Espectroscopia vibracional

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Espectroscopia vibracional"

Transcripción

1 Espectroscopia vibracional Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Espectroscopía vibr./jesús Hernández T p. 1

2 Contenido Series de Taylor a segundo orden. Formas cuadráticas. Modos normales. Espectroscopia vibracional de moléculas poliatómicas. Espectroscopía vibr./jesús Hernández T p. 2

3 Series de Taylor a segundo orden Expansión de z = f(x,y) a segundo orden alrededor de r 0 = (x 0,y 0 ): (1) f(x,y) = f(x 0,y 0 )+ 1 2! [ 2 f x 2 [ f x (x x 0 )+ f y r0 (x x 0 ) f x y r0 (y y 0 ) ] r0 + 2 f y 2 ] (y y 0 ) r0 + r0 (x x 0 )(y y 0 ) Espectroscopía vibr./jesús Hernández T p. 3

4 Si (x 0,y 0 ) = (0,0): [ f(x,y) = f(0,0)+ 1 2! [ 2 f x 2 f x (x)+ f ] (0,0) y (y) + (0,0) x y (xy)+ 2 f (0,0) y 2 r0 (x) f ] (y) 2 (0,0) +... (2) = f(0,0)+ ( f 2! (x,y) x 2 ( f x, f (x,y) y) (0,0) ) 2 f 2 f y x x y 2 f y 2 ( x (0,0) y ) + = f(0,0)+ f (0,0) (x,y)+(x,y) H (0,0) ( x y ) Espectroscopía vibr./jesús Hernández T p. 4

5 La matriz (3) H = ( 2 f x 2 2 f y x se llama el Hessiano de f(x,y). 2 f x y 2 f y 2 ) Si f(0,0) es un mínimo: (4) f(x,y) = 1 2! (x,y) ( h11 h 12 h 21 h 22 )( x y ) f(x,y) se comporta localmente como una función cuadrática. Espectroscopía vibr./jesús Hernández T p. 5

6 Ejemplo: Expresa f(x,y) = sen(2x 2 +xy +3y 2 ) como serie de Taylor a segundo orden alrededor de (0,0). f(0,0) = 0 f(0,0) = (0,0) ( 4 1 H = 1 2 ) Por lo tanto: f(x,y) = 1 2 (x,y) ( )( x y ) = 2x 2 +xy +3y Espectroscopía vibr./jesús Hernández T p. 6

7 Gráficamente: sen(2x 2 +xy +3y 2 ) 2x 2 +xy +3y 2 Espectroscopía vibr./jesús Hernández T p. 7

8 Formas cuadráticas Ecuación cuadrática en dos variables: ax 2 +2bxy +cy 2 = d Espectroscopía vibr./jesús Hernández T p. 8

9 Formas cuadráticas Ecuación cuadrática en dos variables: ax 2 +2bxy +cy 2 = d Forma cuadrática en dos variables: q(x,y) = ax 2 +2bxy +cy 2 Espectroscopía vibr./jesús Hernández T p. 8

10 Ejemplos: f(x,y) = x 2 +y Espectroscopía vibr./jesús Hernández T p. 9

11 Ejemplos: f(x,y) = x 2 +y 2 Contornos: f(x,y) = k En este caso: circunferencias Espectroscopía vibr./jesús Hernández T p. 9

12 f(x,y) = 2x 2 +xy +3y 2 Espectroscopía vibr./jesús Hernández T p. 10

13 f(x,y) = 2x 2 +xy +3y 2 Contornos? Espectroscopía vibr./jesús Hernández T p. 10

14 f(x,y) = 2x 2 +xy +3y 2 Contornos? Elipses Espectroscopía vibr./jesús Hernández T p. 10

15 f(x,y) = 2x 2 +xy +3y 2 Contornos? Elipses Gráficas de las ecuaciones cuadráticas: cónicas Espectroscopía vibr./jesús Hernández T p. 10

