DESGASTE DE MATERIALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DESGASTE DE MATERIALES"

Transcripción

1 DESGASTE DE MATERIALES INTRODUCIÓN El desgaste es conocido desde que el ser humano comenzó a utilizar elementos naturales que le servían como utensilios domésticos. Este fenómeno al igual que la corrosión y la fatiga, es una de las formas más importantes de degradación de piezas, elementos mecánicos y equipos industriales. El desgaste puede ser definido como el daño superficial sufrido por los materiales después de determinadas condiciones de trabajo a los que son sometidos. Este fenómeno se manifiesta por lo general en las superficies de los materiales, llegando a afectar la sub-superficie. El resultado del desgaste, es la pérdida de material y la subsiguiente disminución de las dimensiones y por tanto la pérdida de tolerancias. Los mecanismos de daño en los materiales se deben principalmente a deformación plástica, formación y propagación de grietas, corrosión y/o desgaste Desde que el desgaste comenzó a ser un tópico importante y que necesitaba estudiado y entendido, comenzaron a aparecer en los libros de diseño y en la mente de los diseñadores, ideas sencillas de como prevenirlo o combatirlo, entre esas ideas se tienen: 1. Mantener baja la presión de contacto 2. Mantener baja la velocidad de deslizamiento 3. Mantener lisas las superficies de rodamientos 4. Usar materiales duros 5. Asegurar bajos coeficientes de fricción 6. Usar lubricantes Tipos de desgaste. Desgaste por fatiga de contacto. Este tipo de desgaste ocurre cuando piezas son sometidas a elevados esfuerzos, los cuales provocan la aparición y propagación de grietas bajo la acción repetitiva de estos. En el caso de piezas sometidas a deslizamiento, las capas superficiales sufren intensas deformaciones como resultado de la acción simultánea de las tensiones de contacto y de la fuerza de fricción. Los esfuerzos a los que están sometidos los materiales particularmente en las capas superficiales, promueven en la mayoría de los casos, alteraciones en la estructura cristalina y en el tamaño de grano. Con las nuevas tecnologías se ha necesitado de materiales, que a través de modernos procesos de producción o de tratamiento térmico, presenten una combinación especial de microestructura y propiedades mecánicas, garantizando con esto, niveles de tolerancia, acabado superficial y desvíos de forma y posición cada vez mejores. Por otra parte las leyes son cada vez más rigurosas, controlando los niveles de ruido y contaminantes perjudiciales para el hombre y el medio ambiente que provienen de selecciones equivocadas de materiales o procesos de producción empíricos. El picado originado a partir de grietas, es una de las fallas por fatiga de contacto superficial típica de elementos de máquinas, los cuales trabajan bajo régimen de lubricación elastohidrodinámica y elevadas cargas superficiales. Este es el caso de cojinetes de rodamiento y ruedas dentadas en su punto de contacto. Aquí, el mecanismo principal de falla es la aparición y propagación de grietas después que las superficies han almacenado una determinada deformación plástica. Por esto, es importante el buen acabado superficial y la correcta selección y filtrado de los lubricantes. Según Gras e Inglebert (1998), la fatiga de contacto se debe al aparecimiento de transformaciones microestructurales o decohesiones localizadas que conducen al daño de las superficies. DESGASTE ABRASIVO DEFINICIÓN La Norma ASTM G40-92 define el desgaste abrasivo como la pérdida de masa resultante de la interacción entre partículas o asperezas duras que son forzadas contra una superficie y se mueven a lo largo de ella. La diferencia entre desgaste abrasivo y desgaste por deslizamiento es el grado de desgaste entre los cuerpos involucrados (mayor en el desgaste abrasivo), ya sea por la naturaleza, tipo de material, composición química, o por la configuración geométrica. Como se muestra en la figura 7, existen básicamente de los tipos de desgaste abrasivo, estos son: desgaste abrasivo a de los cuerpos o a tres cuerpos. En abrasión a de los cuerpos, el desgaste es causado por rugosidades duras pertenecientes a una de las superficies en contacto, mientras que la abrasión a tres cuerpos, el desgaste es provocado por partículas duras sueltas entre las superficies que se encuentran en movimiento relativo. Como ejemplo de desgaste abrasivo a dos cuerpos, se tiene un taladro penetrando una roca, mientras que a tres cuerpos se puede citar el desgaste sufrido por las mandíbulas de una trituradora al quebrar la roca, o por la presencia de partículas contaminantes en un aceite que sirve para lubricar de los superficies en contacto deslizante.

2 Figura 7. Desgaste abrasivo a) a de los cuerpos y b) a tres cuerpos La figura 8 muestra la influencia del tamaño de partícula generada durante el desgaste o inherente al sistema en la definición del mecanismo de desgaste operante. El mecanismo de adhesión es verificado para tamaños de partículas menores de 10 m, que corresponden a tamaños característicos de micro-constituyentes en materiales ferrosos (por ejemplo carburos en el acero AISI 52100) o partículas de desgaste que permanecen en el área de contacto, pero sin llegar a actuar como partículas abrasivas, pues el nivel de actuación de esas partículas para el sistema es aún bajo. Para tamaños mayores que 10 m, la variación de la tasa de desgaste sigue características frecuentemente vistas en sistemas abrasivos, como será visto posteriormente. Figura 8.Variación del desgaste específico con el tamaño de la partícula ( m) MECANISMOS DE DESGASTE ABRASIVO El mecanismo más efectivo de remoción de material en desgaste abrasivo para materiales dúctiles es el corte. Aunque en función de determinadas variables del sistema y propiedades de los materiales involucrados, la eficiencia en la remoción de material bajo este mecanismo puede ser atenuada. Cuando esto ocurre, se dice que está presente el mecanismo de microsurcado, donde la remoción de material solamente se dará por acciones repetidas de los abrasivos, llevando a un proceso de fatiga de bajos ciclos. La Figura 9 muestra diferentes apariencias de la superficie en función de la carga, aplicada provocadas por un penetrador esférico de diamante de un material dúctil, en las cuales se pasa de microsurcado para microcorte. Estas micrografías fueron obtenidas en microscopio electrónico de barrido. Figura 9. Micrografías en microscopia electrónica de barrido mostrando micro-mecanismos de abrasión controlados por deformación plástica: a1) microsurcado; b1) y c1) formación de proas y d1) microcorte. La proporción de material del volumen del surco desplazado durante el proceso de abrasión de un material dúctil a los lados del surco, es decir la relación entre microsurcado y microcorte depende del ángulo de ataque de la partícula abrasiva. De acuerdo a los investigadores Mulheram, Samuels y Sedriks, el material es sacado de la superficie por microcorte cuando el 2

3 ángulo de ataque (á c ) de la particlua erosiva es mayor que un valor crítico. Ese valor critico del ángulo de ataque es función del material que está siendo desgastado y de las condiciones de ensayo. Teoricamente á c describe una transición aguda entre microsurcado y microcorte. En la práctica, una transición más gradual de microsurcado o microcorte es observado con el incremento del ángulo de ataque Autores como Stroud y Willian (1974), Buttery y Archard (1970) y Moore y Swanson (1983), discutieron el hecho, que solo una parte del volumen del surco producido por partículas duras, es inmediatamente removido como partículas de desgaste fuera del material, es resto se localiza en el borde en forma de proa. En materiales con microconstituyentes de plasticidad limitada, el mecanismo de microcorte acaba por ser característico, o sea, para una severidad de desgaste baja, se evidencia el microsurcado y hay una transición para microfractura cuando alguna variable del sistema promueve aumento de severidad. Este efecto puede ser visto en la figura 10. Figura 10. Relación entre tenacidad a la fractura y resistencia al desgaste abrasivo en diferentes materiales cerámicos y polímeros (Zum Gar). DESGASTE POR CAVITACIÓN INTRODUCIÓN. La cavitación es un problema frecuentemente encontrado en equipos hidráulicos, el cual genera gran dificultad para su mantenimiento. El problema de la cavitación surgió con el desarrollo de los barcos a vapor en el inicio de este siglo. Con la fabricación estos barcos, capaces de alcanzar mayores velocidades, algunos de ellos comenzaron a presentar un desgaste severo y localizado en sus hélices. Inicialmente se pensó que este desgaste se debía a la corrosión de los materiales de las hélices, siendo esta la responsable por el daño en dichos materiales, aprovechando su baja resistencia a la corrosión. Pero, al estudiarse el fenómeno más detalladamente, se descubrió que las hélices no sufrían desgaste cuando no estaban en funcionamiento y que este también ocurría en medios químicamente inertes. Así el desgaste solo podría ser debido a un fenómeno que ocurría durante el flujo de los fluidos frente a los materiales por los que pasaban. En 1915 en Inglaterra se estudió este fenómeno por primera vez y se llegó a la conclusión que el desgaste era provocado por repetidos golpes hidráulicos que alcanzaban la superficie de las hélices durante su funcionamiento. Pero los mecanismos por los cuales este desgaste ocurría no quedaron claros y el fenómeno permaneció sin explicación hasta En este año, un artículo de autoría de Lord Rayleigh fue publicado. En el artículo, Rayleigh proponía un mecanismo para explicar el fenómeno. Este investigador dedujo en su hipótesis, que durante el flujo de un fluido pueden ocurrir caídas de presión que pueden alcanzar valores del orden de la presión de vapor del líquido en la temperatura de trabajo, provocando la nucleación de pequeñas burbujas de vapor. Estas burbujas son llevadas por el flujo y al alcanzar regiones de mayores presiones sufren un colapso violento y caótico que genera altas presiones y velocidades en las regiones próximas al colapso. Estas altas presiones y velocidades que surgen del colapso, provocan el desgaste de superficies sólidas próximas. Como conclusión a esta teoría, hasta ahora la más aceptada, es que, el desgaste por cavitación se puede definir como aquel daño que ocurre en los materiales debido al crecimiento y colapso de pequeñas burbujas, que surgen debido a las variaciones de presión durante el flujo de un fluido. Aunque hasta la fecha se ha tenido un enorme avance desde la publicación del artículo de Lord Rayleigh, un entendimiento completo del fenómeno aún está lejos de ser alcanzado y aún es mucho lo que debe ser estudiado de este tópico. Los efectos que el desgaste por cavitación provocan, van desde la pérdida de eficiencia, hasta la inutilización completa del equipo. Hasta hoy no hay una manera de preverse el desgaste de un equipo sujeto a cavitación y las paradas para mantenimiento de un equipo aún son estipuladas con base en la experiencia de los operadores. Sin embargo hoy tenemos dos maneras de lidiar con el problema de la cavitación: uno es el desarrollo de materiales más resistentes y otro, es mejor el diseño de equipos hidráulicos evitando caídas de presión muy bruscas. 3

4 MECANISMOS DE DAÑO Rayleigh mostró la posibilidad del surgimiento de elevadas presiones y velocidades debido al colapso de burbujas. En su trabajo utilizó un balance de energía para mostrar la posibilidad de surgimiento de altas presiones originadas en el colapso de las burbujas. De las suposiciones propuestas por Rayleigh, la que más influye es aquella donde afirma que la presión interna puede ser despreciada. En realidad siempre existirá una cierta cantidad de aire o gases disueltos en el líquido, y en el interior de la burbuja siempre existirá vapor debido a su propia nucleación. Por otro lado la presión en el interior de la micro-burbuja no puede ser despreciada. Parte de la energía de colapso es utilizada para comprimir los gases o vapores en el interior de la burbuja, los cuales alcanzan presiones y temperaturas muy altas. Las consecuencias de este hecho se pueden entender mejor de la siguiente forma. Durante el colapso, ocurre flujo de fluido en dirección a la burbuja, provocando aumento de presión en la interface burbuja/líquido y acelerando cada vez más la interface. El colapso se da de manera tan rápida que parte del vapor presente en la burbuja no tiene tiempo suficiente de condensarse. Así, el vapor (y también cualquier gas disuelto) será comprimido a una alta presión que, eventualmente, será suficientemente alta para interrumpir el colapso y hacer con que la burbuja crezca nuevamente de forma explosiva, emitiendo ondas de presión o de choque, conforme se esquematiza en la Figura 11 Figura 11: Representación esquemática del fenómeno de nucleación y colapso de micro-burbujas y la emissión de ondas de choque Las ondas de presión emitidas durante el crecimiento explosivo de las burbujas son las responsables por el daño del material. Estas ondas de choque que generan elevadísimas presiones, son capaces de alcanzar valores del orden de GPa y actúan en un intervalo de tiempo muy curto sometiendo al material a una tasa de deformación muy alta. Este mecanismo continuaría indefinidamente sino existieran mecanismos de disipación de energía. La disipación de energía ocurre en virtud de la viscosidad del fluido, que de manera general, puede ser considerado como un factor de amortiguamiento, transformando la energía mecánica del colapso en energía térmica. La viscosidad también reduce la tasa de crecimiento o colapso de las micro-burbujas, reduciendo con esto el daño potencial. La compresibilidad del líquido tiene gran influencia en la formación de las ondas de choque y en la fase siguiente al colapso: la compresibilidad del fluido causa una atenuación de las ondas de choque emitidas y diminuye el daño total provocado. Para que las ondas de choque puedan provocar daño a un material, es necesario que el colapso ocurra muy próximo a las superficies sólidas. Pero cuando el colapso ocurre próximo a una superficie sólida esta altera el flujo y da origen a un segundo mecanismo de daño posible: los micro chorros. Cuando el colapso de la burbuja ocurre próximo a una superficie sólida, el flujo en la región entre esta y la burbuja es restringido. Así la velocidad de contracción de la burbuja en esa región es menor que en las regiones de la burbuja más distantes de la superficie sólida. Esa diferencia de velocidad de contracción, provoca una asimetría de colapso, esto explica porque las micro-burbujas no presentan una forma esférica. El comportamiento de pérdida de esfericidad de las burbujas es presentado en la Figura 12. Con la continuación del colapso, hay una aceleración de la burbuja y por consiguiente la formación de un micro chorro, siendo este otro mecanismo de daño posible además de las ondas de presión. 4

