ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (11)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (11)"

Transcripción

1 ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (11) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006

2 MAGNETISMO EN LA MATERIA Momento dipolar de electrones y átomos

3 MAGNETISMO EN LA MATERIA Momento dipolar de electrones y átomos Espin S de los electrones y momento angular L de los átomos µ s = e m S µ o = e 2m L (de la Mecanica Cuantica)

4 MAGNETISMO EN LA MATERIA Momento dipolar de electrones y átomos Espin S de los electrones y momento angular L de los átomos µ s = e m S µ o = e 2m L (de la Mecanica Cuantica) Modelo orbital de los electrones en un átomo µ o = ia = q T πr 2 = qπr 2 2πr/v = erv 2 = e(mrv) 2m = el 2m

5 Diamagnetismo Un material diamagnético es repelido por cualquier campo B v v v F v F B B El tamaño de la órbita de los electrones se mantiene constante. Esto implica que en ambos casos el cambio en el momento magnético es contrario al campo aplicado B.

6 Para los dos átomos de la figura anterior los momentos magnéticos están dirigidos en sentidos opuestos y se cancelan. En presencia de del campo magnético que se muestra en la figura, los electrones sienten una fuerza adicional e v B, en la dirección radial. Como los átomos mantienen el radio de su órbita, la velocidad debe cambiar a fin de cambiar la fuerza centrípeta mv 2 /r que cancela la fuerza magnética. Nótese que los cambios de velocidad v tienen el mismo sentido para ambos átomos de la figura. Luego para ambos átomos se produce un cambio de momento magnético en la dirección opuesta al campo B aplicado. Ya que los momentos originales se cancelan, este momento inducido es el momento magnético neto de los dos átomos.

7 Paramagnetismo En estos materiales los momentos angulares de spin y orbital se suman para dar al átomo un momento magnético neto µ. En ausencia de campo magnético estos momentos µ se encuentran en direcciones aleatorias y el momento magnético total es nulo. Al aplicar un campo magnético los momentos magnéticos tiende a alinearse en la dirección de campo B, produciendo un momento magnético total diferente de cero.

8 Paramagnetismo. Magnetización de saturación

9 Paramagnetismo. Magnetización de saturación M M S B

10 Ferromagnetismo

11 Ferromagnetismo Dominios magnéticos

12 Curvas de histeresis B B Aplic. B = B Aplic. + µ o M

13 Tratamiento formal del magnetismo Empezamos con una definición de magnetización. Consideremos un material donde cada átomo tiene un momento dipolar magnético µ i y consideramos un pequeño volumen del material dv, ubicado en la posición definida por r. Dentro de este volumen hay una gran cantidad de átomos, entonces definimos la magnetización en r como: M( r ) = lím dv 0 Ahora utilizamos la expresión para el potencial vectorial magnético en el punto r debido a un momento dipolar magnético ubicado en r : i µ i dv A( r) = µ o µ ( r r ) 4π r r 3 Entonces si volvemos a nuestro material y queremos calcular el potencial A debido a todos los momentos magnéticos de este material, primero calculamos el potencial debido a los momentos magnéticos en el pequeño volumen dv, i.e. µ i.

14 Entonces podemos decir que la contribución a A debido al punto r, donde está ubicado dv, es: da = µ o µi ( r r ) = µ o M( r ) ( r r )d 3 r 4π r r 3 4π r r 3 Ya que µi = M( r )dv = M( r )d 3 r y por lo tanto el potencial A debido a todo el material es: A = µ o M( r ) ( r r ) d 3 r 4π r r 3 Esta integral puede se extendida a todo el espacio y por lo tanto incluir regiones con M = 0 Ahora utilizamos la relación vectorial: ( r r ) r r 3 = 1 r r y luego integramos por parte para obtener:

15 A = µ o 4π M( r ) d 3 r r r Nótese que esta expresión es similar a la del potencial vectorial magnético debido a una densidad de corriente J. En realidad si en el punto r hay una densidad de corriente J( r), el potencial A total es: A = µ o 4π J( r ) + M( r ) d 3 r r r Esto implica que en presencia de materiales magn ticos, la relación de Ampère B = µ o J debe ser modificada y escrita así: B = µ o ( J + M) o sea: ( ) 1 B M = µ J o

16 Nótese que el vector entre paréntesis no depende de la magnetización. Sólo depende de la corriente J. Este vector lleva el nombre de campo magnético H : H = 1 µ o B M H = J En analogía con el vector desplazamiento del campo eléctrico. En un número muy grande de materiales es posible de utilizar una aproximación para la relación entre M y H: M = χ m H La cantidad χ m se llama la suscetibilidad magnética del material. Si el material es paramagnético χ m es positiva, mientras que si es diamagnético χ m es negativa. Su valor absoluto para estos materiales es muy pequeño, típicamente < 10 5.

