Electromagnetismo II
|
|
|
- María Soledad Aranda Cano
- hace 8 años
- Vistas:
Transcripción
1 Electromagnetismo II Semestre: Reposición de primer parcial: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 5pts) Calcula el campo el eléctrico E magnitud y dirección) a una distancia z 0 sobre el centro de un cuadrado formado por cuatro alambres de lado L, con densidad lineal de carga λ uniforme. Solución: Primero consideremos una barra unidimensional de longitud L con una carga Q uniformemente distribuida, como se muestra en la Fig. 1.a. Calcularemos el campo eléctrico en un punto situado a distancia d con respecto al centro de la barra, para ello habrá que sumar elemento infinitesimales de carga, ya que la ley de Coulomb solo nos da información acerca del campo eléctrico de cargas puntuales. Figura 1: a) Una barra unidimensional uniformemente cargada. El campo eléctrico total en punto p a distancia d del centro de la barra tiene componente puramente a lo largo del eje Z. b) El campo producido por una espira cuadrada se puede visualizar como la suma de los campos de cuatro barras cargadas. Si consideramos que la barra tiene una densidad lineal de carga λ = Q/L, y consideramos un elemento infinitesimal de longitud dx, entonces el elemento infinitesimal de carga es dq = λdx 1) situado a una distancia x del origen en dirección del eje X positivo, entonces la magnitud del campo eléctrico producido por este elemento infinitesimal de carga sobre el punto p es de 1 = 1 4πε 0 dq x + d = 1 4πε 0 1 λdx x + d )
2 por la ley de Coulomb. Ahora consideremos un elemento de carga situado a una distancia x del origen en dirección del eje X negativo ver Fig. 1.a), la magnitud del campo electrico de estos dos elementos es la misma de 1 = de 3) Ahora sumemos estos elementos de forma vectorial, de la Fig 1.a podemos apreciar que la suma carece de componente a lo largo del eje X, es decir [ ] de 1 + de 1 λdx = cos φ 4πε 0 x + d ê z 4) a esta suma le llamaremos la diferencial del campo eléctrico total de = de 1 + de, entonces para calcular el campo eléctrico total tenemos que sumar el campo producido por todos los pares de elementos de carga desde el origen hasta uno de los extremos de la barra, es decir el campo total es E = L 0 cos φ [ 1 4πε 0 λdx x + d ] ê z 5) La razón por la cual sumamos pares de elementos de carga en vez de elementos individuales es porque de esta manera logramos reducir lo que en general es una suma integral) vectorial a una suma escalar, es decir, podemos sacar a ê z de la integral. Además el ángulo φ depende de la coordenada x cos φ = Finalmente el campo eléctrico en el punto p viene dado por [ E = 1 L d λ 4πε 0 x + d ) 0 = 1 λl 4πε 0 d L + d êz d x + d 6) 3/ dx ] ê z 7) El campo eléctrico de la espira cuadrada E sq ) de L por lado puede considerarse como la suma vectorial) de los campos eléctricos de 4 barras cargadas, usando la ecuación 46) y remplazando d z 0 + L, tenemos que E sq = 4cos φ 1 λl 4πε 0 d L + d êz 8) z 0 1 λl = 4 z 0 + L 4πε 0 z 0 + L L + z0 êz + L 9) Si la espira tiene una carga total Q, entonces tenemos que λ = Q 8L 10) y el campo de la espira es E sq = Q z 0 4πε 0 z0 + L ) z0 + êz 11) L)
3 Problema 5pts) Tres cargas están situadas en las esquinas de un cuadrado de lado a, como se muestra en la figura. a) Calcula la cantidad de trabajo necesario para traer otra carga +q desde lejos hasta la cuarta esquina, que está vacía. b) Calcula el trabajo necesario para construir el sistema completo de cuatro cargas. Solución: Dado que el trabajo está dado como: W r ) = q φ r ), 1) sólo requerimos calcular el potencial escalar para el sistema mostrado en la figura: φ = 1 q i, 13) 4πɛ 0 r i siendo r i la distancia entre la carga q i y la esquina donde queremos colocar la carga +q en este caso la esquina que no tiene carga). Entonces: φ = 1 q 4πɛ 0 a + q a + q ) = q + 1 ), 14) a 4πɛ 0 a con lo cual el trabajo será: W = qφ = i q + 1 ), 15) 4πɛ 0 a que es una cantidad negativa, por lo que el sistema hace el trabajo para traer una carga positiva hasta la esquina vacía del cuadrado! Problema 3 5pts) Un cascarón esférico posee una densidad de carga ρr) = k r 3