5 Figura 12: Modelos de formación de micro chorros Por lo tanto, existen dos mecanismo por los cuales el crecimiento y colapso de burbujas pueden causar daño al material en regiones vecinas al colapso: la emisión de ondas de choque y los micro chorros. La pregunta de sí el daño por cavitación es provocado por ondas de presión o por micro chorros es un asunto aún controversial en la literatura. Durante la década del 40 y 50, se creía que las ondas de presión eran el mecanismo responsable por el daño. Con el descubrimiento de los micro chorros, fue entonces puesta atención a las presiones generadas por estos. Así que la pregunta aún no fue resuelta y la posición actual es que el daño es provocado por la acción conjunta de estos dos mecanismos. Desgaste adhesivo La adhesión esta asociada a toda formación y posterior rompimiento de enlaces adhesivos entre las interfaces, cuando dos superficies son colocadas en contacto íntimo. La adhesión conlleva además al soldado en frío de las superficies. Con respecto al desgaste adhesivo, el papel principal lo juega la interacción entre las superficies y su grado de limpieza, es decir, cuando el acercamiento entre los cuerpos es tal, que no se presenta ningún tipo de impurezas, capas de óxido o suciedades, se permite que el área de contacto sea aumentada, pudiéndose formar uniones adhesivas más resistentes. El desgaste adhesivo es ayudado por la presencia de altas presiones localizadas en las asperezas en contacto. Estas asperezas son deformadas plásticamente, permitiendo la formación de regiones soldadas localizadas. El desgaste adhesivo ocurre como resultado de la destrucción de los enlaces entre las superficies unidas, permitiendo que parte del material arrancado se transfiera a la superficie del otro. Así, la superficie que gana material aumenta su rugosidad con el agravante de que cuando el movimiento continua, se genera desgaste abrasivo contra la otra superficie. Piezas de maquinaria donde está normalmente involucrado el desgaste adhesivo, son. Sistemas, biela-seguidor, dados de extrusión-alambre, cola de milano-apoyo, engranajes, rodamiento-apoyo y herramientas de corte, son elementos que pueden sufrir desgaste debido a adhesión. La unión entre las superficies en contacto son destruidas, en caso que la resistencia al corte de la interface sea menor que la resistencia de los dos materiales considerados. Puede suceder que la región adherida tenga mayor resistencia al corte que alguno de los dos materiales o incluso que los dos, por tanto se puede presentar desgarre en uno, o en los dos materiales, permitiendo que uno de ellos sea adherido a la otra superficie del otro o que los dos materiales pierdan la interface. La tendencia a formar regiones adheridas, depende de las propiedades físicas y químicas de los materiales en contacto, al igual que de los valores de carga aplicados y las propiedades de los materiales que están sobre las superficies, y finalmente de la rugosidad. Generalmente el contacto entre metales es no metálico debido a la presencia de capas absorbidas como óxidos. La adhesión en este caso se da por medio de enlaces débiles o fuerzas de Van der Waals. Sin embargo, la deformación elástica o plástica de las asperezas puede provocar rompimiento de estas capas, por lo que la unión de la interface se da por medio de enlaces covalentes y metálicos, siendo los enlaces iónicos insignificantes en los metales. Mientras la fuerza de adhesión dependa del área real de contacto, esta será influenciada por la resistencia de los materiales a la deformación plástica, por el tipo de estructura cristalina y por el número de sistemas de deslizamiento. El investigador Sikorski (1964) mostró que hay una fuerte tendencia a la adhesión de acuerdo al tipo de estructura cristalina que presenten los materiales. En la figura 13 es mostrada la dependencia del coeficiente de adhesión en función de la dureza y el tipo de estructura cristalina presente. Aquí el coeficiente de adhesión es definido como la relación entre la fuerza necesaria para quebrar las uniones adheridas y la carga normal con la cual las muestras fueron inicialmente comprimidas. De la figura es posible notar que a medida que aumenta la dureza, en general hay un decrecimiento del coeficiente de adhesión. 5

6 Figura 13. Coeficiente de adhesión en función de la dureza y el tipo de estructura cristalina. Desgaste erosivo y erosivo-corrosivo INTRODUCIÓN El desgaste erosivo es un fenómeno que afecta gran cantidad de elementos de máquinas en las industrias minera y alimenticia, así como: turbinas hidráulicas, implementos agrícolas, sistemas de bombeo y dragado en ríos y minas, al igual que piezas específicas usadas en las industrias petrolífera y petroquímica, entre otras muchas aplicaciones. Con este tipo de desgaste, no solo se tiene perdida de material y la consecuente falla de las piezas, sino que está asociado a perjuicios financieros en virtud del tiempo asociado a la reparación de equipos y substituciones de los componentes desgastados. El conocimiento de los mecanismos de remoción de material involucrados durante el desgaste erosivo, así como el reconocimiento y la caracterización de las diferentes variables involucradas, son líneas muy importantes de investigación en la ingeniería actual, así su estudio haya sido comenzado hace ya varias décadas. Varias teorías que intentan entender y relacionar los diferentes mecanismos que actúan durante la erosión, con las variables involucradas, han sido desarrolladas en modelos matemáticos. Estos modelos se basan en hipótesis, que a veces limitan el análisis, ya que son realizados para aplicaciones muy específicas, orientadas a la solución de problemas particulares en procesos industriales. Muchos de estos modelos, aunque basados en líneas de pensamiento coherentes, están siendo actualmente estudiados nuevamente para perfeccionarlos. Desde este punto de vista, se está intentando modelar una teoría general del fenómeno de desgaste erosivo, para lo cual se han utilizando los principios básicos de la mecánica y de la termodinámica, combinados con la ciencia e ingeniería de materiales. Un fenómeno que actúa de forma sinérgica con la erosión, es la corrosión, en general cuando el medio de trabajo es húmedo. La corrosión puede ser definida de acuerdo con literatura, como un fenómeno que deteriora un material (generalmente metálico), por acción química o electroquímica del medio ambiente, asociada o no a esfuerzos mecánicos. La acción combinada de estos procesos, corrosión y desgaste erosivo, resulta en la degradación acelerada de los materiales debido a su comportamiento sinérgico. El proceso de desgaste corrosivo en materiales que forman capas pasivas es acelerado cuando esta capa es débil, como en el caso de algunos aceros inoxidables austeníticos. Resumen histórico del estudio de la erosión Este tipo de desgaste comenzó a ser un problema hace mucho tiempo, pero la erosión como tal, solo se comenzó a estudiar con seriedad en estos dos últimos siglos. Partículas duras chocando contra una superficie ha sido un problema serio y constante para muchas industrias. Aunque por otro lado se tienen algunas aplicaciones importantes que utilizan el proceso erosivo, como por ejemplo, durante el pulido de piezas con chorro de arena. Las primeras publicaciones sobre erosión aparecieron en 1946, en ella se utilizaron 233 referencias de trabajos resueltos en industrias particulares. Para esta época, aún se tenía poco entendimiento del fenómeno y de los mecanismos que llevaban a la pérdida de material de las superficies en los materiales analizados. Estos mecanismos hasta hoy continúan siendo la base del estudio de la erosión. Muchos de los investigadores en el transcurso de sus estudios, se han interesado más en los mecanismos de remoción de material, que en las características del flujo de los fluidos, siendo que ahí puede estar la clave para la solución a muchos problemas prácticos. Estudios que van desde gotas de agua impactando aviones, daño en turbinas de vapor, hélices de barcos, etc, han sido desarrollados buscando explicar las causas del desgaste a la luz de la mecánica de fluidos. Para ello se ha usando la ecuación de Reinolds, y se ha intentado encontrar los coeficientes de arrastre das partículas. Cada día las personas están más interesadas e involucradas en el estudio del desgaste en cualquiera de sus manifestaciones, es por esto que nuevos aparatos con los más sofisticados avances tecnológicos son desarrollados en procura de la medición del desgaste y de esta forma dar una explicación del porque los materiales fallan durante su funcionamiento. 6

7 [FINNIE, 1962] fue uno de los primeros investigadores en estudiar la erosión en función del tipo de material a ser impactado (dúctil o frágil) y del ángulo de impacto de las partículas. Estudios iniciales fueran realizados con metales dúctiles y ángulos de impacto diferentes de 90 (pues se pensaba que durante impacto normal de las partículas, no se provocaba ningún desgaste). El análisis de los mecanismos de desgaste presentes fue realizado con base en variables como: velocidad de impacto, dureza y forma de las partículas, resistencia mecánica de la superficie y ángulo de impacto, donde los principales mecanismos de desgaste encontrados fueron la deformación plástica y el corte de material. En estudios posteriores, Finnie [FINNIE, 1972] consideró la influencia de otras variables, como: capacidad de deformación del material, rugosidad superficial y rotación de las partículas en el momento del impacto. En este sentido de ideas, Finnie admitió pérdida de material en ángulos de incidencia normal; en virtud que partículas fragmentadas y en rotación podían cortar el material, permitiendo el desprendimiento de este para ángulos de incidencia próximos de 90. BITTER, 1963, basado en los estudios de Finnie, propuso otras variables como el endurecimiento por deformación del material y procesos de corte secundarios por fragmentación de las partículas. Explicaciones de los mecanismos involucrados de acuerdo a estas variables son: 1) el endurecimiento por deformación diminuye la capacidad de deformación plástica del material para dar lugar a la fractura frágil, 2) la fragmentación de partículas, y posterior movimiento tangencial cortan repetidas veces la superficie del material. Estos mecanismos complementan el modelo de Finnie para desgaste en ángulos próximos la 90. En estudios realizados por Tilly, 1973, se presentó formalmente el concepto de erosión secundaria. Esta es una segunda etapa del fenómeno de corte en la cual, los fragmentos de las partículas que chocaron con la superficie la primera vez, realizan un segundo proceso de corte al moverse tangencialmente sobre ella. Claramente, el modelo de Tilly reveló la importancia de estudiar las propiedades de las partículas erosivas, tales como: su fragilidad y dureza, aunque algunos resultados experimentales en la época, mostraban que a tasa de desgaste por erosión era bastante independiente de estas propiedades. Estudios posteriores centraban su atención entonces en la erosión en ángulo de impacto normal. De esta forma fueron apareciendo nuevas variables y mecanismos entre los que pueden ser citados los siguientes: 1)- Micro-fusión de regiones localizadas en la superficie [JENNINGS. et al, 1976], cuya ocurrencia depende de las propiedades térmicas del material y de la energía cinética entregada por las partículas erosivas. 2)- Fatiga de bajos ciclos, asociada a la acumulación de deformación plástica [HUTCHINGS, 1981]. Este último mecanismo permite la formación de grietas superficiales después de un determinado número de ciclos de impacto, donde material es removido en forma de pequeñas lascas, 3)- Fenómenos corrosivos, los cuales son responsables por la deterioración de los materiales en condiciones de desgaste en medio húmedo. [WANG; XU, 1985.; MADSEN, 1983, 1986 y 1988], 4)- Sinergismo erosión-corrosión, a partir del cual se encontró un aumento en la pérdida de material. En trabajos más recientes [MENG; LUDEMA, 1994.; SUNDARARAJAN, 1995.; FINNIE, 1996] se estudiaron de nuevo los modelos de desgaste propuestos hasta la época intentando explicar en forma más general el problema del desgaste. Este abordaje propone acoplar los diversos modelos y de esta forma dar una explicación más racional al problema de la erosión y de la erosión corrosión. Otro abordaje reciente consiste en la investigar fenómenos asociados al desgaste que hasta el momento han sido difíciles de estudiar o han sido despreciados u olvidados en trabajos anteriores, tales como el fretting y la cavitación [KWOK; CHENG; MAN, 2000.; FOUVRY; VINCENT; KAPSA, 1996] En diversos estudios realizados por investigadores como Wang y Xu y Madsen, se mostró la importancia de los fenómenos corrosivos en la erosión de metales en medios húmedos, en especial cuando las partículas abrasivas presentan baja angulosidad, mismo que el material a desgastar sea considerado resistente a la corrosión (aceros inoxidables. por ejemplo). Los resultados de estos investigadores permitieron concluir que el efecto combinado de la erosión y la corrosión es mayor que la suma de los efectos aislados. De esta forma, fueron propuestos algunos mecanismos mixtos para explicar lo que fue llamado como procesos sinérgicos erosión-corrosión. Desgaste por erosión Según [ZUM GAHR, 1978], el desgaste erosivo se presenta en la superficie de los cuerpos, resultado del impacto de partículas sólidas, líquidas o gaseosas que los impactan. Estas partículas pueden actuar solas o de manera combinada. La erosión afecta muchos materiales de ingeniería, especialmente elementos que componen maquinaria usada en la industria minera y en general toda pieza que sea impactada por cualquier tipo de partícula. Las partículas que causan el desgaste erosivo pueden estar en ambientes secos o húmedos pudiendo actuar en forma muy variadas tal como se muestra en la figura 14. Cuando el medio de trabajo es húmedo (por ejemplo, un medio con agua y partículas de arena), la erosión y la corrosión son fenómenos que actúan en forma sinérgica, provocando la degradación acelerada de los materiales. Para el estudio del desgaste de piezas en general, se han propuesto en los últimos años varios modelos teóricos. En estos modelos se intentan comprender los mecanismos de remoción de material y las variables involucradas. 7

8 Figura 14. Diferentes formas de actuación de partículas erosivas en la formación de: (a) microcorte y micro-arado, (b) Agrietado superficial, (c) Desplazamiento de material al borde de los cráteres de impacto (d) grietas por fatiga superficial y sub-superficiales causadas por los múltiples impactos (e) Formación de pequeñas hojuelas debido a la extrusión y forjado en los impactos y (f) Formación de pequeñas hojuelas por procesos de extrusión inversos. [ZUM GAHR, 1978]. En otras definiciones clásicas de la erosión se afirma, que este es un fenómeno por medio del cual, material es removido de una superficie durante la acción continua de partículas duras o de fluidos que la alcanzan. Las partículas impactan las superficies a diferentes velocidades y ángulos de incidencia, donde el desgaste se da a través de diferentes mecanismos. En la figura 15 son presentados esquemas que muestran la forma como partículas erosivas actúan en una superficie en dependencia del ángulo de incidencia. Para erosión en ángulos cercanos a 90, la energía de la partícula es consumida durante la deformación de la superficie y para ángulos menores, esa energía es utilizada en deformar y cortar el material de la superficie. (a) (b) Figura 15. Erosión de una superficies según el ángulo de impacto a) normal y b) diferente de 90. De acuerdo al medio donde actúan las partículas erosivas, la erosión puede ser dividida en: Erosión a seco. Cuando las partículas son arrastradas por aire u otro gas y son obligadas a impactar una superficie. Uno de los sistemas usados en ensayos de erosión a seco es presentado en la figura 16. Figura 16. Mecanismo para desgaste erosivo a seco. Erosión em medio Acuoso. Se presenta cuando partículas duras son arrastradas en un medio acuoso y son obligadas a impactar una superficie. Uno de los equipos utilizados en la realización de ensayos de erosión en medio acuoso es presentado en la figura 17. 8

