Electromagnetismo II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Electromagnetismo II"

Transcripción

1 Electromagnetismo II Semestre: TAREA 9: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 (10pts) Demuestra que para cualquier vector constante c se cumple que: ( c r)d l = a c. Sea T ( r ) una función escalar. Definimos a la función vectorial v como: v = c T, (1) donde c es un vector arbitrario constante distinto de cero. Aplicando el teorema de Stokes a la función v, tenemos que: v d a = v d l, (2) mientras que el rotacional de v es: y la Ec. (2) queda como: v = T c, (3) T c d a = T c d l. (4) Debido a que c es un vector constante puede salir de la integral, por lo que la Ec. anterior queda como: c T d a = c T d l, (5) dicha igualdad es válida para todo vector c, por lo que: T d a = T d l (6) Ahora definimos a T = c r en la ecuación anterior: ( c r) d a = ( c r)d l, (7) pero tenemos que: ( c r) = c, (8) 1

2 ya que c es un vector constante, y entonces: el vector c puede salir de la integral, y finalmente: c d a = ( c r)d l, (9) c a = ( c r)d l (10) Problema 2 (15pts) (a) Recordarás que en clase discutimos que el triángulo magnetoestático estaba incompleto porque faltaba una expresión para calcular el potencial vectorial A dado B. Ahora bien, una forma de llenar el enlace faltante en el triángulo magnetoestático es emplear la analogía entre las definiciones del potencial vectorial ( A = 0; A = B) y las ecuaciones de Maxwell para B ( B = 0; B = µ 0 J). Evidentemente A depende de B de la misma manera que B depende de µ 0 J (por medio de la ley de Biot-Savart). Usando esta observación escribe una ecuación para A en términos de B. (b) El análogo eléctrico para tu resultado en (a) es: Φ( r ) = 1 E( r ) ( r r ) 4π r r 3 d 3 r. Deriva éste resultado haciendo uso de la analogía apropiada. (a) La ley de Biot-Savart, la cual relaciona a B con µ 0 J, viene dada por: Notemos que: y B( r) = µ 0 J( r ) ( r r ) 4π r r 3 d 3 r. (11) A = B, (12) B = µ 0 J, A = 0, (13) B = 0, por lo que A se relaciona con B de la misma manera que B se relaciona con µ 0 J, y entonces: A( r) = 1 B( r ) ( r r ) 4π r r 3 d 3 r (14) 2

3 (b) En este caso E se relaciona con ρ de la siguiente manera: mientras que se cumple que: E( r) = 1 4πε 0 ρ( r )( r r ) r r 3 d 3 r, (15) E = ρ ε 0, (16) Φ = E, por lo que Φ se relaciona con E de la misma manera que E se relaciona con ρ/ε 0 (agregando un producto punto debido a la divergencia): Φ( r) = 1 E( r ) ( r r ) 4π r r 3 d 3 r (17) Problema 3 (20pts) En el polo norte magnético, el campo magnético de la tierra es vertical y tiene una magnitud de 0.62 gauss. El campo magnético terrestre en su superficie (y mas allá), es aproximadamente igual al de un dipolo localizado en el centro de la Tierra. (a) Calcula la magnitud del momento dipolar en joules/tesla. (b) Imagina que la fuente del campo magnético terrestre es un anillo de corriente situada en el ecuador"del centro esférico metálico de la tierra, que tiene un radio de 1, 200 Km (según mediciones sismológicas reportadas en el 2010 en la prestigiada revista Science: doi: /science ), que es casi el radio de la luna (1, 738 Km aprox.). Calcula qué tan grande tiene que ser esta corriente. El campo magnético de un dipolo magnético puntual viene dado por: B = µ 0 3( m ê r )ê r m 4π r 3, (18) por lo que el campo magnético sobre el polo norte viene dado por: B = µ 0 2 m 4π R 3, (19) con R el radio terrestre. Entonces la magnitud del momento dipolar terrestre es: m = iπw 2 = 4πR3 2µ 0 B, (20) con w el radio del ecuador del centro esférico metálico de la tierra e i es la corriente que produce el campo. Sustituyendo valores numéricos, tenemos que: m = J/T (21) i = A (22) Notese que, ya que el joule y el tesla son unidades del SI, al igual que el ampere y el metro, entonces joule/tesla representa la misma unidad que el ampere metro 2. 3

4 Problema 4 (25pts) Una esfera sólida de radio R posee una magnetización uniforme M. Demuestra que la densidad de corriente superficial es la misma que la generada por una esfera hueca del mismo radio con densidad superficial de carga σ, girando con una velocidad angular ω específica. Cómo se debe relacionar los parámetros en el problema? Calculamos las corrientes inducidas, dadas por: Por otro lado, para la esfera que gira, tenemos que: J b = M = 0, (23) K b = M ˆn = M(ê z ê r ) = M sin θê φ. (24) J = ρ v = 0 (25) K = σ v = σωr sin θê φ, (26) por lo que tenemos que la solución es análoga a la de la esfera uniformemente magnetizada si hacemos el cambio: Problema 5 (30pts) M σr ω (27) Hace algunas clases, en la parte de electrostática, determinamos el campo eléctrico dentro de una esfera sólida uniformemente polarizada, encontrando el potencial sobre la superficie de la esfera y luego usando el teorema de unicidad de la solución para calcular el potencial dentro de la esfera. Ahora, puedes seguir la misma estrategia para calcular el campo magnético dentro de una esfera sólida uniformemente magnetizada. Los pasos a seguir son los siguientes: (a) El campo debido a un dipolo magnético está dado por: B r = µ 0m cos θ, 2πr3 B θ = µ 0m 4πr 3 sin θ, B φ = 0. (28) que tiene la misma forma que el campo producido por un dipolo eléctrico: p E r = 2πε 0 r 3 cos θ, E p θ = 4πε 0 r 3 sin θ, E φ = 0. (29) Explica por qué este hecho implica que el campo magnético externo debido a una esfera sólida uniformemente magnetizada de radio R, es el mismo que el campo producido por un dipolo magnético (puntual) m 0 localizado en el centro de la esfera, con magnitud m 0 = (4πR 3 /3)M. (b) Si m 0 apunta en la dirección ê z, entonces las componentes del potencial vectorial A en coordenadas cartesianas sobre la superficie de la esfera, están dadas por: A x = µ 0my 4πr 3, A y = µ 0mx 4πr 3, A z = 0. (30) Explica por qué se puede aplicar en este caso el teorema de unicidad de la solución y calcula A dentro de la esfera. Calcula también el rotacional de A para obtener B. Qué similitudes y/o diferencias encuentras del campo magnético B calculado con los resultados obtenidos para E dentro de una esfera uniformemente polarizada? 4

5 a) Debido a que no hay corrientes libres ( J free = 0), tenemos que: H = 0, (31) y el campo auxiliar H puede ser escrito como el gradiente de una función escalar: donde el campo W cumple la ecuación de Poisson, H = W, (32) 2 W = M (33) Como M es uniforme, M = 0, y W cumple la ecuación de laplace, cuya solución en coordenadas esfericas son los polinomios de Legendre, al igual que en caso electroestático. Entonces la solución fuera de la esfera es proporcional a P 1 (cos θ), lo que equivale a un dipolo puntual. b) El valor máximo (mínimo) del potencial vectorial A es en la frontera, por lo que dentro de la esfera, A debe ser constante y debe tener el valor que tiene en la frontera, esto es: cuyo rotacional es: A x = µ 0my 4πR 3, Tomando en cuenta que m = 4 3 πr3 M, tenemos que: A y = µ 0mx 4πR 3, A z = 0, (34) ( A Ay = x A ) x ê z (35) y = 2µ 0m 4πR 3 êz. B = 2 3 Mê z (36) Problema TORITO (20pts) Una esfera sólida de radio R tiene una densidad volumétrica de carga ρ y gira con una velocidad angular ω. Usando los resultados de los problemas 4 y 5 de esta tarea, muestra que el campo magnético en el polo norte de la esfera es igual a 2µ 0 ρωr 2 /15. Hasta ahora podemos resolver el caso de una esfera hueca, para encontrar el resultado correspondiente a una esfera sólida, consideraremos a esta última como formada por una sucesión de cascarones con radios comprendidos entre (0, R) y con grosor dr infinitesimal, la densidad superficial de carga asociada a uno de estos cascarones es: σ = ρdr. (37) 5

6 La magnetización asociada a las corrientes que produce esta carga en movimiento (visto en el problema 4) viene dada por: dm = ρωrdr, (38) para el caso de un cascarón de radio r. El dipolo puntual asociado es: dm = 4π 3 r3 dm, (39) = 4π 3 ρωr4 dr, y el campo magnético que produce (visto en el problema 5) es: por lo que la magnitud el campo magnético de la esfera sólida es: B = db = 2µ 0dm 4πR 3, (40) R Tomando en cuenta la dirección de la rotación de la esfera, tenemos que: 0 2µ 0 ρω 3R 3 r4 dr. (41) B = 2 15 µ 0ρR 2 ω (42) 6