16 Cualquier forma cuadrática q(x,y) = ax 2 +2bxy +cy 2 puede expresarse como un producto matricial: ( ) ( )( ) a b x x y = X t MX b c y donde X = ( x y ) y M = ( a b b c ) Espectroscopía vibr./jesús Hernández T p. 11

17 Forma cuadrática en n variables {x 1,x 2,...,x n }: q(x 1,x 2,...,x n ) = n n λ ij x i x j i j En forma matricial: q(x 1,x 2,...,x n ) = X t ΛX donde la matriz Λ tiene elementos (Λ) ij = λ ij Espectroscopía vibr./jesús Hernández T p. 12

18 A partir de la matriz Λ es posible obtener una matriz simétrica tal que M = 1 2 ( Λ+Λ t ) q(x 1,x 2,...,x n ) = X t MX M es simétrica pues M t = M Además, toda matriz simétrica es diagonalizable Espectroscopía vibr./jesús Hernández T p. 13

19 Mediante una transformación lineal, es posible reducir cualquier forma cuadrática a la forma canónica: q(x 1,x 2,...,x n) = n i d i (x i )2 = X t DX en las variables {x 1,x 2,...,x n}, donde D = d d d n.. Espectroscopía vibr./jesús Hernández T p. 14

20 A partir de M se obtiene la matriz diagonal D mediante la ecuación de valores propios: o de manera equivalente: Mv = dv Mv = div; (M di)v = 0 Espectroscopía vibr./jesús Hernández T p. 15

21 A partir de M se obtiene la matriz diagonal D mediante la ecuación de valores propios: o de manera equivalente: Mv = dv Mv = div; (M di)v = 0 Los valores propios se obtienen a partir de det(m di) = 0 Espectroscopía vibr./jesús Hernández T p. 15

22 Sustituir d = d 1,d = d 2,... en la ecuación de valores propios: (M d 1 I)v 1 = 0, (M di)v 2 = 0... Para obtener los vectores propios: v 1 = v 1 1 v 1 2., v2 = v 2 1 v 2 2.,... Espectroscopía vibr./jesús Hernández T p. 16

23 La transformación lineal (rotación de coordenadas) se lleva a cabo con la matriz v 1 1 v2 1. V = v1 2 v Espectroscopía vibr./jesús Hernández T p. 17

24 La transformación lineal (rotación de coordenadas) se lleva a cabo con la matriz v 1 1 v2 1. V = v1 2 v La matriz diagonal es D = V t MV Espectroscopía vibr./jesús Hernández T p. 17

25 La transformación lineal (rotación de coordenadas) se lleva a cabo con la matriz v 1 1 v2 1. V = v1 2 v La matriz diagonal es D = V t MV Las nuevas coordenadas son X = V t X Espectroscopía vibr./jesús Hernández T p. 17

26 Ejemplo: Describe la cónica 2x 2 +xy +3y 2 = 2 La ecuación puede escribirse en forma matricial como X t MX = 2 donde X = ( x y ) y M = ( ) Espectroscopía vibr./jesús Hernández T p. 18

27 D = ( ) = ( ) y la matriz ( ) V = realiza la transformación a las nuevas coordenadas: ) ) X = ( x y = V t X = ( 0.383x+0.924y 0.924x y Espectroscopía vibr./jesús Hernández T p. 19

28 Es decir, la matriz V realiza la rotación al nuevo sistema de coordenadas x = 0.383x+0.924y y = 0.924x+0.383y de donde x = 0.383x 0.924y y = 0.924x y Mediante combinaciones lineales de los vectores base {î,ĵ} se obtiene {î,ĵ } Espectroscopía vibr./jesús Hernández T p. 20

29 Es decir, la matriz V realiza la rotación al nuevo sistema de coordenadas x = 0.383x+0.924y y = 0.924x+0.383y de donde x = 0.383x 0.924y y = 0.924x y Mediante combinaciones lineales de los vectores base {î,ĵ} se obtiene {î,ĵ } Calcula los vectores î y ĵ Espectroscopía vibr./jesús Hernández T p. 20