9 Figura 17. Montaje utilizado en las mediciones de desgaste erosivo en medio acuoso.. Mecanismos de desgaste erosivo. Cuando un material dúctil es impactado, son formados cráteres en su superficie, alrededor de los cuales aparece una pequeña proa constituida de material removido. Después de múltiples impactos, el material es arrancado en forma de debris (partículas de desgaste). La forma y tamaño de los cráteres formados dependen (entre otras variables) de la velocidad, tamaño y ángulo de impacto de las partículas. En la figura 18(a) es presentado el mecanismo de formación de proa en metales dúctiles. Para materiales frágiles como los vidrios, cerámicos o metales muy duros, el mecanismo de remoción es diferente. Es estos materiales los sucesivos impactos causan micro-grietas superficiales, las cuales crecen hasta que se unen, provocando el arranque de material en forma de lascas. Este mecanismo es presentado en la figura 18(b). Es interesante notar que un material (aunque sea dúctil), después de estar sometido a múltiples impactos, puede sufrir cambios estructurales que lo llevan a comportarse de una forma frágil. Proa (a) (b) Figura 18. Mecanismos de remoción de material que actúan durante desgaste erosivo cuando una partícula sólida colisiona una superficie plana, para: a) metales dúctiles; y b) metales frágiles Recientemente, han sido propuestas hipótesis que tienen en cuenta características físicas y morfológicas de los cuerpos en el sistema de desgaste erosivo. A partir de trabajos de [MENG.; LUDEMA, 1994], las teorías inicialmente formuladas, se han perfeccionado continuamente. Para ello, se han utilizado los principios básicos de la mecánica y de la termodinámica, los cuales constituyen una herramienta importante en la búsqueda del entendimiento de este tipo de desgaste. El estudio del desgaste que involucra pérdida de material por impacto de partículas, ha presentado varios problemas. Los principales interrogantes que se han intentado resolver a través de estos años son 1) Cuáles son los mecanismos que actúan cuando el ángulo de impacto es de 90 y cuales los que actúan en el caso de incidencia oblicua? 2) Cuáles son los mecanismos que actúan en el caso materiales dúctiles o en el caso de ser ellos frágiles 3) Es posible que varios mecanismos puedan actuar, independientemente del ángulo de impacto y del tipo de material. Varios de esos problemas fueran en parte resueltos, siendo conocidos varios mecanismos, pero otros continúan en estudio buscando su completo entendimiento. Por tanto, son varios los mecanismos de pérdida de masa que están presentes durante un proceso erosivo. Mecanismos que dependen entonces del tipo de material ensayado (dúctil o frágil), del ángulo de impacto de las partículas y otras variables que serán mencionadas en la sección siguiente. Las regiones fracturadas a partir de estos mecanismos de desgaste, presentan una apariencia muy diferente al ser observadas al microscopio, siendo que las fallas no necesariamente están unidas a las características de ductilidad y fragilidad macroscópicas del material. Una falla dúctil corresponde a situaciones en que ocurre deformación plástica, la cual pode ser relacionada con el tamaño y morfología de las partículas (marcas de desprendimiento de material, arañones, surcos, etc.). La deformación por fractura frágil, se debe al surgimiento de grietas y desprendimiento de lascas de material. Estas grietas en materiales dúctiles pueden aparecer después de un proceso de endurecimiento superficial en la superficie y la sub-superficie. Desgaste por fretting El desgaste por fretting ocurre entre dos superficies en contacto (no necesariamente moviéndose tangencialmente), las cuales experimentan pequeñas oscilaciones cíclicas (del orden de 1 a 100 m). Cuando algunas vibraciones aparecen en las superficies en contacto, ocurren pequeños deslizamientos en la dirección del movimiento relativo, esos pequeños deslizamientos son causa de desgaste por fretting. 9

10 Desgaste por fretting es comúnmente observado en los cubos de las ruedas de vehículos, entre las esferas y su camino de rodadura en un rodamiento de bolas, en los puntos de contacto entre dos engranajes, entre otros ejemplos. El desgaste por fretting puede conducir a la pérdida de las uniones de contacto de los cuerpos, incrementando la vibración y acelerando la tasa de desgaste. También se ha observado que en general los debris (partículas de desgaste), son óxidos y como estos ocupan un mayor volumen que el material que los origina, pueden conducir a falla por Seizure (adhesión severa que conduce a soldado de las superficies), en partes diseñadas para trabajar con una determinada holgura. De esta forma la holgura será ampliada y los debris tendrán la posibilidad de abandonar la interface más fácilmente. Un fenómeno asociado al daño por fretting, es la aparición de grietas en la región afectada, lo que ocasiona reducción de la resistencia a fatiga del material, en caso que el componente experimente esfuerzos cíclicos. El desgaste por fretting es comúnmente estudiado en laboratorios, utilizando un sistema esfera-plano, donde son aplicadas tanto carga normal como carga tangencial. Como fue mostrado en el capítulo de la mecánica de contacto, cuando una esfera es presionada normalmente contra una superficie plana, se genera debajo de esta zona una distribución de presiones, obteniéndose una presión máxima en el centro y aproximadamente cero en el borde del contacto. Cuando además de aplicar una fuerza normal, se aplica una fuerza tangencial y esta a la vez tiene la posibilidad de ser aumentada, se generan deslizamientos que cambian la distribución de presión y llevan a un desgaste de la zona de contacto, la cual varía de acuerdo a la intensidad de la fuerza tangencial, tal como se muestra en la figura 19. Figura 19. (a) Distribución del esfuerzo normal elástico, abajo de una esfera presionando un plano, (b) a (d) Vistas bidimensionales del área de contacto a medida que aumenta el valor de la fuerza tangencial cíclica (Hutchings, 1992). En la figura 19 las regiones rayadas representan áreas arriba de las cuales ocurre deslizamiento localizado entre las superficies. Por tanto, la zona de contacto puede ser dividida en dos regiones; un área central, donde no hay ningún movimiento tangencial relativo y una zona anular, en la cual ocurre micro-deslizamiento. Así, el daño por fretting ocurre en aquellas zonas de contacto donde ocurren esos pequeños deslizamientos. Ahora, cuando la fuerza tangencial cíclica es aumentada, se puede pasar de pequeñas zonas en el contacto afectadas por el micro-deslizamiento, hasta un deslizamiento total en toda el área de contacto. El daño por fretting ocurre más severamente en la región del área de contacto que sufre deslizamiento. Este desgaste en comúnmente cuantificado como la pérdida de masa o volumen que ocurre en la superficie afectada. Ensayos de laboratorio donde se ha estudiado el fretting variando el número de ciclos, han mostrado que hay un breve período inicial, donde el desgaste es acelerado, (como se muestra en la figura 19), seguido de una estabilización (curva B) o un decrecimiento (curva D) de la tasa de desgaste. Por otra parte, algunos materiales pueden experimentar incrementos en la tasa de desgaste (curvas A o C), o presentar un comportamiento lineal (curva B). En esta última condición, se ha encontrado que la tasa de desgaste es aproximadamente proporcional a la carga normal, siendo útil expresar esta relación como tasa de desgaste específica, la cual es llamada, coeficiente de desgaste dimensional (k). El coeficiente de desgaste dimensional es por tanto, el volumen removido, por unidad de distancia de deslizamiento, por unidad de carga normal. La distancia de deslizamiento esta relacionada con la duración del ensayo, la frecuencia de vibración y la amplitud de desplazamiento cíclico. Por tanto k, da una medida de la severidad del desgaste y permite que resultados de ensayos a diferentes valores de carga normal y amplitudes sean comparados. Desgaste por deslizamiento Esencialmente, el desgaste por deslizamiento es aquel en el cual hay un movimiento relativo entre dos superficies en contacto con una carga aplicada, donde el daño de la superficie no ocurre por riscado debido a la penetración de las asperezas o por partículas externas El desgaste por deslizamiento es uno de los tipos de desgaste que ocurre con mas frecuencia en la industria y por esto es estudiado con gran interés por los investigadores. Una de las razones del gran esfuerzo dedicado al estudio del desgaste por deslizamiento es su complejidad, especialmente en lo que se refiere a los múltiples mecanismos involucrados. En el 10

