Electromagnetismo II
|
|
|
- Xavier Lucero Moya
- hace 8 años
- Vistas:
Transcripción
1 Electromagnetismo II Semestre: TAREA 9: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 (10pts) Demuestra que para cualquier vector constante c se cumple que: ( c r)d l = a c. Sea T ( r ) una función escalar. Definimos a la función vectorial v como: v = c T, (1) donde c es un vector arbitrario constante distinto de cero. Aplicando el teorema de Stokes a la función v, tenemos que: v d a = v d l, (2) mientras que el rotacional de v es: y la Ec. (2) queda como: v = T c, (3) T c d a = T c d l. (4) Debido a que c es un vector constante puede salir de la integral, por lo que la Ec. anterior queda como: c T d a = c T d l, (5) dicha igualdad es válida para todo vector c, por lo que: T d a = T d l (6) Ahora definimos a T = c r en la ecuación anterior: ( c r) d a = ( c r)d l, (7) pero tenemos que: ( c r) = c, (8) 1
2 ya que c es un vector constante, y entonces: el vector c puede salir de la integral, y finalmente: c d a = ( c r)d l, (9) c a = ( c r)d l (10) Problema 2 (15pts) (a) Recordarás que en clase discutimos que el triángulo magnetoestático estaba incompleto porque faltaba una expresión para calcular el potencial vectorial A dado B. Ahora bien, una forma de llenar el enlace faltante en el triángulo magnetoestático es emplear la analogía entre las definiciones del potencial vectorial ( A = 0; A = B) y las ecuaciones de Maxwell para B ( B = 0; B = µ 0 J). Evidentemente A depende de B de la misma manera que B depende de µ 0 J (por medio de la ley de Biot-Savart). Usando esta observación escribe una ecuación para A en términos de B. (b) El análogo eléctrico para tu resultado en (a) es: Φ( r ) = 1 E( r ) ( r r ) 4π r r 3 d 3 r. Deriva éste resultado haciendo uso de la analogía apropiada. (a) La ley de Biot-Savart, la cual relaciona a B con µ 0 J, viene dada por: Notemos que: y B( r) = µ 0 J( r ) ( r r ) 4π r r 3 d 3 r. (11) A = B, (12) B = µ 0 J, A = 0, (13) B = 0, por lo que A se relaciona con B de la misma manera que B se relaciona con µ 0 J, y entonces: A( r) = 1 B( r ) ( r r ) 4π r r 3 d 3 r (14) 2
3 (b) En este caso E se relaciona con ρ de la siguiente manera: mientras que se cumple que: E( r) = 1 4πε 0 ρ( r )( r r ) r r 3 d 3 r, (15) E = ρ ε 0, (16) Φ = E, por lo que Φ se relaciona con E de la misma manera que E se relaciona con ρ/ε 0 (agregando un producto punto debido a la divergencia): Φ( r) = 1 E( r ) ( r r ) 4π r r 3 d 3 r (17) Problema 3 (20pts) En el polo norte magnético, el campo magnético de la tierra es vertical y tiene una magnitud de 0.62 gauss. El campo magnético terrestre en su superficie (y mas allá), es aproximadamente igual al de un dipolo localizado en el centro de la Tierra. (a) Calcula la magnitud del momento dipolar en joules/tesla. (b) Imagina que la fuente del campo magnético terrestre es un anillo de corriente situada en el ecuador"del centro esférico metálico de la tierra, que tiene un radio de 1, 200 Km (según mediciones sismológicas reportadas en el 2010 en la prestigiada revista Science: doi: /science ), que es casi el radio de la luna (1, 738 Km aprox.). Calcula qué tan grande tiene que ser esta corriente. El campo magnético de un dipolo magnético puntual viene dado por: B = µ 0 3( m ê r )ê r m 4π r 3, (18) por lo que el campo magnético sobre el polo norte viene dado por: B = µ 0 2 m 4π R 3, (19) con R el radio terrestre. Entonces la magnitud del momento dipolar terrestre es: m = iπw 2 = 4πR3 2µ 0 B, (20) con w el radio del ecuador del centro esférico metálico de la tierra e i es la corriente que produce el campo. Sustituyendo valores numéricos, tenemos que: m = J/T (21) i = A (22) Notese que, ya que el joule y el tesla son unidades del SI, al igual que el ampere y el metro, entonces joule/tesla representa la misma unidad que el ampere metro 2. 3