30 Al sustituir x y y en 2x 2 +xy +3y 2 = 2 se obtiene la ecuación de la cónica en los ejes x y y : o bien 3.208(x ) (y ) 2 = 2 ( x ) 2 + ( y ) 2 = Espectroscopía vibr./jesús Hernández T p. 21

31 Al sustituir x y y en 2x 2 +xy +3y 2 = 2 se obtiene la ecuación de la cónica en los ejes x y y : o bien 3.208(x ) (y ) 2 = 2 ( x ) 2 + ( y ) 2 = A qué tipo de lugar geométrico corresponde? Espectroscopía vibr./jesús Hernández T p. 21

32 Se trata de una elipse: y x y x x y y son los ejes principales Espectroscopía vibr./jesús Hernández T p. 22

Química Cuántica I Formas cuadráticas

Química Cuántica I Formas cuadráticas Formas cuadráticas/jesús Hernández Trujillo p. 1/16 Química Cuántica I Formas cuadráticas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Formas cuadráticas/jesús Hernández Trujillo p. 2/16 Ecuación

Más detalles

Fundamentos de espectroscopia: Vibraciones poliatómicas. Jesús Hernández Trujillo. Noviembre de Vibraciones poli/jht 1 / 36

Fundamentos de espectroscopia: Vibraciones poliatómicas. Jesús Hernández Trujillo. Noviembre de Vibraciones poli/jht 1 / 36 Fundamentos de espectroscopia: Vibraciones poliatómicas Jesús Hernández Trujillo Noviembre de 2017 Vibraciones poli/jht 1 / 36 Formas cuadráticas En un punto crítico, en ocasiones, una funciónf(x,y) puede

Más detalles

Teoría de catástrofes

Teoría de catástrofes Teoría de catástrofes Jesús Hernández Trujillo Facultad de Química, UNAM Marzo de 2012 Teoría de catástrofes/jht p. 1 Contenido Espacio de configuración. Formas cuadráticas y cúbicas. Lemas de Morse y

Más detalles

Vibraciones de moléculas poliatómicas

Vibraciones de moléculas poliatómicas Vibraciones moleculares/jesús Hernández T p. 1/15 Vibraciones de moléculas poliatómicas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Vibraciones moleculares/jesús Hernández T p. 2/15 Modos

Más detalles

Operadores Lineales en Espacios con Producto Interno

Operadores Lineales en Espacios con Producto Interno Operadores Lineales en Espacios con Producto Interno Definición y propiedades elementales del adjunto de un operador Al combinar las transformaciones lineales y el producto interno en un espacio vectorial

Más detalles

PRIMER CONTROL. 13 de Noviembre de 2012.

PRIMER CONTROL. 13 de Noviembre de 2012. GRAO EN QUÍMICA. MATEMÁTICAS. (Evaluación continua) PRIMER CONTROL. 13 de Noviembre de 2012. 1.- Sea f : R 3 R 3 la aplicación lineal f(x, y, z) = (x + z, 2x + ay az, 4x + z), (a R) a) Matriz de la aplicación

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-7 Formas cuadráticas SEMANA 4: FORMAS CUADRÁTICAS 7 Formas cuadráticas y matrices definidas positivas

Más detalles

Matemáticas Empresariales II. Formas cuadráticas

Matemáticas Empresariales II. Formas cuadráticas Matemáticas Empresariales II Lección 7 Formas cuadráticas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 17 Definición de Formas cuadráticas Sea V

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Álgebra Lineal UCR. Sétimo tema, 2013

Álgebra Lineal UCR. Sétimo tema, 2013 Álgebra Lineal UCR Sétimo tema, 2013 Presentaciones basadas principalmente en Arce,C, Castillo,W y González, J. (2004) Álgebra lineal. Tercera edición. UCR. San Pedro. Otras fuentes serán mencionadas cuando

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA.

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA. UNIVERSIA E SEVILLA. EPARTAMENTO E ECONOMÍA APLICAA I. BOLETÍN E PROBLEMAS E MATEMÁTICAS I. GRAO EN ECONOMÍA. BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable Problema 1 Estudiar la continuidad

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

Soluciones de la hoja de diagonalización MATEMÁTICAS I

Soluciones de la hoja de diagonalización MATEMÁTICAS I Soluciones de la hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y, en caso afirmativo, hallar una matriz A tal que f(x) Ax, así como los subespacios

Más detalles

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ CONTENIDOS DEL AREA PERIODO: 01 MATEMATICAS Y ESTADISTICA DOCENTE: ADRIANA ZULAY VILLA URIBE GRADO 10 MATEMATICAS Propósito Conocer y Comprender las razones y funciones

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Vibraciones de moléculas poliatómicas

Vibraciones de moléculas poliatómicas Vibraciones oleculares/jesús Hernández T p. 1/14 Vibraciones de oléculas poliatóicas Prof. Jesús Hernández Trujillo Facultad de Quíica, UNAM Vibraciones oleculares/jesús Hernández T p. 2/14 odos (coordenadas)

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Una ecuación de segundo grado en dos variables se puede expresar. (x y) y + (D E) x y = x

Una ecuación de segundo grado en dos variables se puede expresar. (x y) y + (D E) x y = x Unidad. Transformaciones.4 Eliminación de términos mitos Eliminación de los términos mitos de la ecuación general de do grado en dos variables Una ecuación de segundo grado en dos variables se puede epresar

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a MATRICES 1.- Calcular: a) 3 2 5 2 1 4 3 1 6 b) 2 1 3 4 2 5 6 0 2 c) 3 1 5 0 5 4 6 3 1 3 2 1 6 7 5 4 d) 7 6 8 5 6 7 10 6 7 8 8 9 8 7 9 6 e) 1 3 2 1 3 5 3 2 3 6 2 2 6 4 5 3 f) 1 1 1 1 1 1 1 g) 1 1 1 1 1

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Iván Huerta Facultad de Matemáticas Pontificia Universidad Católica de Chile ihuerta@mat.puc.cl Segundo Semestre, 1999 Definición Valores y Vectores Propios Valores y Vectores

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Superficie cónica. Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica

Superficie cónica. Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica CÓNICAS Superficie cónica Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica V Las cónicas como secciones de un cono. Circunferencia Al cortar la superficie

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas.

Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas. Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas. Nota: en todos los ejercicios, salvo que se indique lo contrario, (, ) representa

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Termodinámica estadística: Repaso de diferenciales

Termodinámica estadística: Repaso de diferenciales Termodinámica estadística: Repaso de diferenciales Prof. Jesús Hernández Trujillo 1 Diferenciales 1.1 Diferencial total La diferencial total de z = φ(x, y) se define por dφ = ( ) φ dx + Facultad de Química,

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2

Diagonalización. Índice General. Nelson Möller. 1 Matrices Semejantes 2. 2 Matrices diagonalizables 2 Diagonalización Nelson Möller Índice General 1 Matrices Semejantes 2 2 Matrices diagonalizables 2 3 Polinomio característico de una matriz 4 3.2 Valores propios.... 5 4 Vectores propios. 6 4.1 Ejemplo...

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

Direcciones invariantes

Direcciones invariantes Direcciones invariantes as transformaciones lineales mandan lineas paralelas en lineas paralelas, así que podemos decir sin ambigüedad que envían cada dirección en el espacio a otra dirección. Si una dirección

Más detalles

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador Sea V un espacio con producto interno y sea T : V V un operador lineal. Un operador T * : V V se dice que es un adjunto de T

Más detalles

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Cónicas. Al añadirle a cualquier cónica sus puntos al infinito se obtiene una curva cerrada en el plano proyectivo.

Cónicas. Al añadirle a cualquier cónica sus puntos al infinito se obtiene una curva cerrada en el plano proyectivo. ónicas Todas las cónicas del plano afn pueden completarse anadiendoles sus puntos al infnito para obtener cónicas en el plano proyectivo. Las elipses ya están completas, pero a cada parábola hay que añadirle

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Cálculo II: Integrales de línea: Independencia de la trayectoria, diferenciales

Cálculo II: Integrales de línea: Independencia de la trayectoria, diferenciales Cálculo II: Integrales de línea: Independencia de la trayectoria, diferenciales Prof Jesús Hernández Trujillo Facultad de Química, UNAM 1. Independencia de la trayectoria Considérese la integral de línea

Más detalles

Diferenciación de funciones f : R n R m. f(x, y) = ( e xy, x 2 + y, 2x 3 y 2) r(h) (h 1, h 2 ) e. 2(1 + h 1 ) 3 (3 + h 2 ) h 1 12h 2

Diferenciación de funciones f : R n R m. f(x, y) = ( e xy, x 2 + y, 2x 3 y 2) r(h) (h 1, h 2 ) e. 2(1 + h 1 ) 3 (3 + h 2 ) h 1 12h 2 Funciones de R n en R m Diferenciación de funciones f : R n R m Definición. Considere la función f : A R n R m definida en un conjunto abierto A de R n y sea x 0 A. Se dice que esta función es diferenciable

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

La ecuación general de segundo grado

La ecuación general de segundo grado La ecuación general de segundo grado Las cónicas cuyos ejes son paralelos a los ejes coordenados tienen ecuaciones de la forma Ax 2 +By 2 +Cx+Dy=E, y de esta ecuación es fácil deducir su forma. Pero cuando

Más detalles

MATEMÁTICAS I Examen Extraordinario Diciembre 17-I-2011 CUESTIONES TIPO TEST

MATEMÁTICAS I Examen Extraordinario Diciembre 17-I-2011 CUESTIONES TIPO TEST MATEMÁTICAS I Examen Extraordinario Diciembre 17-I-011 NOTA: CUESTIONES TIPO TEST SOLO HAY UNA RESPUESTA CORRECTA EN CADA CUESTION RESPUESTA CORRECTA: + 0. PUNTOS RESPUESTA INCORRECTA: - 0.1 PUNTOS RESPUESTA

Más detalles

CONVEXIDAD DE CONJUNTOS.-

CONVEXIDAD DE CONJUNTOS.- CONVEXIDAD DE CONJUNTOS.- Conjunto convexo Conjunto no convexo No lo es ya que se trata de la circunferencia de centro (0,0) y radio 1. Dos puntos de ella, por ejemplo, son los de coordenadas (1, 0) y

Más detalles

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES Para una función de una variable puede construirse una mejor aproximación mediante una función cuadrática que mediante una función lineal, para las funciones

Más detalles

Empezaremos por el Álgebra lineal porque:

Empezaremos por el Álgebra lineal porque: Empezaremos por el Álgebra lineal porque: Las soluciones de una ecuación diferencial, como la ecuación de Schroedinger, son base de algún espacio vectorial. Las operaciones de simetría son transformaciones

Más detalles

CÓNICAS. 1. Dada la cónica x 2 + 2xy y 2 2x 2y + 4 = 0, se pide su clasicación y los elementos característicos de la misma. = 1

CÓNICAS. 1. Dada la cónica x 2 + 2xy y 2 2x 2y + 4 = 0, se pide su clasicación y los elementos característicos de la misma. = 1 CÓNICAS. Dada la cónica x + x x + 4, se pide su clasicación los elementos característicos de la misma. A 4 A Se tiene A 6 A, de modo que la cónica es una hipérbola. Calculemos su centro. A c c Resolviendo

Más detalles

Figura 1: Pendiente de una recta no vertical a partir de dos puntos cualesquiera sobre la recta.

Figura 1: Pendiente de una recta no vertical a partir de dos puntos cualesquiera sobre la recta. Rectas en el Plano Pendiente de una recta La pendiente de una recta no vertical es la razón de cambio vertical con respecto a la cantidad de cambio horizontal entre dos puntos. Para los puntos (x 1, y

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO CAPÍULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCO INERNO Adjunto de un operador En un espacio vectorial V con producto interno, cada operador lineal tiene un operador llamado su adjunto que también

Más detalles

Simetría en química. Laura Gasque

Simetría en química. Laura Gasque Simetría en química Laura Gasque 2016-1 2 Laura Gasque 2016-1 3 Bibliografía básica Primeras tres o cuatro clases: Unidad I y II del curso de Cálculo II Cotton F.A. Chemical Applications of Group Theory

Más detalles

10. Aplicaciones del cálculo diferencial.

10. Aplicaciones del cálculo diferencial. 10 Aplicaciones del cálculo diferencial 101 Teorema de la función implícita Habitualmente, estamos acostumbrados a trabajar con funciones denidas de forma explícita, es decir, tales que la variable dependiente

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea la función f: (0,+ ) R definida por f(x) = ln(x), donde ln denota logaritmo x neperiano. a) [1 punto] Estudia y determina las asíntotas de la gráfica de f. b) [1 5 puntos] Halla

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

3º B.D. opción Social-Económico Matemática III. Parábola.

3º B.D. opción Social-Económico Matemática III. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

Tema 3.3. Aplicaciones afines. Cónicas y cuádricas

Tema 3.3. Aplicaciones afines. Cónicas y cuádricas Tema 3.3. Aplicaciones afines. Cónicas y cuádricas Definición 1. Sean A = (P, V, f) y A = (P, V, f ) dos espacios afines tales que V y V son espacios vectoriales sobre un mismo cuerpo. Una función θ :

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1 FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 0 mayo 006 Tema Apellido y nombres:... 4 5 Calificación final ) Dadas las rectas : x y + z = r : r : ( x, y, z) = (,,) + λ(, ) x z + k = 0 k para que las rectas sean

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

Docente Matemáticas. Marzo 11 de 2013

Docente Matemáticas. Marzo 11 de 2013 Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica

Más detalles

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0 Clasificación de cónicas.. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes si es posible:.a x xy + y + x y + 0.b x + xy y 6x + y 0.c x + xy + y x y 0.d x + y + x +

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

p x

p x UNIVERSIDD NCIONL UÓNOM DE MÉXICO FCULD DE INGENIERÍ DIVISIÓN DE CIENCIS BÁSICS ÁLGEBR LINEL SERIE RNSFORMCIONES LINELES 1. Sean el espacio vectorial real P ax bx c a, b, c correspondencia es a) Si D es

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Primer Examen, Invierno 2017.

Primer Examen, Invierno 2017. Primer Examen, Invierno 2017. Problema 1. Encuentre la ecuación del plano que pasa por 3 puntos cuyas coordenadas son A = (3, 1,2), B = (2,4,3), C = (4,7,1). (1 punto) Problema 2. Encuentre el valor de

Más detalles

Algebra Matricial.

Algebra Matricial. Algebra Matricial Dr. Alfonso Alba Cadena fac@galia.fc.uaslp.mx Facultad de Ciencias UASLP Unidad I Fundamentos de matrices 1 Introducción Una matriz es un arreglo rectangular de números. Algunos ejemplos

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o D.C.E. 1 o L.A.D.E. Curso 2008/09 Relación 2. Aplicaciones Lineales. Diagonalización. Formas Cuadráticas 1. Estudia si son lineales las aplicaciones siguientes: a) La aplicación

Más detalles

Introducción a la geometría analítica

Introducción a la geometría analítica Introducción a la geometría analítica Prof. Yoel Gutiérrez 1 Sistema de coordenadas rectangulares 1.1 sistema coordenado rectangular El sistema coordenado rectangular, indicado en la figura 1, consta de

Más detalles