17 Esta relación lineal implica que B y H son proporcionales: B = µ H donde µ se llama permeabilidad del material. Podemos deducir que: µ = µ o (1 + χ m ) La permeabilidad relativa se define como: K m = µ µ o = 1 + χ m Para los materiales paramagnéticos y diamagnéticos K m es muy cercano a 1. Sin embargo para los materiales ferromagnéticos puede tomas valores muy elevados, como para el Permalloy y para el Mumetal.

18 CONDICIONES DE BORDE PARA B Y H Consideremos una superficie de separación de dos medios magnéticos con permeabilidades µ 1 y µ 2. Partiendo de la segunda ley de Maxwell, i.e. B = 0 e integrando esta expresión en el pequeño cilindro que se muestra en la figura, cuyas bases son paralelas a la superficie y el manto tiene dimensiones despreciables, obtenemos: µ 1 H1 B 1 C H2 S B 2 µ 2 Z Z Bd 3 r = B ˆnd 2 r = B 2 ˆn 2 B 1 ˆn 1 = 0 S

19 Similarmente si la densidad de corriente J es cero, entonces H = 0. Ahora consideramos el pequeño circuito C de la figura y aplicamos el teorema de Stokes, para obtener: Z Z Hd 2 r = H d l = H 2 ˆT 2 H 1 ˆT 1 = 0 C donde los vectores ˆT 1 y ˆT 2 son vectores unitarios tangenciales a la superficie. Como conclusión tenemos que en la superficie de separación de dos medios magnéticos se mantiene le componente normal de B y si no hay corrientes verdaderas, se mantiene la componente tangencial de H.

20 ECUACIONES DE MAXWELL Ley de Ampere y continuidad de la carga eléctrica. B = µ o J J + ρ t = 0 Ya que de la primera ecuación J = 0, las dos ecuaciones son contradictorias. J. C. Maxwell corrigió este error notando que D = ρ y por lo tanto: [ ] D J + = 0 t Esto le permitió reescribir la ley de Ampere como: B = µ o J + µo JD JD = D t donde J D se llama corriente de desplazamiento por razones históricas

21 LAS CUATROS LEYES DE MAXWELL En el vacío: D = ρ B = 0 E = B t B = µ o J + µo D t

22 Si J = 0 en la cuarta ecuación anterior, tenemos: B = ɛ o µ o E t Integrando sobre una superficie S limitada por el circuito C y usando el teorema de Stokes: i.e. S B ˆndS = C C B d l = B d l = ɛ o µ o dφ E dt Compare con la Ley de Faraday: E = E d l = dφ B dt C S ɛ o µ o E t d ˆndS = ɛ o µ o E ˆndS dt S donde Φ E = S donde Φ B = S E ˆndS B ˆndS

23 Cambio de B Cambio de E E B

24 GENERADORES Y MOTORES Motor de corriente contínua. En la figura se muestra una espira que se encuentra conectada a una anillo bipartido y una batería. El campo magnético produce un torque en la espira y la hace girar. N z y x I S

25 En la posición que se muestra en la figura la espira gira en la dirección de los punteros del reloj como se indica. Tan pronto la espira pasa por el plano y z el torque cambia de signo y por lo tanto la espira tenderá a girar contra los punteros del reloj. Sin embargo en ese momento la corriente cambia de sentido debido al anillo bipartido y la espira seguirá girando en el sentido de los punteros del reloj. Esta es la base del motor de corriente contínua.

26 Generador de corriente alterna En la figura se muestra una espira que se encuentra en presencia de un campo magnético constante B. B a b

27 Al girar la espira se genera una fuerza electromotriz entre los puntos a y b: dφ dt = ABω sin(ωt) donde A es el área de la espira y ω su velocidad angular alrededor del eje. Si hacemos trabajar el generador en forma inversa, es decir si colocamos una FEM alterna entre a y b, la espira girará y tendremos el motor de corriente alterna

28 Ejemplo: Condensador de caras paralelas S B ˆndS = C B d l = µ o I + µ o S D t ds A La corriente de desplazamiento entre las placas del condensador es: Z Z I D = JD ˆndS = S S D t ds = ɛa E t = ɛa d V t = C 1 C q t = I

29 Problema 1. A R ε=ε o sin ω t Un condensador circular de radio R = 18 cm está conectado a una fuente E = E o sin(ωt), donde E o = 220 V y ω = 130 rad/s. El máximo valor de la corriente de desplazamiento es I D = 7.60 µa. Calcular: a) Máximo valor de la corriente. b) Máximo valor de dφ e/dt donde Φ e = R E ˆndS c) Separación de la placas del condensador. d) Máximo valor de campo B inducido entre las placas para r = 11 cm.

30 a) La máxima corriente de la fuente es I = 7.6µA b) El máximo valor de dφ E /dt es: dφ E = d Z EdS = I D = dt dt ɛ o c) El área de las placas es A = π(0.18) 2 = 0.1 m 2, pero: Luego: I D = ɛ oa de dt max = ɛoa d dv ɛoaωeo max = dt d d = ɛoaωeo = [m] I D d) El campo magnético B en r = 11 cm se calcula de: B2πr = µ o r 2 R 2 I D B = T

31 Problema 2. Una fuente radioactiva puntual emite partículas cargadas a razón de λ C por segundo en forma esféricamente simétrica. Esta emisión constituye una corriente eléctrica radial. Calcule: a) Valor de la corriente. b) Valor del campo eléctrico E c) Corriente de desplazamiento. d) Valor del campo magnético B en cualquier punto del espacio.

32 Problema 3. Un electrón de masa m y carga e se mueve en un círculo de radio r alrededor de un núcleo. Hay un campo B perpendicular al plano del círculo. Suponga que el radio de la órbita no cambia pero que la velocidad del electrón cambia debido a B. Encuentre el cambio del momento magnético dipolar del electrón. Antes de establecer el campo magnético se cumple: mvo 2 = F N y el momento magnetico : µ = e ω r 2π πr 2 = evor 2 donde F N es la fuerza de interacción del electrón con el núcleo. Si el radio de la órbita no cambia, al establecer B tenemos, para la nueva velocidad v: mv 2 = F N ± evb = mv o 2 ± ebv r r donde el signo ± indica los dos posibles sentidos de rotación. Por lo tanto: v = ebr r 2m + ( ebr 2m )2 + vo 2 y el nuevo momento magnético es: µ = er r ebr [ 2 2m + ( ebr 2m )2 + vo 2 ]

33 q De aquí podemos ver que µ = µ 2 o 2µa, donde a = (er) 2 B/4m Vemos que el valor de µ aumenta para el signo + y disminuye para.

34 Problem 4. Un electrón con energía cinética K e viaja en una órbita cicular en un plano perpendicular a un campo magnético B a) Demuestre que el momento magnético del electrón tiene una magnitud µ = K e/b y es opuesto a B. b) Cómo cambia µ si la partícula es un ion positivo? c) Considere un gas ionizado con n = electrones/cm 3 e igual densidad de iones. Tomando como [J] la energía cinética promedio de los electrones y [J] para los iones. Cuál es la magnetización del gas en un campo magnético B = 1.2[T]? El período de órbita es T = 2πr/v y la corriente I es: I = e T = ev 2πr y el momento magnético es: µ = Iπr 2 = ev 2πr πr 2 = evr 2 Pero el balance de fuerzas nos da el valor del radio r: mv 2 = evb r = mv r eb Por lo tanto: µ = 1 mv ev 2 eb = 1 1 B 2 mv 2 = Ke B

35 b) En la relación anterior se cancela la carga, por lo tanto el resultado anterior es igualmente válido para iones positivos, i.e. el momento para iones es K i /B. c) En la figura se ve que el campo magnético B e producido por el electrón orbitando alrededor de B se opone a B. B d) La magnetización es: B e e M = n B (Ke + K i ) = 310 [A/m]

36 Problema 5. La magnetización de saturación del Ni es [A/m]. Dado que su densidad es 8.9 g/cm 3 y su masa molar g/mol, encuentre el momento magnético de un átomo de níquel. La magnetización de saturación es M S = nµ, donde n es el número de átomos por unidad de volumen y µ el momento magnético de un átomo de níquel. Pero: densidad n = N A masa molar donde N A es el número de Avogadro. Luego = = atomos/m 3 µ = M S n = = Am 2 /atom

37 Problema 6. Los átomos de una barra de fierro cilíndrica, de 5 cm de largo y 1 cm 2 de sección transversal, tienen un momento magnético de [J/T]. Suponga que todos los momentos magnéticos están alineados. Cuál es el dipolo magnético de la barra? y Cuál es su magnetización de saturación? Si la barra se mantiene perpendicular a un campo magnético B de 1.5 [T], cuál es el torque que se ejerce sobre ella? La densidad de fierro es 7.9 g/cm 3 y su masa molar El momento magnético de la barra es: µ barra = Nµ donde N = N A masa(barra) masa molar masa(barra) = 5[cm 3 ] 7.9 = 39.5 g N = = [atomos] µ barra = = 8.9 [J/T] El torque es τ = µ barra B = = [Nm].

38 Problema 7. Un condensador de placas paralelas tiene un campo eléctrico perpendicular a las placas de valor: E = (20 3t) [V/m], donde t se mide en segundos. La placas tienen un área de.04[m 2 ]. Para t 0 a) Cuál es la magnitud de la corriente de dezplazamiento entre las placas? b) Cuál es la dirección del campo magnético inducido alrededor de las placas? La densidad de corriente de desplazamiento es: J D = ɛ o E t = = I D = = A E E B

ELECTRODINÁMICA CLÁSICA FIM 8650 (3)

ELECTRODINÁMICA CLÁSICA FIM 8650 (3) ELECTRODINÁMICA CLÁSICA FIM 8650 (3) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2014 Resumen de magnetostática ECUACION DE CONTINUIDAD DE LA CARGA ELECTRICA.

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 INDUCCION DE FARADAY Al cambiar el flujo magnético enlazado

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 Ejemplo 1 El espectrógrafo de masa fué inventado por Francis

Más detalles

El campo magnético en los medios materiales. Tema 10 Electromagnetismo Grupo C

El campo magnético en los medios materiales. Tema 10 Electromagnetismo Grupo C El campo magnético en los medios materiales Tema 10 Electromagnetismo Grupo C El campo magnético y la materia El átomo como un dipolo magnético Imanación y corrientes de imanación Teorema de Àmpere para

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2008 Michael Faraday realizó el siguiente experimento. Construyó

Más detalles

Materiales. Eléctricos. Materiales. Magneticos

Materiales. Eléctricos. Materiales. Magneticos Materiales Eléctricos Materiales Magneticos Propiedades Magnéticas de los Materiales Materiales Eléctricos El magnetismo se manifiesta por la fuerza que se ejerce sobre un conductor con corriente eléctrica

Más detalles

TEMA 7 Magnetismo en medios materiales

TEMA 7 Magnetismo en medios materiales TEMA 7 Magnetismo en medios materiales 7. 1 Magnetización, campo H, densidad de corriente de magnetización 7.2 Respuesta a un campo magnético aplicado: susceptibilidad y permeabilidad magnéticas 7.3 Materiales

Más detalles

Cap. 32: Ecuaciones de Maxwell, Magnetismo en la Materia

Cap. 32: Ecuaciones de Maxwell, Magnetismo en la Materia Cap. 32: cuaciones de Maxwell, Magnetismo en la Materia n el caso eléctrico, la estructura básica es una carga aislada. Dos cargas de igual magnitud, pero signos opuestos, separadas por una distancia d,

Más detalles

CAPÍTULO VI Magnetostática

CAPÍTULO VI Magnetostática APÍTULO VI Magnetostática Fundamento teórico I.- Fuerza sobre una carga y movimiento de una carga en un campo magnético Ia.- Fuerza magnética sobre una carga eléctrica Dada una carga eléctrica q que se

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (13)

TEORIA ELECTROMAGNETICA FIZ 0321 (13) TEORIA ELECTROMAGNETICA FIZ 0321 (13) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 PROBLEMAS Y EJERCICIOS Ejercicio No. 1 Tenemos un circuito no rígido

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (6)

TEORIA ELECTROMAGNETICA FIZ 0321 (6) TEORIA ELECTROMAGNETICA FIZ 0321 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Fuerza entre cargas en movimiento Fuerza entre cargas q 1 y q 2 que se

Más detalles

Electromagnetismo I. Semestre: TAREA 8 Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 8 Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 24-2 TAREA 8 Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz.- Problema: (2pts) Calcula el torque ejercido sobre una espira cuadrada de lados a y b, como se

Más detalles

Magnetismo y Óptica Departamento de Física Universidad de Sonora

Magnetismo y Óptica Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora Magnetismo y óptica 2. Propiedades magnéticas de la materia. a. Dipolo magnético. b. Magnetismo atómico y nuclear. c. Magnetización.

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Propiedades magnéticas

Propiedades magnéticas Propiedades magnéticas Fuerzas magnéticas Las fuerzas magnéticas se generan mediante el movimiento de partículas cargadas Eléctricamente; existen junto a las fuerzas electrostáticas. Distribuciones del

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS RESUELTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 7.- MAGNETOSTÁTICA DE MEDIOS MATERIALES 7 Magnetostática

Más detalles

1.1. Corrientes y resistencias Ecuación de continuidad fem y efecto Joule... 3

1.1. Corrientes y resistencias Ecuación de continuidad fem y efecto Joule... 3 .1 Parte II Magnétostática Índice II Magnétostática 1 1. Corriente eléctrica y ley de Ohm 1 1.1. Corrientes y resistencias....................... 1 1.2. Ecuación de continuidad....................... 2

Más detalles

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2)

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2nd. Semestre 2010 Electrostática, Varias cargas puntuales CAMPO ELECTRICO DE VARIAS CARGAS

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes.

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes. 192 5.3. Problemas 5-1. Demuestre: a) Que si la carga total Q de una distribución es nula, el momento dipolar no depende del origen. b) Que si Q = 0 y p = 0, el momento cuadripolar tampoco depende del

Más detalles

Unidad 20: Campo magnético

Unidad 20: Campo magnético Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 20: Campo magnético Universidad Politécnica de Madrid 13 de mayo de 2010 2 20.1. Planificación

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

ELECTRODINÁMICA CLÁSICA FIM 8650 (4)

ELECTRODINÁMICA CLÁSICA FIM 8650 (4) ELECTRODINÁMICA CLÁSICA FIM 8650 (4) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2014 Las cuatro ecuaciones de Maxwell en el vacío son: D = ρ H = J + D B =

Más detalles

donde n es un vector unitario normal al área a y dirigido según la regla de mano derecha, con respecto a la dirección de flujo de la corriente I.

donde n es un vector unitario normal al área a y dirigido según la regla de mano derecha, con respecto a la dirección de flujo de la corriente I. Magnetización. Antes se habló de un dipolo eléctrico una carga positiva +q y una carga negativa -q de igual magnitud separadas por una distancia d. Un dipolo magnético se forma cuando una corriente I circula

Más detalles

Electromagnetismo 2014

Electromagnetismo 2014 Electromagnetismo 2014 Simon Casassus Astronomía, Universidad de Chile http:://www.das.uchile.cl/ simon I Electrostática II Magnetostática III Inducción y ondas electromagnéticas..1 Parte II Magnétostática.2

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

Tema 2: Propiedades magnéticas de las especies químicas. Imán y virutas de hierro.

Tema 2: Propiedades magnéticas de las especies químicas. Imán y virutas de hierro. Imán y virutas de hierro. Nitrógeno u oxígeno líquido???. Tren de levitación magnética. Aleaciones (NITINOL). A) Importancia del magnetismo en química: Magnetoquímica: Estudio de las propiedades magnéticas

Más detalles

Ayudantía 13. A = 1, Ωm m = 0,26 Ω 0,26 Ω = 1, W

Ayudantía 13. A = 1, Ωm m = 0,26 Ω 0,26 Ω = 1, W Pontificia Universidad Católica de Chile Facultad de Física FIS533 Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Felipe Canales, correo: facanales@uc.cl Ayudantía 3 Problema. En el sistema

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 6.

Problemas de Electromagnetismo. Tercero de Física. Boletín 6. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 6. 115.- Considere un hilo conductor rectilíneo innito y una espira rectangular de dimensiones a b. Suponga

Más detalles

Universidad Nacional Jorge Basadre Grohmann

Universidad Nacional Jorge Basadre Grohmann Universidad Nacional Jorge Basadre Grohmann Facultad de Ciencias ELECTRICIDAD Y MAGNETISMO Fis. Salvador Eligio del Castillo Lic. Manuel Antonio Tapia Silva Tacna Perú 2003 PROPIEDADES ELÉCTRICAS Y MAGNÉTICAS

Más detalles

Campo magnético en el entrehierro de un electroimán y de un imán permanente

Campo magnético en el entrehierro de un electroimán y de un imán permanente c Rafael R. Boix y Francisco Medina 1 Campo magnético en el entrehierro de un electroimán y de un imán permanente Consideremos un anillo toroidal de un material ferromagnético blando en el caso en que

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 2015-1 TAREA 9: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 (10pts) Demuestra que para cualquier vector constante c se cumple que: ( c r)d l =

Más detalles

Ayudantía 23. Fuerza magnética sobre conductores, torque magnético y Ley de Ampere 31 de Mayo de 2018 Ayudante: Matías Henríquez -

Ayudantía 23. Fuerza magnética sobre conductores, torque magnético y Ley de Ampere 31 de Mayo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS15 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 2 Fuerza magnética sobre conductores, torque

Más detalles

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO Física 2º Bachillerato Campo Magnético - 1 FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO 1. Existen ciertos cuerpos llamados imanes (naturales y artificiales)

Más detalles

Grau Enginyeria Telecomunicacions

Grau Enginyeria Telecomunicacions - Examen final (16-01-2017) 1 Cognom 1 Nom DNI GRUP 1. Un móvil se está moviendo en la dirección positiva del eje x con una velocidad constante de 3 m/s. En el instante t = 1 s acelera hacia la derecha

Más detalles

MAGNETISMO EN LA MATERIA.

MAGNETISMO EN LA MATERIA. MAGNETISMO EN LA MATERIA. La materia está constituida por átomos en los que los electrones están en movimiento. Utilizando un modelo atómico sencillo, las órbitas electrónicas alrededor del núcleo de un

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

Electromagnetismo I. Semestre: TAREA 9 Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 9 Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 204-2 TAREA 9 Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz.- Problema: (5pts) Un cilindro infinito de radio a posee una magnetización fija paralela a su eje,

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 67 70 11 1 Junio 006 Dos cargas puntuales q1 = + 0 nc y q = 1 0 nc están fijas y separadas una distancia de 8 cm. Calcular: a) El campo eléctrico en el punto T situado en el punto medio entre las cargas

Más detalles

INTERACCIONES Y MATERIALES MAGNÉTICOS

INTERACCIONES Y MATERIALES MAGNÉTICOS INTERACCIONES Y MATERIALES MAGNÉTICOS G U T I É R R E Z N Ú Ñ E Z D E B O R A H V A L E R I A I S L A S B A U T I S T A J O S É A L F R E D O L O E R A R U B A L C A V A J E S S I C A R I V E R O T R E

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Hoja de Problemas 5. Física Atómica.

Hoja de Problemas 5. Física Atómica. Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM. 3-3-26 Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

1- Cuál es el origen del momento magnético permanente de los átomos que lo poseen?

1- Cuál es el origen del momento magnético permanente de los átomos que lo poseen? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 11 MAGNETISMO EN MEDIOS MATERIALES Bibliografía Obligatoria (mínima) Capítulo 30 Física de Serway Tomo II Apunte de cátedra: capítulo XI PREGUNTAS SOBRE LA TEORIA

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica

FISICA III. Departamento de Física y Química Escuela de Formación Básica : FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 4 - INTERACCIÓN MAGNÉTICA Temas: Movimiento de cargas en un campo magnético. Fuerzas sobre conductores. Torque

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. FISICA TEORICA 1-2do. Cuatrimestre 2007 Método de Separación de Variables. 1. Se tiene un cubo conductor de lado a conectado a tierra. Calcular el potencial electrostático en todo punto del espacio dividiendo

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUIÓN ELETROMAGNÉTIA Ley de Ampére La ley de Ampère, relaciona la componente tangencial del campo magnético, alrededor de una curva cerrada, con la corriente I c que atraviesa dicha curva. r r B dl =

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

Resumen (i) Introducción. Dinámica del campo magnetostático. Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento

Resumen (i) Introducción. Dinámica del campo magnetostático. Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento ELECTRODINÁMICA Resumen (i) Introducción Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento Dinámica del campo magnetostático Fuentes del campo magnetostático: corrientes estacionarias

Más detalles

EXAMEN DE FÍSICA E21A_1516 OPCIÓN A

EXAMEN DE FÍSICA E21A_1516 OPCIÓN A ORIENTACIONES: Comente sus planteamientos de tal modo que demuestre que entiende lo que hace. Tenga en cuenta que la etensión de sus respuestas está limitada por el tiempo el papel de que dispone. Recuerde

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

Propiedades magnéticas de la materia

Propiedades magnéticas de la materia Capítulo 5 Propiedades magnéticas de la materia 5.1. Magnetización y el potencial A M La materia reacciona ante la presencia de campos magnéticos porque los electrones en una muestra de cualquier tipo

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Inducción electromagnética 2. El fenómeno de la autoinducción 3. Aplicaciones de la autoinducción

Más detalles

Electromagnetismo I. 1.- Problema: (25pts)

Electromagnetismo I. 1.- Problema: (25pts) Electromagnetismo I emestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López olución del Examen Final olución por Carlos Maciel Escudero 1.- Problema:

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física Electrodinámica Prof. Jorge Alfaro S. I1 Viernes 16 de Octubre de 215 Problema 1. Dos esferas conductoras concéntricas de radio interior a y

Más detalles

ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA

ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA Problema Nº 1 Demostrar que el movimiento más general de una partícula cargada de masa m y carga q que se mueve en un campo magnético uniforme de inducción magnética

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

a)según el principio de conservación de la energía mecánica. Tenemos dos puntos:

a)según el principio de conservación de la energía mecánica. Tenemos dos puntos: OPCIÓN A Pregunta a)según el principio de conservación de la energía mecánica. Tenemos dos puntos: Punto de lanzamiento Punto máximo E c = mv E p = G Mm R p E c = 0 E p = G Mm r max r max = R p + h mv

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

TEMA 3: CAMPO MAGNÉTICO

TEMA 3: CAMPO MAGNÉTICO 3.2 Campo magnético en medios materiales Campo magnético: creado por corrientes eléctricas Espiras: corrientes macroscópicas I Campo E m, sólo disminuye E 0 Barra magnetita: corrientes microscópicas I

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 5: Fundamentos de electrotecnia PUNTOS OBJETO DE

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 2015-1 TAREA 7: Solución Dr. A. Reyes-Coronado Problema 1 (15 pts.) Por: Jesús Castrejón Figueroa En 1987 J. J. Thomson descubrió el electrón midiendo el cociente entre la

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1 Examen 1 1. Diga si es CIERTO o FALSO y razone la respuesta: " Siempre que se produce una variación de la intensidad que circula por un circuito aparece una fuerza electromotriz inducida en ese circuito."

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo GUÍA 6: CIRCUITOS MAGNÉTICOS Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

Electromagnetismo I. Semestre: TAREA 7 Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 7 Dr. A. Reyes-Coronado Electromagnetismo Semestre: 14- TAREA 7 Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz 1.- Problema: (pts) Considera que el campo magnético B en una región del espacio está dado por: B =

Más detalles

Ayudantía 12. b) La densidad de cargas en la interfaz de los materiales. (Desprecie efectos de borde). Figura 1:

Ayudantía 12. b) La densidad de cargas en la interfaz de los materiales. (Desprecie efectos de borde). Figura 1: Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Alonso Ruiz (airuiz@uc.cl) Problema 1 Ayudantía 12 Considere 2 placas

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II CUESTIONES DE EVALUACIÓN CONTINUA Y PROBLEMAS DE EXAMEN CONTROL 3