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 2015-1 TAREA 7: Solución Dr. A. Reyes-Coronado Problema 1 (15 pts.) Por: Jesús Castrejón Figueroa En 1987 J. J. Thomson descubrió el electrón midiendo el cociente entre la

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 015-1 Reposición de primer parcial: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 5pts) Calcula el campo el eléctrico E magnitud y dirección) a

Más detalles

Electromagnetismo I. Semestre: TAREA 9 Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 9 Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 204-2 TAREA 9 Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz.- Problema: (5pts) Un cilindro infinito de radio a posee una magnetización fija paralela a su eje,

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Electromagnetismo I. Semestre: TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 214-2 TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz 1.- Problema: (2pts) a) Una carga puntual q está localizada en el centro de un cubo

Más detalles

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga:

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga: Física Teórica 1 Guia 1 - Repaso 1 cuat. 2015 Repaso de electrostática y magnetostática. Transformaciones de simetría. Ley de Gauss. Ley de Ampere. 1. En cada una de las siguientes distribuciones de carga:

Más detalles

Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres.

Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres. c Rafael R. Boix y Francisco Medina 1 Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres. Consideremos un cuerpo magnetizado en ausencia

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Electromagnetismo I. 1.- Problema: (20pts) Una corriente I fluye por un alambre de radio a.

Electromagnetismo I. 1.- Problema: (20pts) Una corriente I fluye por un alambre de radio a. Electromagnetismo I Semestre: 215-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 8 1.- Problema: (2pts) Una corriente I fluye por

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Capítulo 2: Formulación matemática del problema

Capítulo 2: Formulación matemática del problema Capítulo : Formulación matemática del problema. Introducción El análisis del comportamiento en régimen permanente o transitorio de una red de puesta a tierra se fundamenta en la teoría electromagnética

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO:

PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO: UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS D.E.B.S. COORDINACION ACADEMICA DE LA FEC DEPARTAMENTO DE FISICA UNIDAD ACADÉMICA ELECTROMAGNETISMO PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION

Más detalles

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado Electromagnetismo II Semestre: 2015-1 TAREA 6 Dr. A. Reyes-Coronado Por: Pedro Eduardo Roman Taboada 1.- Problema: (10pts) Un modelo primitivo para el átomo consiste en un núcleo puntual con carga +q rodeada

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS FACULTAD: CARRERA: INGENIERIA INGENIERIA ELECTRICA AÑO: 94 UNIDAD CURRICULAR: CODIGO: REQUISITOS: TEORIA ELECTROMAGNETICA ELC-714 MAT-505/ELC-505 UNIDAD DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICA:

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

Repaso de Electromagnetismo (Campos I)

Repaso de Electromagnetismo (Campos I) Repaso de Electromagnetismo (Campos I) RADIOCOMUNICACIÓN-Onda radioeléctrica RADIOCOMUNICACIÓN: Comunicación a distancia por medio de las ondas radioeléctricas Onda radioeléctrica: Ondas electromagnéticas

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles

Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1)

Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1) Electromagnetismo I Semestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 2 1.- Problema: (10pts) Solución por Christian

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

Los potenciales electromagnéticos. Tema 8 Electromagnetismo

Los potenciales electromagnéticos. Tema 8 Electromagnetismo Los potenciales electromagnéticos Tema 8 Electromagnetismo Los potenciales electromagnéticos Los potenciales electromagnéticos. Transformaciones de contraste. Ecuación de ondas para los potenciales. Soluciones

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS12: FÍSICA GENERAL II GUÍA # 2: Campo eléctrico, Ley de Gauss Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Definir el concepto de flujo

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 Ejemplo 1 El espectrógrafo de masa fué inventado por Francis

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes.

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes. 192 5.3. Problemas 5-1. Demuestre: a) Que si la carga total Q de una distribución es nula, el momento dipolar no depende del origen. b) Que si Q = 0 y p = 0, el momento cuadripolar tampoco depende del

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Técnica Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Segunda convocatoria. Septiembre-2012 PRLEMAS Problema 1.- Sea una corteza esférica

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO.

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. Todos hemos observado como un imán atrae objetos de

Más detalles

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère c Rafael R. Boix y Francisco Medina 1 Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère Consideremos un conductor que ocupa un volumen τ. Sea r el vector de posición de

Más detalles

Teoremas que se derivan de las ecuaciones de Poisson y Laplace.

Teoremas que se derivan de las ecuaciones de Poisson y Laplace. c Rafael R. Boix y Francisco Medina Teoremas que se derivan de las ecuaciones de Poisson y Laplace. Identidades de Green Consideremos dos campos escalares u = u(r) y v = v(r).teniendo en cuenta que se

Más detalles

ECUACIONES DE POISSON Y LAPLACE

ECUACIONES DE POISSON Y LAPLACE ECUACIONES DE POISSON Y LAPLACE Partiendo de: D ρ (forma punto de Ley de Gauss ( D E ( E (3 por sustitución de (3 en ( y luego en ( se tiene: D ( E ( ρ Ésta es la ecuación de Poisson para un medio NO homogéneo

Más detalles

Cargas puntuales en movimiento

Cargas puntuales en movimiento Cargas puntuales en movimiento manuel fernández guasti 8 de agosto de 009 1. potenciales ardados Se debe evaluar el campo o los potenciales tomando en cuenta el tiempo de ardo de la distancia que deben

Más detalles

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce

Más detalles

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

Período Vigente: 2005

Período Vigente: 2005 Tópicos de Física General (0333), Redes Eléctricas I (2107), Cálculo Vectorial (025) PAG.: 1 PROPÓSITO La finalidad de esta asignatura es presentar en una forma clara y directa las leyes generales que

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H El Rotor de H Escribamos la expresión para Iy.. =? + + + + + + = = esto es igual a la corriente dentro del área analizada 139 El Rotor de H Dividiendo ambos miembros por el área dxdz y tomando el límite

Más detalles

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas.

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas. Radiación Qué es radiación? ONDAS ELECTROMAGNÉTICAS Se genera una OEM debido a configuraciones de cargas aceleradas y corrientes variables. ONDAS ACÚSTICAS Se genera una onda acústica propagativa debido

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10

, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10 , Ind ice general CAPíTULO1 EL MODELO ELECTROMAGNÉTICO 2 1-1 Descripción general 2 1-2 El modelo electromagnético 4 1-3 Unidades en el SI y constantes universales 8 Resumen 10 CAPíTULO2 ANÁLISIS VECTORIAL

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

Electricidad y Magnetismo

Electricidad y Magnetismo Electricidad y Magnetismo Departamento de Señales, Sistemas y Radiocomunicaciones. Asignatura de 2º Curso. Primer Cuatrimestre. Profesor: Miguel Calvo Ramón. Horario de Clases: Grupo 24 Aula A135. Lunes

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

Teorema fundamental del cálculo vectorial (a.k.a. Teorema de Helmholtz)

Teorema fundamental del cálculo vectorial (a.k.a. Teorema de Helmholtz) Teorema fundamental del cálculo vectorial (a.k.a. Teorema de Helmholtz) Brevísima y sesgada introducción para Física 3 Ariel Chernomoretz October 9, 207 El teorema de Helmholtz El siguiente teorema se

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

Problemario Electrodinámica Exámenes Generales de Conocimientos y Predoctorales Version 12/05/06

Problemario Electrodinámica Exámenes Generales de Conocimientos y Predoctorales Version 12/05/06 Problemario Electrodinámica Exámenes Generales de Conocimientos y Predoctorales Version 12/05/06 1. Hallar el campo eléctrico en una cavidad esférica de radio a dentro de una esfera de radio R (R > 2a)

Más detalles

Interaccio n electromagne tica.

Interaccio n electromagne tica. Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA

PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERÌA ELECTRICA PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA CÓDIGO ASIGNADO SEMESTRE U.C. DENSIDAD HORARIA H.T

Más detalles

Cátedra de Geofísica General 2017

Cátedra de Geofísica General 2017 Cátedra de Geofísica General 17 Trabajo práctico N o 12 - El campo magnético terrestre 1. En geofísica suelen expresarse los valores del campo magnético en nanoteslas (nt). Cuál es la relación entre 1

Más detalles

Cargas de polarización.

Cargas de polarización. c Rafael R. Boix y Francisco Medina 1 Cargas de polarización. Consideremos un dieléctrico polarizado que ocupa un volumen τ. Sea S la supercie cerrada que limita al volumen τ, y sea n un vector unitario

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Unidad 20: Campo magnético

Unidad 20: Campo magnético Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 20: Campo magnético Universidad Politécnica de Madrid 13 de mayo de 2010 2 20.1. Planificación

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles