
POWER POINT Power Point es la herramienta de Microsoft Office para crear presentaciones que permiten comunicar información e ideas de forma visual y atractiva. Iniciar PowerPoint Coloque el cursor y dé
Tema 7: Programación con Matlab
Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas
Guía N 1: Fundamentos básicos(i)
1 Guía N 1: Fundamentos básicos(i) Objetivos Generales: Ver una breve descripción de las capacidades más comunes de Excel Objetivos específicos: Descripción de los elementos de un libro: Hojas, iconos,
GUIA APLICACIÓN DE SOLICITUDES POR INTERNET. Gestión de Cursos, Certificados de Aptitud Profesional y Tarjetas de Cualificación de Conductores ÍNDICE
ÍNDICE ACCESO A LA APLICACIÓN... 2 1.- HOMOLOGACIÓN DE CURSOS... 4 1.1.- INICIAR EXPEDIENTE... 4 1.2.- CONSULTA DE EXPEDIENTES... 13 1.3.- RENUNCIA A LA HOMOLOGACIÓN... 16 2.- MECÁNICA DE CURSOS... 19
Manual de Procedimiento
Manual de Procedimiento INSTALACION DEL PROGRAMA Este manual pretende ser una ayuda para el usuario, indicando cada uno de los pasos a seguir en su utilización. REQUERIMIENTOS: 1. Windows 98 o superior.
Práctica 1: Introducción a MATLAB.
Práctica 1: Introducción a MATLAB. 1 Introducción. MATLAB es el paquete de programas para computación numérica y visualización que vamos a utilizar como herramienta en las prácticas. Para arrancar el programa
Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola
Combinar comentarios y cambios de varios documentos en un documento
Combinar comentarios y cambios de varios documentos en un documento Si envía un documento a varios revisores para que lo revisen y cada uno de ellos devuelve el documento, puede combinar los documentos
Matemática de redes Representación binaria de datos Bits y bytes
Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender
EDWIN KÄMMERER ORCASITA INGENIERO ELECTRÓNICO
Identifica los tipos de datos y funciones - Tipos de Datos: Excel soporta 5 tipos de datos, estos son: a) Numéricos: Están formados por cualquiera de los 10 dígitos (del 0 al 9) y pueden estar acompañados
Unidad 5. Gestión de ficheros. CURSO: Introducción LibreOffice
Unidad 5 Gestión de ficheros CURSO: Introducción LibreOffice 1 Introducción y Objetivos Cada programa para PC es capaz de generar y abrir uno o varios tipos de archivo, por lo general el tipo de archivo
Gestión de Retales WhitePaper Noviembre de 2009
Gestión de Retales WhitePaper Noviembre de 2009 Contenidos 1. Introducción 3 2. Almacén de retales 4 3. Propiedades de los materiales 6 4. Alta de retales 8 5. Utilización de retales en un lote de producción
REGISTRAR LOS SITIOS WEB MÁS INTERESANTES
REGISTRAR LOS SITIOS WEB MÁS INTERESANTES La forma más fácil de volver a páginas Web que visitamos con frecuencia es almacenándolas en una lista. En Internet Explorer estas páginas se denominan sitios
CASO PRAÁ CTICOPREÉ STAMOS. CAÁLCULO DE CUOTAS
CASO PRAÁ CTICOPREÉ STAMOS. CAÁLCULO DE CUOTAS Nuestra empresa necesita adquirir una nueva nave industrial por la que debe pagar 700.000,00. Para financiar el pago solicitaremos un préstamo hipotecario
Manual de ayuda. Índice: 1. Definición.. Pág. 2 2. Conceptos básicos... Pág. 3 3. Navegación.. Pág. 5 4. Operativa más habitual.. Pág.
Manual de ayuda Índice: 1. Definición.. Pág. 2 2. Conceptos básicos... Pág. 3 3. Navegación.. Pág. 5 4. Operativa más habitual.. Pág. 14 Página 1 de 19 1. DEFINICIÓN El Broker Bankinter (BrokerBK) es una
Qué es y para qué sirve Excel2007?
Excel es un programa del tipo Hoja de Cálculo que permite realizar operaciones con números organizados en una cuadrícula. Es útil para realizar desde simples sumas hasta cálculos de préstamos hipotecarios.