11 desgaste por deslizamiento están presentes mecanismos de adhesión, formación y crecimiento de grietas sub-superficiales por fatiga y formación de películas superficiales por procesos triboquímicos. También ocurre abrasión por microcorte, surcado o formación de proas. Un esquema mostrando un sistema que sufre este tipo de desgaste es presentado en la siguiente figura. Figura. Ocurrencia de desgaste por deslizamiento Experimentos con diferentes tipos de metales mostraron, que el deslizamiento produce deformación plástica en la superficie y un gradiente de deformación bajo de la superficie desgastada. Variables relacionadas a las condiciones de contacto y otras relacionadas con la microestructura de los materiales deslizantes, influyen en la intensidad de la deformación plástica de las regiones debajo de esta. Durante el desgaste por deslizamiento pueden ocurrir transiciones en la tasa de desgaste influenciadas por la carga, velocidad y distancia de deslizamiento o condiciones ambientales tales como temperatura, humedad, entre otros. Con el aumento de la carga normal ocurre una transición de desgaste moderado para desgaste severo debido a la ruptura de la película de óxido formado durante el desgaste moderado. Arriba de esta transición, el desgaste aumenta linealmente con la carga hasta que ocurre una segunda transición, donde el desgaste cambia de severo para moderado. A causa de esta segunda transición se da la presencia de una nueva película de óxido que se forma para altas temperaturas de contacto y cuya estructura difiere de la estructura del óxido formado en el desgaste moderado. Variables que influencian en el desgaste por deslizamiento Muchas variables están involucradas en el comportamiento del desgaste por deslizamiento, tales como las variables relacionadas con la geometría del par deslizante y también las variables metalúrgicas, sin excluir las variables externas como las condiciones de carga y las del medio interfacial y circundante. Según Zum Gahr, cada variable tiene una naturaleza diferente en función de la etapa del proceso de deslizamiento. Variables como el trabajo ejercido, la masa de cada cuerpo, las propiedades del material y la temperatura de la interfase, pueden ser consideradas como variables de entrada del tribosistema. Por otro lado, estas pueden ser el resultado final del proceso, esto es, se pueden transformar en variables de salida del tribosistema. Deben ser considerados también efectos como las vibraciones, calor generado, atmósfera y cambios de las propiedades de los materiales. Como resultado final de la fricción y desgaste, hay generación de productos indeseables, como fragmentos de desgaste, ruido, calor y vibraciones. 11

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. El proceso de secado es una de las operaciones más importantes en la industria

Más detalles

6 CONCLUSIONES Y RECOMENDACIONES

6 CONCLUSIONES Y RECOMENDACIONES 6 Conclusiones y recomendaciones 109 6 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES La presente investigación se ha dedicado al estudio del ángulo de presión, radio de curvatura y presión de contacto

Más detalles

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS Dentro de la caracterización mecánica de los materiales de ingeniería, la resistencia a la tensión y la

Más detalles

CONCEPTOS BÁSICOS DE PREPARACIÓN MECÁNICA DE MINERALES

CONCEPTOS BÁSICOS DE PREPARACIÓN MECÁNICA DE MINERALES CONCEPTOS BÁSICOS DE PREPARACIÓN MECÁNICA DE MINERALES Reducción de tamaño de las partículas minerales Una vez que el mineral ha sido extraído desde la mina, este puede presentar variados tamaños de partículas,

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

Tema 15 Clasificación de los metales ferrosos.

Tema 15 Clasificación de los metales ferrosos. Tema 15 Clasificación de los metales ferrosos. Los aceros son aleaciones de hierro y carbono que pueden contener cantidades apreciables de otros elementos de aleación. Existe una gran cantidad de aleaciones

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

2. TERMINOS BÁSICOS DE ACÚSTICA.

2. TERMINOS BÁSICOS DE ACÚSTICA. 2. TERMINOS BÁSICOS DE ACÚSTICA. Definición de términos y sistemas de medición del ruido. Qué es el sonido? Cuando nos referimos al sonido audible por el oído humano, lo definimos como ondas sonoras que

Más detalles

CAUSAS DE FALLOS EN LOS COJINETES DE FRICCIÓN

CAUSAS DE FALLOS EN LOS COJINETES DE FRICCIÓN CAUSAS DE FALLOS EN LOS COJINETES DE FRICCIÓN El objetivo de este manual es poder diagnosticar las causas de fallos en los motores por el aspecto que puedan presentar los cojinetes de fricción del mismo.

Más detalles

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad 1. INTRODUCCIÓN 1.1. MARCO TEÓRICO Distribución vertical del agua en el suelo [1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad Figura 1 se pueden distinguir la

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

A continuación se presenta los resultados obtenidos en las pruebas realizadas en

A continuación se presenta los resultados obtenidos en las pruebas realizadas en 6.0 RESULTADOS, COMPARACIÓN Y ANALISIS. 6.1 PERMEABILIDAD. A continuación se presenta los resultados obtenidos en las pruebas realizadas en el laboratorio para la determinación del coeficiente de permeabilidad

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

Empresas Servicios y desarrollos ANÁLISIS DE FALLAS

Empresas Servicios y desarrollos ANÁLISIS DE FALLAS ANÁLISIS DE FALLAS El análisis de falla es un examen sistemático de la pieza dañada para determinar la causa raíz de la falla y usar esta información para mejorar la confiabilidad del producto. INTRODUCCIÓN

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

EL ACERO INOXIDABLE EN LA INDUSTRIA DE ALIMENTOS

EL ACERO INOXIDABLE EN LA INDUSTRIA DE ALIMENTOS EL ACERO INOXIDABLE EN LA INDUSTRIA DE ALIMENTOS 1. POR QUE Y CUANDO LOS ACEROS INOXIDABLES RESISTEN LA CORROSION En la actualidad se acepta que la resistencia a la corrosión de los aceros inoxidables

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Capítulo V Resultados y conclusiones

Capítulo V Resultados y conclusiones Capítulo V Resultados y conclusiones Nadav Levanon, autor del libro Radar Principles dijo: el estudio de los radares no solo una aplicación práctica, pero también una disciplina científica madura con fundamentos

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

Hernán Verdugo Fabiani Profesor de Matemática y Física

Hernán Verdugo Fabiani Profesor de Matemática y Física Fuerza de roce Las fuerzas de roce son fuerzas, entre cuerpos en contacto, que por su naturaleza se oponen a cualquier tipo de movimiento de uno respecto al otro. Si alguien quiere desplazar algo que está

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

Los Cuellos de Botella

Los Cuellos de Botella Teoría de las Restricciones o Los Cuellos de Botella Néstor Casas* Consultor Organizacinal Siempre se ha comparado el sistema productivo con una cadena, cuya resistencia a la ruptura se basa precisamente,

Más detalles

Montalbán y Rodríguez, S.A. Prefabricados de hormigón.