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II CUESTIONES DE EVALUACIÓN CONTINUA Y PROBLEMAS DE EXAMEN CONTROL 3 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II CUESTIONES DE EVALUACIÓN CONTINUA Y PROBLEMAS DE EXAMEN CONTROL 3 MAGNETOSTÁTICA 3 CUESTIONES CUESTIÓN 3.1 (Autor JH) Determinar

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS BÁSICAS Y MATEMÁTICAS

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS BÁSICAS Y MATEMÁTICAS UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS BÁSICAS Y MATEMÁTICAS Programa de la asignatura de: ELECTRICIDAD Y MAGNETISMO CARRERA: INGENIERÍA MECÁNICA

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º

GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FÍSICA GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

FIS 1532: Electricidad y Magnetismo

FIS 1532: Electricidad y Magnetismo FIS 1532: Electricidad y Magnetismo PROFESOR: Máximo Bañados Horario: Cátedra: L-W Mod 1, Evaluación: El curso será calificado por el trabajo de cátedra y laboratorio, en forma independiente. Ambas partes

Más detalles

2. 1. Potencial electrostático Potencial de una distribución finita de cargas Líneas de campo.

2. 1. Potencial electrostático Potencial de una distribución finita de cargas Líneas de campo. Curso 2005-2006 1 1. Campo electrostático. Electromagnetismo 2 o curso Licenciatura en Química I. El campo electrostático. 1. 1. Introducción al electromagnetismo. 1. 2. Ley de Coulomb. Principio de superposición.

Más detalles

Electromagnetismo I. a) Sabemos que el campo magnético de un dipolo magnético está dado por. de forma que evaluando en θ = 0 tenemos

Electromagnetismo I. a) Sabemos que el campo magnético de un dipolo magnético está dado por. de forma que evaluando en θ = 0 tenemos Electromagnetismo I Semestre: 205-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López de la Tarea por Carlos Maciel Escudero. Problema: (35pts) Considera

Más detalles

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II PROBLEMAS DE FUNDAMENTOS DE FÍSICA II Grupo 511. CURSO 2016/2017. Interacción Magnética. 1.-Encontrar la densidad de corriente supuesta uniforme que se requiere en un alambre horizontal de Al para hacerlo

Más detalles

Inducción Electromagnética

Inducción Electromagnética Inducción Electromagnética Área Física Resultados de aprendizaje Calcular diferentes magnitudes físicas en circuitos sujetos a inducción magnética. Contenidos 1. Introducción teórica. 2. Ejercicios. Debo

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Un electrón penetra por la izquierda con una velocidad de 5.000 m/s, paralelamente al plano del papel. Perpendicular a su dirección y hacia dentro del papel existe un campo magnético constante

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. ISICA TEORICA 1 - do c 004 Método de Separación de Variables 1 Se tiene un cubo conductor de lado a conectado a tierra Calcular el potencial electrostático en todo punto del espacio dividiendo la región

Más detalles

Capítulo 1 SEMINARIO CAMPO MAGNÉTICO

Capítulo 1 SEMINARIO CAMPO MAGNÉTICO Capítulo 1 SEMINARIO CAMPO MAGNÉTICO 1. Un electrón se acelera por la acción de una diferencia de potencial de 100 V y, posteriormente, penetra en una región en la que existe un campo magnético uniforme

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

Histéresis ferromagnética y temperatura de Curie

Histéresis ferromagnética y temperatura de Curie Histéresis ferromagnética y temperatura de Curie OBJETIVOS: - Observar el comportamiento de histéresis ferromagnética - Determinar la temperatura de Curie de la aleación Monel400 - Comprender la respuesta

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Física 3: Septiembre-Diciembre de 2011 Clase 11, Lunes 17 de octubre de 2011

Física 3: Septiembre-Diciembre de 2011 Clase 11, Lunes 17 de octubre de 2011 Clase 11 Potencial Eléctrico Fuerza y campo eléctrico El campo eléctrico presente en una determinada región del espacio actúa sobre la materia cargada en esa región modificando su comportamiento dinámico.

Más detalles

R 1. R 2 ε ε 0 R. Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1

R 1. R 2 ε ε 0 R. Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1 Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1 Un condensador cilíndrico de radios interior y exterior R 1 y R 2 respectivamente, y longitud L, está

Más detalles