LibreOffice - curso avanzado
LibreOffice - curso avanzado Math Qué es? Math es el editor de fórmulas la suite LibreOffice, que se puede invocar en sus documentos de texto, hojas de cálculo, presentaciones y dibujos, permitiéndole
AGREGAR UN EQUIPO A UNA RED Y COMPARTIR ARCHIVOS CON WINDOWS 7
Tutoriales de ayuda e información para todos los niveles AGREGAR UN EQUIPO A UNA RED Y COMPARTIR ARCHIVOS CON WINDOWS 7 Como agregar a una red existente un equipo con Windows 7 y compartir sus archivos
SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo
TEMA 2 WINDOWS XP Lección 4 BLOC DE NOTAS
TEMA 2 WINDOWS XP Lección 4 BLOC DE NOTAS 1) EL PEQUEÑO EDITOR El Bloc de notas de Windows XP es un básico editor de texto con el que podemos escribir anotaciones, de hasta 1024 caracteres por línea y
COMBINAR CORRESPONDENCIA EN MICROSOFT WORD
COMBINAR CORRESPONDENCIA EN MICROSOFT WORD Combinar documentos consiste en unir dos documentos diferentes sin que se modifiquen los datos que aparecen en ellos. Esta operación es muy útil y muy frecuente
Año: 2008 Página 1 de 18
Lección 2. Cuestiones de tipo técnico que debemos o podemos realizar 2.1. Copia de seguridad 2.2. Introducción de contraseña 2.3. Parámetros generales 2.4. Avisos 2.5. Calculadora 2.6. Acceso a casos prácticos
DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO
I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos
La pestaña Inicio contiene las operaciones más comunes sobre copiar, cortar y pegar, además de las operaciones de Fuente, Párrafo, Estilo y Edición.
Microsoft Word Microsoft Word es actualmente (2009) el procesador de textos líder en el mundo gracias a sus 500 millones de usuarios y sus 25 años de edad. Pero hoy en día, otras soluciones basadas en
Los sistemas de numeración se clasifican en: posicionales y no posicionales.
SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar
Sistema binario. Representación
Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza
Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente:
Como convertir números binarios a decimales y viceversa El sistema binario es un sistema de numeración en el que los números se representan utilizando 0 y 1. Es el que se utiliza en los ordenadores, pues
Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie.
Adaptación al NPGC Introducción Nexus 620, ya recoge el Nuevo Plan General Contable, que entrará en vigor el 1 de Enero de 2008. Este documento mostrará que debemos hacer a partir de esa fecha, según nuestra
Antes de empezar con la resolución de este caso vamos a analizar las funciones financieras que vamos a utilizar.
SOLUCIÓN CASO PRÉSTAMOS I Antes de empezar con la resolución de este caso vamos a analizar las funciones financieras que vamos a utilizar. Excel incorpora varias funciones que permiten efectuar cálculos
INFORMÁTICA. Matemáticas aplicadas a la Informática
ACCESO A CICLO SUPERIOR INFORMÁTICA Matemáticas aplicadas a la Informática http://trasteandoencontre.km6.net/ 1 Acceso a grado Superior. Informática 1. Unidades de medida en informática Como sabemos, el
MANUAL PARA GESTIÓN DE INCIDENCIAS INFORMÁTICAS
MANUAL PARA GESTIÓN DE INCIDENCIAS INFORMÁTICAS En este manual aprenderemos a introducir un Ticket de Soporte (Incidencia Informática) y ver todo el proceso hasta que se resuelve. Para poder escribir Tickets
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
ESPOCH ESCUELA DE MEDICINA HERNANDEZ MAYRA FORMULAS Y DUNCIONES BASICAS ESPOCH
ESPOCH ESCUELA DE MEDICINA HERNANDEZ MAYRA FORMULAS Y DUNCIONES BASICAS ESPOCH Contenido FORMULAS Y FUNCIONES BASICAS EN EXCEL... 2 1. FÓRMULAS DE EXCEL... 2 1.1 QUÉ SON LAS FÓRMULAS DE EXCEL?... 2 1.2