Montalbán y Rodríguez, S.A. Prefabricados de hormigón. El objeto de este documento es proporcionar una serie de recomendaciones y criterios prácticos para la correcta colocación de adoquines según se describe en la normativa UNE-EN 1338. 1. CARACTERÍSTICAS

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

PN 05 Técnicas básicas de panadería I

PN 05 Técnicas básicas de panadería I 4. AMASAR. DEFINICIÓN Y TIPOS DE MAQUINARIA EM- PLEADA Podemos definir amasar como: Trabajar a mano o máquina masas compuestas, fundamentalmente de harina, agua, sal y levadura, además de otros elementos

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

1.2 SISTEMAS DE PRODUCCIÓN

1.2 SISTEMAS DE PRODUCCIÓN 19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción

Más detalles

MÓDULO 3 CURVAS DE INFILTRACIÓN

MÓDULO 3 CURVAS DE INFILTRACIÓN MÓDULO 3 CURVAS DE INFILTRACIÓN Autores: Dr. Ing. Roberto Pizarro T. Ing. Juan Pablo Flores V. Ing. Claudia Sangüesa P. Ing. Enzo Martínez A. 1. INTRODUCCIÓN La infiltración el agua posee un rol fundamental

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

PROTECCION DE LOS OIDOS

PROTECCION DE LOS OIDOS PROTECCION DE LOS OIDOS Características, Uso y Mantenimiento 1 El Ruido y el Oído No todos los sonidos son ruido -ruido es un sonido desagradable o irritante-. El ruido, además de ser molesto, puede interferir

Más detalles

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 1 de 12 Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 3 Bienvenida. 4 Objetivos. 5 Interacciones de Negocios

Más detalles

Arena o granalla de acero

Arena o granalla de acero Arena o granalla de acero Blasting S.A. Int. Amaro Avalos 3176 Munro (B1605EBX). Bs. As., Argentina Tel. (54-11) 4762 2718 líneas rotativas. Fax (54-11) 4756 0217 email: info@blasting.com.ar / web: www.blasting.com.ar

Más detalles

Capítulo 7 Conclusiones y futuras líneas de trabajo 7.1. Conclusiones

Capítulo 7 Conclusiones y futuras líneas de trabajo 7.1. Conclusiones Capítulo 7 Conclusiones y futuras líneas de trabajo 7.1. Conclusiones La tesis presentada propone una metodología para el análisis de la degradación por fatiga producida por la aplicación de cargas cíclicas

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

La electrólisis permite descomponer la Alúmina en aluminio y oxígeno.

La electrólisis permite descomponer la Alúmina en aluminio y oxígeno. LA OBTENCIÓN DEL ALUMINIO. La primera fase de la obtención del aluminio consiste en aislar la Alúmina (óxido de aluminio) de estos minerales. Para ello lo primero es triturar la Bauxita para obtener un

Más detalles

ESTRATEGIA DE DINAMARCA: INFORME SOBRE EL FUTURO DEL ENTORNO LABORAL

ESTRATEGIA DE DINAMARCA: INFORME SOBRE EL FUTURO DEL ENTORNO LABORAL ESTRATEGIA DE DINAMARCA: INFORME SOBRE EL FUTURO DEL ENTORNO LABORAL NUEVAS PRIORIDADES PARA EL ENTORNO LABORAL ESTRATEGIA DE DINAMARCA: INFORME SOBRE EL FUTURO DEL ENTORNO LABORAL Página 1 ÍNDICE INTRODUCCIÓN

Más detalles

Cambio del filtro y aceite de la transmision

Cambio del filtro y aceite de la transmision Cambio del filtro y aceite de la transmision Objetivo: Cambiar el fluido de la transmisión automática y eje de transmisión. Esta hoja de actividades contiene: Instrucciones paso por paso para completar

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

TEMA 3: MÉTODO CONTABLE. LAS CUENTAS

TEMA 3: MÉTODO CONTABLE. LAS CUENTAS TEMA 3: MÉTODO CONTABLE. LAS CUENTAS 1. HECHOS CONTABLES En el tema 1 se señalaba que, dentro de la función de elaboración de la información contable, la contabilidad se ocupaba, en una primera etapa,

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

SÍNTESIS Y PERSPECTIVAS

SÍNTESIS Y PERSPECTIVAS SÍNTESIS Y PERSPECTIVAS Los invitamos a observar, a identificar problemas, pero al mismo tiempo a buscar oportunidades de mejoras en sus empresas. REVISIÓN DE CONCEPTOS. Esta es la última clase del curso.

Más detalles

IMPORTANCIA DEL MANTENIMIENTO PREVENTIVO Y PREDICTIVO PARA EL SISTEMA HIDRÁULICO DE EQUIPOS NUEVOS O RECIEN INSTALADOS.

IMPORTANCIA DEL MANTENIMIENTO PREVENTIVO Y PREDICTIVO PARA EL SISTEMA HIDRÁULICO DE EQUIPOS NUEVOS O RECIEN INSTALADOS. Medellín, 26 de Agosto de 2014 No.131 IMPORTANCIA DEL MANTENIMIENTO PREVENTIVO Y PREDICTIVO PARA EL SISTEMA HIDRÁULICO DE EQUIPOS NUEVOS O RECIEN INSTALADOS. Autor: Rubén Giraldo Figura 1. Ejemplo de equipos

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

El suelo contaminado fue lavado con el surfactante no iónico nonil fenol poe 10,

El suelo contaminado fue lavado con el surfactante no iónico nonil fenol poe 10, 7. CONCLUSIONES Y RECOMENDACIONES 7.1 Conclusiones El suelo contaminado fue lavado con el surfactante no iónico nonil fenol poe 10, empleando las recomendaciones y condiciones óptimas de lavado encontradas

Más detalles

Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS

Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS PROPIEDADES HIDRÁULICAS DE LOS SUELOS Capilaridad El proceso de capilaridad es el ascenso que tiene el agua cuando se introduce verticalmente un tubo de vidrio de diámetro pequeño (desde unos milímetros

Más detalles

Ensayos VLF (muy baja frecuencia) para cables de Media Tensión

Ensayos VLF (muy baja frecuencia) para cables de Media Tensión Ensayos VLF (muy baja frecuencia) para cables de Media Tensión Domingo Oliva Rodero Técnico comercial unitronics electric doliva@unitronics-electric.com www.unitronics-electric.es Introducción La fiabilidad

Más detalles

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios Cadena de Valor y Estrategias Genéricas 1 1 Nota Técnica Preparada por el del Área de Política de Empresa de EDDE.. Primera versión: Noviembre 2001. Noviembre de 2003. 1 Cadena de Valor y Estrategias Genéricas

Más detalles

Curso de Lubricación. Principios Básicos de la Lubricación

Curso de Lubricación. Principios Básicos de la Lubricación Curso de Lubricación Principios Básicos de la Lubricación Disminuir el Roce Evitar el Desgaste Dar Protección a las Piezas Por qué Lubricar? Fricción (Roce) Interacción entre rugosidades Tipos de Roce

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES 1. Objetivos docentes Familiarizarse con las propiedades ópticas de refracción y reflexión de materiales transparentes. 2.

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN POR CARBONATACIÓN. INFLUENCIA DEL ESPESOR Y CALIDAD DEL RECUBRIMIENTO

DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN POR CARBONATACIÓN. INFLUENCIA DEL ESPESOR Y CALIDAD DEL RECUBRIMIENTO DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN POR CARBONATACIÓN. INFLUENCIA DEL ESPESOR Y CALIDAD DEL RECUBRIMIENTO Revista Cemento Año 6, Nº 25 Con frecuencia se comenta que el acero y el hormigón pueden

Más detalles

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas.

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Son equipos que proveen de energía eléctrica en forma autónoma ante interrupciones prolongadas y

Más detalles

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00 La mayor parte de las dependencias no habían manejado el IVA en los recibos oficiales, que era el documento de facturación de nuestra Universidad, actualmente ya es formalmente un CFD pero para el fin

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 1 097 480 Número de solicitud: 1331388 1 Int. CI.: A47G 29/00 (06.01) 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación:

Más detalles

Calentadores y Sistemas de Fluido Térmico.

Calentadores y Sistemas de Fluido Térmico. Calentadores y Sistemas de Fluido Térmico. El objetivo del presente artículo es entregar información técnica para diseñar, especificar y operar sistemas de fluido térmico. Introducción Agua y vapor son

Más detalles

1. Prueba de impacto delantero

1. Prueba de impacto delantero Fichas Técnicas de Reparación de Vehículos Carrocería No.3 MAYO 2009 DEFORMACIONES PROGRAMADAS INTRODUCCIÓN La carrocería de los automóviles ha evolucionado con el paso de los años, en sus inicios eran

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

La energía y sus transformaciones

La energía y sus transformaciones La energía y sus transformaciones Índice 1 Definición de energía 2 Energías renovables y no renovables 2.1 Energías no renovables 2.2 Energías renovables 3 Transformaciones energéticas 4 Conservación de

Más detalles

El plan de clase sobre el efecto invernadero y el sistema climático global

El plan de clase sobre el efecto invernadero y el sistema climático global Para los docentes El plan de clase sobre el efecto invernadero y el sistema climático global El siguiente plan de clase se diseñó para ser usado con la sección de Cambio Climático del sitio web La evidencia

Más detalles

7. ANALISIS DE RESULTADO. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los

7. ANALISIS DE RESULTADO. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los 7. ANALISIS DE RESULTADO. 7.1 Introducción. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los ensayos realizados, para lo cual se muestran ciertas gráficas que

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

UBICACIÓN DE LA PLANTA

UBICACIÓN DE LA PLANTA SECCIÓN II UBICACIÓN DE LA PLANTA La adecuada ubicación de la planta industrial, es tan importante para su éxito posterior, como lo es la elección del proceso mismo, y por lo tanto para lograr esto, se

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

Seis Sigma. Nueva filosofía Administrativa.

Seis Sigma. Nueva filosofía Administrativa. Seis Sigma. Nueva filosofía Administrativa. GIN. Filosofía de Calidad. El Seis Sigma es un parámetro cuya base principal es la desviación estándar y su enfoque es reducir la variación y/o defectos en lo

Más detalles

Fig 4-7 Curva característica de un inversor real

Fig 4-7 Curva característica de un inversor real Clase 15: Criterios de Comparación de Familias Lógicas. Características del Inversor Real Cuando comenzamos a trabajar con un inversor real comienzan a aparecer algunos inconvenientes que no teníamos en

Más detalles

TEMA 8: SISTEMA DE COSTES POR PROCESOS. INDICE. 1.- Caracteristicas generales de los sistemas de costes por procesos.

TEMA 8: SISTEMA DE COSTES POR PROCESOS. INDICE. 1.- Caracteristicas generales de los sistemas de costes por procesos. Costes y Sistemas de Costes. Profesor: Jose Ignacio González Gómez. Página 1 de 6 TEMA 8: SISTEMA DE COSTES POR PROCESOS. INDICE 1.- CARACTERISTICAS GENERALES DE LOS SIS TEMAS DE COSTES POR PROCESOS...1

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

ANÁLISIS DE CARGOS. 1. Nombre del cargo 2. Posición del cargo en el organigrama. 3. Contenido del cargo. 1. Requisitos intelectuales

ANÁLISIS DE CARGOS. 1. Nombre del cargo 2. Posición del cargo en el organigrama. 3. Contenido del cargo. 1. Requisitos intelectuales Análisis de CARGOS ANÁLISIS DE CARGOS Autor: Herman Bachenheimer Correo: herman@puj.edu.co Después de la descripción, sigue el análisis del cargo. Una vez identificado el contenido del cargo (aspectos

Más detalles

5. CONCLUSIONES. El proceso constructivo que se plantea es el siguiente:

5. CONCLUSIONES. El proceso constructivo que se plantea es el siguiente: 5. CONCLUSIONES El presente trabajo tuvo como objetivo la descripción del proceso constructivo para la construcción de pilas de cimentación profunda con sistema de kelly y hélice continua. Como conclusión

Más detalles

Caída de Presión en Tubos de Diferente Diámetro

Caída de Presión en Tubos de Diferente Diámetro Caída de Presión en Tubos de Diferente Diámetro Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumnos: Arlette Mayela Canut Noval arlettecanut@hotmail.com

Más detalles

Rentabilidad, viabilidad y financiamiento de la prevención del cáncer de cuello uterino

Rentabilidad, viabilidad y financiamiento de la prevención del cáncer de cuello uterino Rentabilidad, viabilidad y financiamiento de la prevención del cáncer de cuello uterino Dra. Carol Levin PATH La transcripción del video está debajo de cada diapositiva. Rentabilidad Compara los costos

Más detalles

1. MATERIALES DE LAS PIEZAS ISO ACEROS P ISO M ISO K ISO N ISO S ISO H

1. MATERIALES DE LAS PIEZAS ISO ACEROS P ISO M ISO K ISO N ISO S ISO H 1. MATERIALES DE LAS PIEZAS ACEROS P M K N S H ACEROS INOXIDABLES FUNDICIÓN NO FERROSOS SUPERALEACIONES TERMORRESISTENTES MATERIALES ENDURECIDOS Tecnología de las herramientas de corte. El material de

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric.

Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric. Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric. Indalco es uno de los 3 principales fabricantes de hilo de aluminio del mundo.

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

ÍNDICE (del tema del libro) CLASIFICACIÓN DE LOS METALES NO FERROSOS. Metales pesados ESTAÑO COBRE PLOMO CINC OTROS METALES PESADOS. .

ÍNDICE (del tema del libro) CLASIFICACIÓN DE LOS METALES NO FERROSOS. Metales pesados ESTAÑO COBRE PLOMO CINC OTROS METALES PESADOS. . ÍNDICE (del tema del libro) CLASIFICACIÓN DE LOS METALES NO FERROSOS Metales pesados ESTAÑO COBRE PLOMO CINC OTROS METALES PESADOS.- Cromo.- Níquel.- Wolframio.- Cobalto Metales ligeros ALUMINIO TITANIO

Más detalles

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Aunque se tenga un valor nominal determinado, nunca se podrá definir el valor real del mismo, pues nunca se podría asegurar que el sistema

Más detalles