4 Problema 4 (25pts) Una esfera sólida de radio R posee una magnetización uniforme M. Demuestra que la densidad de corriente superficial es la misma que la generada por una esfera hueca del mismo radio con densidad superficial de carga σ, girando con una velocidad angular ω específica. Cómo se debe relacionar los parámetros en el problema? Calculamos las corrientes inducidas, dadas por: Por otro lado, para la esfera que gira, tenemos que: J b = M = 0, (23) K b = M ˆn = M(ê z ê r ) = M sin θê φ. (24) J = ρ v = 0 (25) K = σ v = σωr sin θê φ, (26) por lo que tenemos que la solución es análoga a la de la esfera uniformemente magnetizada si hacemos el cambio: Problema 5 (30pts) M σr ω (27) Hace algunas clases, en la parte de electrostática, determinamos el campo eléctrico dentro de una esfera sólida uniformemente polarizada, encontrando el potencial sobre la superficie de la esfera y luego usando el teorema de unicidad de la solución para calcular el potencial dentro de la esfera. Ahora, puedes seguir la misma estrategia para calcular el campo magnético dentro de una esfera sólida uniformemente magnetizada. Los pasos a seguir son los siguientes: (a) El campo debido a un dipolo magnético está dado por: B r = µ 0m cos θ, 2πr3 B θ = µ 0m 4πr 3 sin θ, B φ = 0. (28) que tiene la misma forma que el campo producido por un dipolo eléctrico: p E r = 2πε 0 r 3 cos θ, E p θ = 4πε 0 r 3 sin θ, E φ = 0. (29) Explica por qué este hecho implica que el campo magnético externo debido a una esfera sólida uniformemente magnetizada de radio R, es el mismo que el campo producido por un dipolo magnético (puntual) m 0 localizado en el centro de la esfera, con magnitud m 0 = (4πR 3 /3)M. (b) Si m 0 apunta en la dirección ê z, entonces las componentes del potencial vectorial A en coordenadas cartesianas sobre la superficie de la esfera, están dadas por: A x = µ 0my 4πr 3, A y = µ 0mx 4πr 3, A z = 0. (30) Explica por qué se puede aplicar en este caso el teorema de unicidad de la solución y calcula A dentro de la esfera. Calcula también el rotacional de A para obtener B. Qué similitudes y/o diferencias encuentras del campo magnético B calculado con los resultados obtenidos para E dentro de una esfera uniformemente polarizada? 4
5 a) Debido a que no hay corrientes libres ( J free = 0), tenemos que: H = 0, (31) y el campo auxiliar H puede ser escrito como el gradiente de una función escalar: donde el campo W cumple la ecuación de Poisson, H = W, (32) 2 W = M (33) Como M es uniforme, M = 0, y W cumple la ecuación de laplace, cuya solución en coordenadas esfericas son los polinomios de Legendre, al igual que en caso electroestático. Entonces la solución fuera de la esfera es proporcional a P 1 (cos θ), lo que equivale a un dipolo puntual. b) El valor máximo (mínimo) del potencial vectorial A es en la frontera, por lo que dentro de la esfera, A debe ser constante y debe tener el valor que tiene en la frontera, esto es: cuyo rotacional es: A x = µ 0my 4πR 3, Tomando en cuenta que m = 4 3 πr3 M, tenemos que: A y = µ 0mx 4πR 3, A z = 0, (34) ( A Ay = x A ) x ê z (35) y = 2µ 0m 4πR 3 êz. B = 2 3 Mê z (36) Problema TORITO (20pts) Una esfera sólida de radio R tiene una densidad volumétrica de carga ρ y gira con una velocidad angular ω. Usando los resultados de los problemas 4 y 5 de esta tarea, muestra que el campo magnético en el polo norte de la esfera es igual a 2µ 0 ρωr 2 /15. Hasta ahora podemos resolver el caso de una esfera hueca, para encontrar el resultado correspondiente a una esfera sólida, consideraremos a esta última como formada por una sucesión de cascarones con radios comprendidos entre (0, R) y con grosor dr infinitesimal, la densidad superficial de carga asociada a uno de estos cascarones es: σ = ρdr. (37) 5
6 La magnetización asociada a las corrientes que produce esta carga en movimiento (visto en el problema 4) viene dada por: dm = ρωrdr, (38) para el caso de un cascarón de radio r. El dipolo puntual asociado es: dm = 4π 3 r3 dm, (39) = 4π 3 ρωr4 dr, y el campo magnético que produce (visto en el problema 5) es: por lo que la magnitud el campo magnético de la esfera sólida es: B = db = 2µ 0dm 4πR 3, (40) R Tomando en cuenta la dirección de la rotación de la esfera, tenemos que: 0 2µ 0 ρω 3R 3 r4 dr. (41) B = 2 15 µ 0ρR 2 ω (42) 6
Electromagnetismo II
Electromagnetismo II Semestre: 2015-1 TAREA 7: Solución Dr. A. Reyes-Coronado Problema 1 (15 pts.) Por: Jesús Castrejón Figueroa En 1987 J. J. Thomson descubrió el electrón midiendo el cociente entre la
Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión
Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del
Electromagnetismo II
Electromagnetismo II Semestre: 015-1 Reposición de primer parcial: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 5pts) Calcula el campo el eléctrico E magnitud y dirección) a
Electromagnetismo I. Semestre: TAREA 9 Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 204-2 TAREA 9 Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz.- Problema: (5pts) Un cilindro infinito de radio a posee una magnetización fija paralela a su eje,
Medios materiales y desarrollo multipolar.
Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad
Electromagnetismo I. Semestre: TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 214-2 TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz 1.- Problema: (2pts) a) Una carga puntual q está localizada en el centro de un cubo
Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga:
Física Teórica 1 Guia 1 - Repaso 1 cuat. 2015 Repaso de electrostática y magnetostática. Transformaciones de simetría. Ley de Gauss. Ley de Ampere. 1. En cada una de las siguientes distribuciones de carga:
Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres.
c Rafael R. Boix y Francisco Medina 1 Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres. Consideremos un cuerpo magnetizado en ausencia
El campo magnético de las corrientes estacionarias
El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones
Electromagnetismo I. 1.- Problema: (20pts) Una corriente I fluye por un alambre de radio a.
Electromagnetismo I Semestre: 215-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 8 1.- Problema: (2pts) Una corriente I fluye por
un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.
11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO
INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente
AUXILIAR 1 PROBLEMA 1
AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener
Capítulo 2: Formulación matemática del problema
Capítulo : Formulación matemática del problema. Introducción El análisis del comportamiento en régimen permanente o transitorio de una red de puesta a tierra se fundamenta en la teoría electromagnética
Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias
El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia
PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO:
UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS D.E.B.S. COORDINACION ACADEMICA DE LA FEC DEPARTAMENTO DE FISICA UNIDAD ACADÉMICA ELECTROMAGNETISMO PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION
Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado
Electromagnetismo II Semestre: 2015-1 TAREA 6 Dr. A. Reyes-Coronado Por: Pedro Eduardo Roman Taboada 1.- Problema: (10pts) Un modelo primitivo para el átomo consiste en un núcleo puntual con carga +q rodeada
INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos
INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo
Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular
El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS
FACULTAD: CARRERA: INGENIERIA INGENIERIA ELECTRICA AÑO: 94 UNIDAD CURRICULAR: CODIGO: REQUISITOS: TEORIA ELECTROMAGNETICA ELC-714 MAT-505/ELC-505 UNIDAD DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICA:
Tema 3: Campos estáticos
Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar
Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral
Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller
El campo de las cargas en reposo. El campo electrostático.
El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial
Repaso de Electromagnetismo (Campos I)
Repaso de Electromagnetismo (Campos I) RADIOCOMUNICACIÓN-Onda radioeléctrica RADIOCOMUNICACIÓN: Comunicación a distancia por medio de las ondas radioeléctricas Onda radioeléctrica: Ondas electromagnéticas
Módulo 1: Electrostática Potencial eléctrico
Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial
Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1)
Electromagnetismo I Semestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 2 1.- Problema: (10pts) Solución por Christian
Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.
Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son
Tema 3: Campos estáticos
Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar
Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices
Los potenciales electromagnéticos. Tema 8 Electromagnetismo
Los potenciales electromagnéticos Tema 8 Electromagnetismo Los potenciales electromagnéticos Los potenciales electromagnéticos. Transformaciones de contraste. Ecuación de ondas para los potenciales. Soluciones
Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.
Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones
Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.
Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica
Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:
FIS12: FÍSICA GENERAL II GUÍA # 2: Campo eléctrico, Ley de Gauss Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Definir el concepto de flujo
El flujo de un campo vectorial
Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar
Operadores diferenciales
Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9)
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 Ejemplo 1 El espectrógrafo de masa fué inventado por Francis
1. V F El producto escalar de dos vectores es siempre un número real y positivo.
TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de
Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos
Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes.
192 5.3. Problemas 5-1. Demuestre: a) Que si la carga total Q de una distribución es nula, el momento dipolar no depende del origen. b) Que si Q = 0 y p = 0, el momento cuadripolar tampoco depende del
Temario 4.Campo Eléctrico
Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico
Ley de Gauss. Ley de Gauss
Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?
EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Técnica Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Segunda convocatoria. Septiembre-2012 PRLEMAS Problema 1.- Sea una corteza esférica
Unidad Nº 10. Magnetismo
Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.
Tema 7: Polarización. Índice
Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen
Ecuaciones de Maxwell y Ondas Electromagnéticas
Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas
APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO.
APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. Todos hemos observado como un imán atrae objetos de
Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère
c Rafael R. Boix y Francisco Medina 1 Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère Consideremos un conductor que ocupa un volumen τ. Sea r el vector de posición de
Teoremas que se derivan de las ecuaciones de Poisson y Laplace.
c Rafael R. Boix y Francisco Medina Teoremas que se derivan de las ecuaciones de Poisson y Laplace. Identidades de Green Consideremos dos campos escalares u = u(r) y v = v(r).teniendo en cuenta que se
ECUACIONES DE POISSON Y LAPLACE
ECUACIONES DE POISSON Y LAPLACE Partiendo de: D ρ (forma punto de Ley de Gauss ( D E ( E (3 por sustitución de (3 en ( y luego en ( se tiene: D ( E ( ρ Ésta es la ecuación de Poisson para un medio NO homogéneo
Cargas puntuales en movimiento
Cargas puntuales en movimiento manuel fernández guasti 8 de agosto de 009 1. potenciales ardados Se debe evaluar el campo o los potenciales tomando en cuenta el tiempo de ardo de la distancia que deben
Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen
Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce
Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas
Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
Campo Eléctrico en el vacío
Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que
Período Vigente: 2005
Tópicos de Física General (0333), Redes Eléctricas I (2107), Cálculo Vectorial (025) PAG.: 1 PROPÓSITO La finalidad de esta asignatura es presentar en una forma clara y directa las leyes generales que
j, E c = 5, J, E P = J)
CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
ds = ds = 4πr2 Kq r 2 φ = q ε
1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H
El Rotor de H Escribamos la expresión para Iy.. =? + + + + + + = = esto es igual a la corriente dentro del área analizada 139 El Rotor de H Dividiendo ambos miembros por el área dxdz y tomando el límite
flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas.
Radiación Qué es radiación? ONDAS ELECTROMAGNÉTICAS Se genera una OEM debido a configuraciones de cargas aceleradas y corrientes variables. ONDAS ACÚSTICAS Se genera una onda acústica propagativa debido
Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.
Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
29.1. El flujo de un campo vectorial. Capítulo 29
29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y
, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10
, Ind ice general CAPíTULO1 EL MODELO ELECTROMAGNÉTICO 2 1-1 Descripción general 2 1-2 El modelo electromagnético 4 1-3 Unidades en el SI y constantes universales 8 Resumen 10 CAPíTULO2 ANÁLISIS VECTORIAL
EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.
Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-
FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014
FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia
Electricidad y Magnetismo
Electricidad y Magnetismo Departamento de Señales, Sistemas y Radiocomunicaciones. Asignatura de 2º Curso. Primer Cuatrimestre. Profesor: Miguel Calvo Ramón. Horario de Clases: Grupo 24 Aula A135. Lunes
MATERIALES DIELÉCTRICOS
MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar
29.1. El flujo de un campo vectorial. Capítulo 29
29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte
Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo
Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con
Teorema fundamental del cálculo vectorial (a.k.a. Teorema de Helmholtz)
Teorema fundamental del cálculo vectorial (a.k.a. Teorema de Helmholtz) Brevísima y sesgada introducción para Física 3 Ariel Chernomoretz October 9, 207 El teorema de Helmholtz El siguiente teorema se
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de
Problemario Electrodinámica Exámenes Generales de Conocimientos y Predoctorales Version 12/05/06
Problemario Electrodinámica Exámenes Generales de Conocimientos y Predoctorales Version 12/05/06 1. Hallar el campo eléctrico en una cavidad esférica de radio a dentro de una esfera de radio R (R > 2a)
Interaccio n electromagne tica.
Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo
Física 2º Bacharelato
Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de
PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERÌA ELECTRICA PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA CÓDIGO ASIGNADO SEMESTRE U.C. DENSIDAD HORARIA H.T
Cátedra de Geofísica General 2017
Cátedra de Geofísica General 17 Trabajo práctico N o 12 - El campo magnético terrestre 1. En geofísica suelen expresarse los valores del campo magnético en nanoteslas (nt). Cuál es la relación entre 1
Cargas de polarización.
c Rafael R. Boix y Francisco Medina 1 Cargas de polarización. Consideremos un dieléctrico polarizado que ocupa un volumen τ. Sea S la supercie cerrada que limita al volumen τ, y sea n un vector unitario
CAMPO ELÉCTRICO ÍNDICE
CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial
Unidad 20: Campo magnético
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 20: Campo magnético Universidad Politécnica de Madrid 13 de mayo de 2010 2 20.1. Planificación
CAMPO ELÉCTRICO CARGAS PUNTUALES
CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas
