CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI:"

Transcripción

1 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI: CUESTIÓN 1 (2.5 puntos): Se desea controlar un sistema dinámico con un esquema de realimentación unitaria que se muestra en el siguiente diagrama de bloques en el cual, K(s) representa el controlador. Se desea que el sistema en bucle cerrado tenga una respuesta ante un escalón unitario con una sobreoscilación inferior al 20% y que alcance el valor 1 en régimen permanente. Se desea además que el error en régimen permanente cuando la entrada es una rampa sea inferior a r(t) 1 y(t) + K(s) 2 ss ( + 1) ( s+ 10) SO(%) Mf(º) δ a) Determinar las especificaciones del sistema compensado en el dominio de la frecuencia así como la ganancia mínima que debe tener el controlador. b) Dibujar el diagrama de Bode del sistema sin compensar. (Como guía: usar valores de 0º y -90º para el valor de la fase de un polo en las frecuencias extremas y la siguiente tabla para las intermedias) Frecuencia relativa al polo Separación del valor central (en grados) c) Diseñar (si es posible) una red de avance que controle el sistema. TIEMPO 2h Página 1 de 4

2 Depto. Ingeniería de Sistemas y Automática. Universidad de Sevilla. Control Automático. 3º curso de Ingenieros Industriales Plantilla semilogarítmica para el trazado de diagramas de Bode TIEMPO 2h Página 2 de 4

3 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI: d) Diseñe (si es posible) una red de retardo que controle el sistema e) Diseñe (si es posible) una red mixta que controle el sistema f) Trace (de forma aproximada) y compare las respuestas ante escalón unitario del sistema controlado de los apartados d) y e) y(t) y(t) ) Red de retardo y rp = SO= t s = tiempo tiempo 2) Red mixta y rp = SO= t s = 1) Red de Retardo 2) Red Mixta TIEMPO 2h Página 3 de 4

4 TIEMPO 2h Página 4 de 4

5 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI: CUESTIÓN 2 (2.5 puntos): a) Cómo debe diseñarse un controlador de forma que se consiga simultáneamente un buen seguimiento de referencia a bajas frecuencias y un buen rechazo de los ruidos de alta frecuencia asociados a la medida? b) Medidas de temperatura utilizando el puente de Wheatstone. Dibuje y explique el esquema asociado. TIEMPO 2h Página 5 de 4

6 c) Justifique, utilizando el lugar de las raíces, por qué al diseñar un PI no es conveniente tomar el tiempo integral demasiado grande. d) Dada la siguiente matriz de fases, determine qué estados son compatibles entre sí y construya la matriz de fase simplificada. Es necesario incluir el proceso completo de obtención. No se considerará válido indicar únicamente la matriz resultante. AB S Q X 2 R X - V X 3 V X 3 V TIEMPO 2h Página 6 de 4

7 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI: CUESTIÓN 3 (2.5 puntos): Dado el siguiente sistema: + s + 5 K(s) ( s + 1)( s 10) Se pide: a) Suponiendo que K(s) es un controlador proporcional dibujar el lugar de las raíces en función de la ganancia del controlador (tanto positiva como negativa) b) Diseñar un controlador PD de forma que el sistema compensado tenga como frecuencia natural ω n = 5 rd/s y coeficiente de amortiguamiento δ=0.5 (considérese ganancia positiva). TIEMPO 2h Página 1 de 4

8 c) Compruebe cualitativamente que utilizando el lugar de las raíces que al controlar el sistema con un PI con cualquier Ti > 0, el sistema es estable para algún valor de la ganancia positivo. TIEMPO 2h Página 2 de 4

9 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL APELLIDOS: NOMBRE: DNI: CUESTIÓN 4 (2.5 puntos) Se desea controlar el funcionamiento del nuevo cepillo dental eléctrico ORAL-P de BRAUM. Dicho cepillo cuenta con un pulsador (P) que permite poner en marcha y detener el funcionamiento del mismo. Cuando el usuario desea poner el cepillo en marcha debe pulsar y soltar el botón P. En ese instante, el cepillo debe empezar a funcionar. Teniendo en cuenta que, para una correcta higiene bucal, el cepillado debe durar al menos 120 segundos, el cepillo no se podrá parar durante ese tiempo. Transcurridos los 120 segundos, el cepillo debe emitir una señal para que el usuario sepa que ya han pasado dos minutos. Dado que el cepillo no dispone de un altavoz, para avisar al usuario realizará una pequeña vibración. Para ello, detendrá el motor durante 1 segundo, lo pondrá en marcha durante otro segundo, lo volverá a parar durante un segundo y, posteriormente, seguirá funcionando indefinidamente hasta que el usuario pulse y suelte P, momento en el que deberá quedar preparado para un nuevo cepillado. Para conseguir que el motor gire, el sistema de control debe mantener la señal M a uno (si M vale cero el motor se para). Se dispone de un contador con dos entradas (BC, IC) para poner a cero e incrementar el contador, respectivamente, y una única salida (C120) que toma valor 1 cuando en el contador vale 120. El contador se encuentra inicialmente a cero. Asimismo, se dispone de un único temporizador de 1 segundo, el cual es gestionado mediante las señales (AT, FT) para activar y avisar de fin de temporización, respectivamente. Se pide: a) Indicar claramente las entradas y salidas del controlador TIEMPO 2h Página 3 de 4

10 b) Diseñar una Red de Petri que controle el proceso TIEMPO 2h Página 4 de 4

TIEMPO 2h Página 1 de 6

TIEMPO 2h Página 1 de 6 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. PARCIAL 25-01-2005 APELLIDOS: NOMBRE: DNI: CUESTIÓN 1 (2.5 puntos): Se desea controlar la temperatura de salida de una caldera de vapor actuando sobre la válvula

Más detalles

CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. FINAL 12 JUNIO 2002

CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. FINAL 12 JUNIO 2002 CUESTIÓN 1 (2.5 puntos) Dado el siguiente diagrama de bloques de un sistema compensado: + K(s) 5 (5s + 1)( s + 1)( s + 10) a) Dibuje el diagrama de Bode del sistema sin compensar. (Como guía: usar valores

Más detalles

TIEMPO 3h Página 1 de 14

TIEMPO 3h Página 1 de 14 CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES 1 er EX. PARCIAL 23 ENERO 2003 APELLIDOS: NOMBRE: DNI: CUESTION 1 (3 puntos): Dado el proceso de función de transferencia: 1 G ( s) = s s ( + 1) 2 a) Dibujar su

Más detalles

CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. SEPT 12 SEPTIEMBRE Redondear resultados a 2 decimales y señalarlos claramente con un recuadro doble.

CONTROL AUTOMÁTICO 3º ING. INDUSTRIALES EX. SEPT 12 SEPTIEMBRE Redondear resultados a 2 decimales y señalarlos claramente con un recuadro doble. En todas las cuestiones: Redondear resultados a 2 decimales y señalarlos claramente con un recuadro doble. CUESTIÓN 1 (2.5 puntos) Dada la función de transferencia: 1 G ( s) = s( s + 2)( s + 3) Se pide:

Más detalles

DISA. ESI. Examen Septiembre de Control Automático. Tercer curso de Ingenieros Industriales p.1. Apellidos Nombre DNI

DISA. ESI. Examen Septiembre de Control Automático. Tercer curso de Ingenieros Industriales p.1. Apellidos Nombre DNI DISA. ESI. Examen Septiembre de Control Automático. Tercer curso de Ingenieros Industriales. 11-9-2006. p.1 Problema 1 (2.5 p) Indicar qué sensores utilizaría y por qué, si necesita: 1. conocer la temperatura

Más detalles

Ingeniería de Control I - Examen 22.I.2005

Ingeniería de Control I - Examen 22.I.2005 Escuela Superior de Ingenieros Universidad de Navarra Ingeniarien Goi Mailako Eskola Nafarroako Unibertsitatea Ingeniería de Control I - Examen 22.I.2005 Apellidos: Nombre: Nº de carnet: EJERCICIO 1 Diseñar

Más detalles

Problema 1 (60 minutos - 5 puntos)

Problema 1 (60 minutos - 5 puntos) Amplitude Imaginary Axis EXAMEN DE JULIO DE REGULACIÓN AUTOMÁTICA (13/14) Problema 1 (6 minutos - 5 puntos) El control de temperatura de la planta Peltier de la asignatura es realizado mediante un sistema

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 z) ( z.5) z C. a) Determinar la región del plano z donde

Más detalles

Examen de Sistemas Automáticos Agosto 2016

Examen de Sistemas Automáticos Agosto 2016 Examen de Sistemas Automáticos Agosto 206 Ej. Ej. 2 Ej. 3 Ej. 4 Test Total Apellidos, Nombre: Sección: Fecha: 9 de agosto de 206 Atención: el enunciado consta de cuatro ejercicios prácticos y un test de

Más detalles

DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE

DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE INTRODUCCIÒN Se abordará a continuación el problema de especificar los parámetros de compensadores eléctricos típicos, que son las formas aproximadas

Más detalles

PRIMERA PARTE. F roz 1 K Ms

PRIMERA PARTE. F roz 1 K Ms Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA Ingeniería de Control I 4º NOMBRE IZENA CURSO KURTSOA FECHA DATA 6 de septiembre

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA 1 er Cuatrimestre: Martes 12:30-14:30 16:00-17:00 2º Cuatrimestre: Jueves 12:30-14:30 16:00-17:00 Profesor: Andrés S. Vázquez email: AndresS.Vazquez@uclm.es

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

Problema 1 (3 puntos - 50 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: Magnitude (db)

Problema 1 (3 puntos - 50 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: Magnitude (db) EXAMEN DE SEPTIEMBRE DE SEVOSISTEMAS (6/7) Problema (3 puntos - 5 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: a) Obtener la expresión analítica

Más detalles

PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso

PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso 2010-11 1. Descripción del sistema Se desea controlar la reacción química

Más detalles

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación

Más detalles

GRADO: CURSO: 3 CUATRIMESTRE:

GRADO: CURSO: 3 CUATRIMESTRE: DENOMINACIÓN ASIGNATURA: Ingeniería de Control I GRADO: CURSO: 3 CUATRIMESTRE: La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera

Más detalles

1. Problema (5 puntos ev. continua, 3 puntos ev. final -60 minutos) La función de transferencia de un proceso a controlar es: ( ) .

1. Problema (5 puntos ev. continua, 3 puntos ev. final -60 minutos) La función de transferencia de un proceso a controlar es: ( ) . Imaginary Axis APELLIDOS CURSO 3º GRUPO Enero 214 1. Problema (5 puntos ev. continua, 3 puntos ev. final -6 minutos) La función de transferencia de un proceso a controlar es: ( ). Se desea que la ( )(

Más detalles

Tema 5 Acciones básicas de control. Controlador PID.

Tema 5 Acciones básicas de control. Controlador PID. Tema 5 Acciones básicas de control. Controlador PID. 1. Control en el dominio del tiempo. PID 2. Estudio del Lugar de las raíces 3. Control en el dominio de la frecuencia. Compensadores Control en el dominio

Más detalles

10/10/2011. Servomecanismo de posicionamiento de las cabezas de lectura escritura de un disco duro. Pistas de datos Sentido de giro de los discos

10/10/2011. Servomecanismo de posicionamiento de las cabezas de lectura escritura de un disco duro. Pistas de datos Sentido de giro de los discos //2 Margen de desplazamiento de las cabezas Pistas con referencia de posición del brazo Cabezas de lectura-escritura Brazo motor de las cabezas Pistas de datos Sentido de giro de los discos Amplificadores

Más detalles

1. Diseño de un compensador de adelanto de fase

1. Diseño de un compensador de adelanto de fase COMPENSADORES DE ADELANTO Y RETARDO 1 1. Diseño de un compensador de adelanto de fase El compensador de adelanto de fase persigue el aumento del margen de fase mediante la superposición de la curva de

Más detalles

Control automático con herramientas interactivas

Control automático con herramientas interactivas 1 El proyecto de fichas interactivas Objetivo del libro 2 Explicar de forma interactiva conceptos básicos de un curso de introducción al control automático y facilitar al recién llegado su aprendizaje

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

l 1 l 2 x 1 x 2 M 1 e(t) R, L B 1

l 1 l 2 x 1 x 2 M 1 e(t) R, L B 1 FINAL DE EPTIEMBRE DE ERITEMA (/3) 3REHPD La figura muestra el modelo simplificado de un telégrafo. Ante la recepción de un pulso eléctrico se produce una fuerza magnética proporcional a la corriente de

Más detalles

Tema 6 Control de sistemas de orientación de antenas y de telescopios

Tema 6 Control de sistemas de orientación de antenas y de telescopios Tema 6 Control de sistemas de orientación de antenas y de telescopios. Métodos de control de sistemas de orientación 2. Métodos de ajuste de PIDs 3. Estudio de las perturbaciones 4. Técnicas y diseño de

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos Ejercicios resueltos : Horno de Carbón Cátedra de Control y Servomecanismos Idea y desarrollo: Ing. Cristian Zujew Corregido por el Dr. Ing. Cristian Kunusch Objetivo: en esta guía práctica se presenta

Más detalles

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto G p ( s) k s( s + )( s + 5) a)para el sistema en lazo abierto, y suponiendo el valor k : Obtener la expresión analítica

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

REGULACIÓN AUTOMÁTICA

REGULACIÓN AUTOMÁTICA SEGUNDO CURSO ANUAL INGENIERO TÉCNICO INDUSTRIAL ESPECIALIDAD EN ELECTRONICA INDUSTRIAL Plan de la Asignatura REGULACIÓN AUTOMÁTICA CURSO 2005-06 Departamento de Ingeniería de Sistemas y Automática Universidad

Más detalles

Control Automático I - Certamen 2 Pauta de Correción

Control Automático I - Certamen 2 Pauta de Correción Control Automático I - Certamen 2 Pauta de Correción 7 de Septiembre 215 1. 1.1. Un sistema electro-mecánico tiene el modelo nominal G (s) = 1 (s+2), cuya salida es la velocidad angular de un eje. Los

Más detalles

Reducir el siguiente diagrama de bloques a un solo bloque Y(s)/R(s). Todos los bloques G 1, G 2, G 3, H 1, H 2, H 3 son funciones de Laplace.

Reducir el siguiente diagrama de bloques a un solo bloque Y(s)/R(s). Todos los bloques G 1, G 2, G 3, H 1, H 2, H 3 son funciones de Laplace. RIMER ARCIAL DE SERVOSISITEMAS (3/4) 3LHSREOHD Reducir el siguiente diagrama de bloques a un solo bloque Y(s)/R(s). Todos los bloques G, G, G 3, H, H, H 3 son funciones de Laplace. R(s) G G G 3 Y(s) H

Más detalles

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado.

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.2 Representación gráfica del comportamiento de un controlador todo-nada básico. Figura 6.3 Representación

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

Autómatas y Sistemas de Control

Autómatas y Sistemas de Control Autómatas y Sistemas de Control 3 o Ingeniería Industrial Soluciones problemas propuestos sobre diseño en el dominio de la frecuencia. PROBLEMA (Problema, apartado a), del examen de Junio de 2004) Dado

Más detalles

Diseño de Redes de Adelanto y Atraso de fase Sistemas Automáticos

Diseño de Redes de Adelanto y Atraso de fase Sistemas Automáticos Diseño de Redes de Adelanto y Atraso de fase Sistemas Automáticos 17 de mayo de 24 Índice General 1 Enunciado 2 2 Primer juego de especificaciones 3 2.1 Especificaciones.......................... 3 2.2

Más detalles

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es Gp(S) = 1/(5S + 1). El proceso está en serie con

Más detalles

Planta - Figura 1 T T

Planta - Figura 1 T T RESOLUCIÓN SEGUNDO PARCIAL Recursada 016 1) Explique cómo se halla el algoritmo de control discreto recursivo, u(k), para un controlador PID con la disposición de sus acciones como se indica en la Figura

Más detalles

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA Profesor: Adrián Peidró (apeidro@umh.es) OBJETIVOS Afianzar los conocimientos

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Estructura

Más detalles

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO 1. SISTEMA A CONTROLAR El sistema a controlar es el conjunto motor eléctrico-freno conocido de otras prácticas: Se realizarán experimentos de control de posición

Más detalles

TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUIÁ DE APRENDIZAJE Y AUTOEVALUACIÓN Nº TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS

Más detalles

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

Más detalles

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático:

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático: Modelo matemático de procesos 1. Modelo Matemático Un modelo matemático muy exacto implica un desarrollo matemático muy complejo. Por el contrario, un modelo matemático poco fino nos deparará un desarrollo

Más detalles

Puerta NOT Puerta OR Puerta AND Puerta NOR Puerta NAND

Puerta NOT Puerta OR Puerta AND Puerta NOR Puerta NAND Bloque 5. Sistemas automáticos de control. Programación de sistemas automáticos. 75. Indica, de las siguientes expresiones, cuáles son verdaderas (V) y cuáles son falsas (F). (2p.): Los sistemas de control

Más detalles

Determine la cantidad de polos en el semi plano izquierdo, fundamente. Determine el rango de valores de K para que el sistema sea estable.

Determine la cantidad de polos en el semi plano izquierdo, fundamente. Determine el rango de valores de K para que el sistema sea estable. ESTABILIDAD 1 Un sistema con realimentación unitaria tiene la siguiente función de transferencia de la planta: ( s 1.)( s 0.5s ) Gp ( s) s.5s 1 a) Cuantos polos tiene en el semiplano derecho. b) Cuantos

Más detalles

Universidad Carlos III de Madrid Grado en Ingeniería Informática Tecnología de Computadores

Universidad Carlos III de Madrid Grado en Ingeniería Informática Tecnología de Computadores Problemas temas 5, 6 y 7: 1) Dado el circuito secuencial de la figura, complete el cronograma, indicando el valor en el tiempo de las salidas de los biestables. 2) Dado el circuito de la figura, rellenar

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

Sintonización de controladores por ubicación de polos y ceros

Sintonización de controladores por ubicación de polos y ceros Sintonización de controladores por ubicación de polos y ceros Leonardo J. Marín, Víctor M. Alfaro Departamento de Automática, Escuela de Ingeniería Eléctrica, Universidad de Costa Rica Apartado postal

Más detalles

DISEÑO REGULADORES EN LUGAR d. RAÍCES

DISEÑO REGULADORES EN LUGAR d. RAÍCES TEMA 9 DISEÑO REGULADORES EN LUGAR d. RAÍCES 9.- OBJETIVOS Conocida la forma de analizar la respuesta dinámica de los sistemas continuos, se pretende ahora abordar el problema de modificar dicha respuesta

Más detalles

LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA

LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD: Curso TIPO DE ASIGNATURA: Teórico

Más detalles

Ejercicios de examen: frecuencial

Ejercicios de examen: frecuencial EJERCICIO 1 Los diagramas mostrados en la hoja adjunta representan respectivamente el modelo de un sistema que se pretende controlar y el correspondiente a dicho sistema con el regulador. Se pide: a) Qué

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

TEORIA DE CONTROL CAPITULO 9: ESPECIFICACIONES Y AJUSTES DE CONTROLADORES

TEORIA DE CONTROL CAPITULO 9: ESPECIFICACIONES Y AJUSTES DE CONTROLADORES CAPITULO 9: ESPECIFICACIONES Y AJUSTES DE CONTROLADORES 10.1 Especificaciones en Diseño En muchos casos las características o exigencias impuestas en un sistema de control, están dadas desde el punto de

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL Análisis y diseño de sistemas de control - 2 PRÁCTICA: ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL Presentación... 3 1. Características de SISTEMAS... 3 1.1 Página

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados

TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE

PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO

Más detalles

Ejercicio 1. Práctica 2

Ejercicio 1. Práctica 2 Ejercicio 1 Cuando se accione el pulsador de apertura de puerta, la puerta se abre (si no estaba abierta) y cuando el vehículo se encuentra en el interior del recinto y presiona el sensor de paso la puerta

Más detalles

SISTEMAS ELECTRÓNICOS DE CONTROL 3º Ing. Téc. Telecom. Sistemas Electrónicos

SISTEMAS ELECTRÓNICOS DE CONTROL 3º Ing. Téc. Telecom. Sistemas Electrónicos Escuela Politécnica Superior de Elche SISTEMAS ELECTRÓNICOS DE CONTROL 3º Ing. Téc. Telecom. Sistemas Electrónicos TRABAJO 2º CUATRIMESTRE: CONTROL DE UNA ANTENA PARA EL SEGUIMIENTO DE SATÉLITES CURSO

Más detalles

Sistemas Lineales 2 - Práctico 8

Sistemas Lineales 2 - Práctico 8 Sistemas Lineales 2 - Práctico 8 Estabilidad Interna y Estabilidad de sistemas realimentados 2 do semestre 203 ) El esquema de la figura muestra un sistema electro-mecánico movido por un motor eléctrico

Más detalles

Control Automático. Compensador de adelanto en el lugar de las raíces

Control Automático. Compensador de adelanto en el lugar de las raíces Control Automático Compensador de adelanto en el lugar de las raíces Contenido Estrategia para la síntesis de reguladores rlocus Algoritmo para el diseño usando el plano complejo Cálculo del compensador

Más detalles

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano Control Automático Regulador PID y ajuste del PID Eduardo Interiano Contenido Regulador PID PID ideal PID real Ajuste empírico del PID (Ziegler-Nichol Ejemplos Ejercicios Referencias 2 El PID ideal El

Más detalles

Manual de la Práctica 5: Diseño de un controlador digital

Manual de la Práctica 5: Diseño de un controlador digital Control por Computador Manual de la Práctica 5: Diseño de un controlador digital Jorge Pomares Baeza Francisco Andrés Candelas Herías Grupo de Innovación Educativa en Automática 009 GITE IEA - 1 - Introducción

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

Desempeño. Estado estacionario: Respuesta en el tiempo y respuesta en la frecuencia.

Desempeño. Estado estacionario: Respuesta en el tiempo y respuesta en la frecuencia. Desempeño. Estado estacionario: Respuesta en el tiempo y respuesta en la frecuencia. Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Desempeño SLIT

Más detalles

Diseño mediante Redes de Adelanto y Atraso de Fase

Diseño mediante Redes de Adelanto y Atraso de Fase Diseño mediante Redes de Adelanto y Atraso de Fase Sistemas Automáticos 2 de mayo de 24 Enunciado: Un proceso industrial dado tiene la siguiente función de transferencia: G(s) = 2 (s + 1)(s + 2)(s + 5)

Más detalles

Diseño por ubicación de polos

Diseño por ubicación de polos Control Automático Diseño por ubicación de polos Contenido Introducción Métodos para la ubicación de polos Realimentación de estado Modificación del lugar de las raíces Introducción Para diseñar un regulador

Más detalles

EJERCICIO Nº1 EL42D CONTROL DE SISTEMAS

EJERCICIO Nº1 EL42D CONTROL DE SISTEMAS EJERCICIO Nº1 EL42D CONTROL DE SISTEMAS Prof. Doris Sáez Ayudante: Rodrigo Flores e-mail: roflores@terra.cl Fecha de entrega: Lunes 12 de Abril, 12:00. 1.- Para el siguiente esquema de suspensión magnética

Más detalles

Diseño Básico de Controladores

Diseño Básico de Controladores Diseño Básico de Controladores No existen reglas para el diseño de controladores. Para una planta y especificaciones dadas pueden existir dos o mas controladores que entreguen buen desempeño. En las siguientes

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica INGENIERIA CIVIL MECANICA PLAN 2001 GUIA DE LABORATORIO ASIGNATURA 15030 LABORATORIO GENERAL II NIVEL 11 EXPERIENCIA C229 ANÁLISIS DINAMICO DE SISTEMAS DE CONTROL HORARIO: MARTES: 7-8 9-10-11-12 ANÁLISIS

Más detalles

PRÁCTICA Nº 11. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NICHOLS

PRÁCTICA Nº 11. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NICHOLS PRÁCTICA Nº 11. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NICHOLS 11. DIAGRAMA DE NICHOLS.... 1 11.2. LA CARTA DE NICHOLS.... 1 11.3. EJERCICIO RESUELTO... 2 11.4. EJERCICIOS

Más detalles

Control de sistemas lineales. Gabriela Peretti FaMAF

Control de sistemas lineales. Gabriela Peretti FaMAF Control de sistemas lineales Gabriela Peretti FaMAF Temas Estabilidad Criterio de estabilidad de Routh Análisis en el dominio temporal Errores en estado estable Especificaciones en el dominio del tiempo

Más detalles

DATOS ESPECÍFICOS DE LA ASIGNATURA 1. DESCRIPTOR Regulación Automática Curso

DATOS ESPECÍFICOS DE LA ASIGNATURA 1. DESCRIPTOR Regulación Automática Curso FICHA DE ASIGNATURA DE INGENIERO TÉCNICO INDUSTRIAL ESPECIALIDAD ELECTRICIDAD PARA GUÍA DOCENTE. TITULACIONES EN EXTINCIÓN. DATOS BÁSICOS DE LA ASIGNATURA NOMBRE: Regulación Automática. CÓDIGO: 8297 AÑO

Más detalles

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un

Más detalles

Nº Nombre Ejercicios a realizar Nota obtenida

Nº Nombre Ejercicios a realizar Nota obtenida Clasificación de los ejercicios por temas explicados en clase Tema 12 1-a, 2-bc, 3, 4-b, 5-a, 6-b, 7-b (igual a 15-b), 9-a, 10-b, 11, 12, 13-b, 19, 22, 23-a, 25-b, 26-a, 27, 28 Tema 13 21. Tema 14 1-b,

Más detalles

Determinar y demostrar las transformadas de Laplace de las señales de test: pulso de dirac, escalón unitario, rampa unitaria y parábola unitaria.

Determinar y demostrar las transformadas de Laplace de las señales de test: pulso de dirac, escalón unitario, rampa unitaria y parábola unitaria. &XWLyQ Determinar y demostrar las transformadas de Laplace de las señales de test: pulso de dirac, escalón unitario, rampa unitaria y parábola unitaria. PLQXWR Un altavoz es un transductor que transforma

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo Proyecto: Posicionamiento de una Antena Parabólica. Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

Respuesta temporal, Sistemas de orden 1

Respuesta temporal, Sistemas de orden 1 Respuesta temporal, Sistemas de orden Transparencias Introducción a la Teoría de Control R. Canetti 203 RESPUESTA TEMPORAL Cómo responde un sistema dinámico lineal, de parámetros concentrados, invariante

Más detalles

Tema 5: Diseño de controladores en el dominio de la frecuencia

Tema 5: Diseño de controladores en el dominio de la frecuencia Tema 5: Diseño de controladores en el dominio de la frecuencia Control Automático 3º Curso. Ing. Industrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Curso 28-9 Índice Introducción

Más detalles

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos Ficha Técnica Titulación: Grado en Ingeniería de Organización Industrial Plan BOE: BOE número 75 de 28 de marzo de 2012 Asignatura: Módulo: Fundamentos de Tecnologías Industriales Curso: 3º Créditos ECTS:

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ELECTRÓNICA, AUTOMÁTICA E INFORMÁTICA INDUSTRIAL Prácticas de Regulación Automática Práctica 5 Reguladores continuos 5.2 Reguladores continuos 5 REGULADORES

Más detalles

EXAMEN Regulación Automática 3 Minas

EXAMEN Regulación Automática 3 Minas EXAMEN Regulación Automática 3 Minas 17 de septiembre de 2009 Item n 1 (1 puntos) Elaborar un controlador por realimentación de estados para la planta 0 1 0 0 ẋ = 0 0 1 x + 0 u 1 0 1 1 y = [ 1 0 0 ] de

Más detalles

ANÁLISIS ESTÁTICO. Análisis Estático de Sistemas Realimentados.

ANÁLISIS ESTÁTICO. Análisis Estático de Sistemas Realimentados. ANÁLISIS ESTÁTICO Análisis Estático de Sistemas Realimentados. Concepto de realimentación. Concepto de error en régimen permanente. Señales de entrada y tipo de un sistema. Cálculo de errores en sistemas

Más detalles

OBJETIVO DEL ACTUADOR. Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra.

OBJETIVO DEL ACTUADOR. Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra. OBJETIVO DEL ACTUADOR Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra. El control del movimiento puede ser, según la aplicación: I.- Control de posición.

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Conversión y procesamiento de señales

INDICE Capitulo 1. Introducción Capitulo 2. Conversión y procesamiento de señales INDICE Capitulo 1. Introducción 1-1 introducción 1 1-1-1 elementos básicos de un sistema de control de datos discretos 2 1-1-2- ventajas de los sistemas de control de datos discretos 3 1-2 ejemplos de

Más detalles

Desempeño Respuesta en frecuencia. Elizabeth Villota

Desempeño Respuesta en frecuencia. Elizabeth Villota Desempeño Respuesta en frecuencia Elizabeth Villota 1 Desempeño SLIT 2do orden transiente estado estacionario respuesta a un escalón unitario ω o autovalores sistema λ(a) propiedades de la respuesta a

Más detalles

3. El sistema electrónico contiene el amplificador de error y

3. El sistema electrónico contiene el amplificador de error y EXAMEN DE FEBRERO DE REULACIÓN AUTOMÁTICA I (34 3UREOPD La siguiente figura representa un péndulo controlado por medio de un electroimán. Un complejo sistema electromecánico permite ejercer una fuera horizontal

Más detalles

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: [1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determinar: En base a la gráfica: a) Tiempo de establecimiento para un error

Más detalles