4 en la región a r b ver figura), donde k es una constante. Calcula el campo eléctrico en las tres regiones: i) r < a, ii) a < r < b y iii) r > b. Grafica la magnitud del campo eléctrico como función de r. Solución: i) Debido a la simetría del problema es posible usar la ley de Gauss. Tomemos una esfera de radio r para la región 0 < r < a el campo eléctrico esta dado por: E d a = Q enc ɛ 0, 0 < r < a, 16) pero debido a que esta región la densidad de carga es cero la carga encerrada por la superficies gaussiana es cero, por lo tanto: E = 0, 0 < r < a. 17) ii) Ahora consideremos una esfera de radio r con a < r < b, la carga encerrada por una superficie esférica de radio r es: π π Q enc = ρr)r k sen θ)drdθdφ = 4π a 0 0 a r r dr = 4πkr a). 18) Por lo tanto la ley de Gauss nos da: o en forma vectorial, E d a = E da = 4πr E = Q enc ɛ 0 = 4πkr a)/ɛ 0 E = k r a ɛ 0 r, 19) E = k r a ˆr. 0) ɛ 0 r iii) Para esta región usemos de nuevo una superficie esférica de radio r con r > b la carga encerrada por esta superficie es: Q enc = 4πkb a). 1) Por lo tanto el campo eléctrico está dado por: E4πr ) = 4πk b a ɛ 0 E = k b a ɛ 0 r. ) iv) Gráfica del campo como función de r En la siguiente imagen se presente la gráfica del campo como función de r. 4
5 Problema 4 5pts) Calcula el potencial dentro y fuera de una esfera sólida cargada uniformemente de radio R, con carga total Q. Usa el origen en infinito para tu integración. Calcula el gradiente del potencial en cada región y corrobora que el resultado es correcto. Solución: Para calcular el potencial eléctrico hagamos uso de la siguiente definición ϕr) = El campo eléctrico para una esfera uniformemente cargada está dado por E = Q T 4πɛ 0R 3 r ˆr si 0 < r < R Q T 4πɛ 0 E d l. 3) ˆr r si r > R Por lo tanto el potencial eléctrico dentro de la esfera 0 < r < R) es 4) ϕr) = = R E d l = R = Q T 4πɛ 0 = Q T 4πɛ 0 R = Q T 8πɛ 0 R ) 1 4πɛ 0 r dr { [1 ] R 1 [ r r R 3 E d l R R ] r R E d l = 4πɛ 0 R 3 r } = [ ] R R r ) = ) 3 r si 0 < r < R. R ) dr = 5) 5
6 En la región r > R) el potencial eléctrico es el mismo que el de una carga puntual con carga Q T, tenemos ϕr) = E d l = = Q T 1 si r > R. 4πɛ 0 r 4πɛ 0 ) ˆr r dr = Finalmente comprobemos que el resultado sea el correcto tomando el gradiente del potencial, para le región 0 < r < R), tenemos [ )] E = ϕ = 3 r 8πɛ 0 R R = Q T r ˆr, 7) 4πɛ 0 R3 para r > R) tenemos 6) [ ] 1 E = ϕ = = Q T ˆr 4πɛ 0 r 4πɛ 0 r. 8) 6
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de
Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices
Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1)
Electromagnetismo I Semestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 2 1.- Problema: (10pts) Solución por Christian
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
Campo Eléctrico en el vacío
Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción
Calcular la diferencia de potencial entre el centro de la esfera y el infinito.
Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
CAPÍTULO III Electrostática
CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector
GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo
GUÍA 1: CAMPO ELÉCTRICO Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
Ley de Gauss. Ley de Gauss
Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?
AUXILIAR 1 PROBLEMA 1
AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener
Problemas de Potencial Eléctrico. Boletín 2 Tema 2
1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4
Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que
FLUJO ELECTRICO Y LA LEY DE GAUSS
21 UNIVRSIDAD NACIONAL SANTIAGO ANTÚNZ D MAYOLO FACULTAD D INGNIRÍA CIVIL CURSO: FISICA III FLUJO LCTRICO Y LA LY D GAUSS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PRÚ I. INTRODUCCIÓN Para realizar
2.1 Introducción. 2.2 Flujo sobre una superficie. 42 Ley de Gauss
2 Ley de Gauss 42 Ley de Gauss 2.1 Introducción En el capítulo anterior enunciamos las leyes fundamentales de la electrostática. La ley de Coulomb para una carga puntual y el principio de superposición
FISICA 2º BACHILLERATO CAMPO ELECTRICO
) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará
Capítulo 16. Electricidad
Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra
Módulo 1: Electrostática Campo eléctrico
Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en
CAMPO ELÉCTRICO ÍNDICE
CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial
Módulo 7: Fuentes del campo magnético
7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio
Última modificación: 1 de agosto de
Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico
Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática
Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,
(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara
Física 3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Ultima actualización: Julio de 2004 Julio de 2004 Física-3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Departamento de Física
Campo Eléctrico. Fig. 1. Problema número 1.
Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
FÍSICA 2ºBach CURSO 2014/2015
PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una
Problemas de electricidad
Problemas de ectricidad Problema 1 Tenemos una carga de valor 0 = situada en origen de coordenadas y otra carga de valor 1 = situada en (d = a, φ = 45 o ) tal y como muestra figura. 1. Calcur fuerza éctrica
Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.
Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el
E 1.3. LA LEY DE GAUSS
E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una
FISICA III - Ejemplo - Primer Parcial
FSCA - Ejemplo - Primer Parcial 1) En cuatro de los cinco vértices de un pentágono regular de lado a se colocan sendas cargas q. a) Cuál es la magnitud de la carga que deberá colocarse en el quinto vértice
Primer examen parcial del curso Física II, M
Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El
virtud de la ecuación (10) encontramos: Si la distancia l entre las cargas es pequeña comparada con r, el término l 2 /4
virtud de la ecuación (10) encontramos: 2 2 2 2 4 2 4 Si la distancia l entre las cargas es pequeña comparada con r, el término l 2 /4 del denominador puede despreciarse frente a r 2, obteniéndose: 2 Se
Figura 1.3.1. Sobre la definición de flujo ΔΦ.
1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular
El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones
TEMA 2. CAMPO ELECTROSTÁTICO
TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación
Ley de Gauss. Líneas de fuerza
Ley de Gauss Líneas de fuerza El campo eléctrico se formula a partir de la fuerza que experimentaría, en cada punto del espacio, una carga de pruebas. En esta forma, se define cuantitativamente la intensidad
2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?
ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas
Conferencia Nº1 Sumario. Objetivos. Desarrollo. Carga eléctrica. Propiedades. Distribución continua de cargas.
Conferencia Nº1. Carga eléctrica. Ley de Coulomb. Ley de Gauss. Sumario. Carga eléctrica. Propiedades de la carga eléctrica. Ley de Coulomb. Principio de superposición. Campo eléctrico. Vector intensidad
Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.
Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
Ejercicios Resueltos Electromagnetismo Parte 1
Ejercicios Resueltos Electromagnetismo Parte 1 Diego Andrés Palma Sánchez [email protected] http://www.udec.cl/~dipalma Agosto de 2015 1. Cargas! 1.1. Ejercicio 1 Una vara de teflón se frota con piel de
T8. ELECTROMAGNETISMO Y RELATIVIDAD ESPECIAL
T8. ELECTROMAGNETISMO Y RELATIVIDAD ESPECIAL 1. Introducción 2. Ecuaciones de Maxwell y concepto de campo 2.1 Las ecuaciones 2.2 El campo eléctrico y las fuerzas eléctricas 2.3 El campo magnético y las
CAMPO Y POTENCIAL ELÉCTRICO
CAMPO Y POTENCIAL ELÉCTRICO PREGUNTAS 1. Cómo se aplica el principio de superposición para las fuerzas entre cargas eléctricas?. Qué le ocurre a una placa sólida, conductora, cuando se coloca en un campo
Contenido 1. Integrales Dobles 2. Integrales Triples
Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................
Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1
lectricidad y Magnetismo 1 UNIDAD I Conocer y comprender la teoría básica de la electrostática, la carga eléctrica, la materia, sus manifestaciones microscópicas y macroscópicas, la fuerza, el campo, el
INTENSIDAD DE CAMPO ELECTRICO (E)
CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas
EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo
Interacciones Eléctricas La Ley de Coulomb
Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos
un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.
11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de
Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.
Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Reyes - Instrucciones -Tiene dos horas para resolver los
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
PROBLEMAS ELECTROESTÁTICA
POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad
TEMA 3:ELECTROSTATICA
TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.
! Es una integral de superficie (no un volumen o una línea integral). s!" $ n % da = q enc
Unidad 4 Ecuaciones de campo Las ecuaciones de campo son de enorme riqueza en términos de la experimentación tecnológica sobre fenómenos electromagnéticos, están intrínsecamente en las ecuaciones de Maxwell.
Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO
Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y
Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico
NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están
encuentre la fuerza resultante sobre la carga de 3μC. Ejercicio 3: Determine la fuerza resultante sobre la carga q 1
1 Ejercicio 1: Dos cargas Puntuales están, separadas por una distancia de 10cm, si q 1 = 2μC y q 2 = 4μC, determine la magnitud de la fuerza que se ejercen entre ellas. Ejercicio 2: Tres cargas de 2μC,
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
Electricidad y Magnetismo. Ley de Coulomb.
Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
flujo de campo magnético Φ
El flujo de campo magnético Φ (representado por la letra griega fi Φ), es el número total de líneas de inducción magnética que atraviesa una superficie y se calcula a través del campo magnético. Definimos
Geometría de masas: Cálculos del tensor de Inercia
Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9)
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 Ejemplo 1 El espectrógrafo de masa fué inventado por Francis
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.
ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x
1 Flujo del campo eléctrico. Ley de Gauss
1 Flujo del campo eléctrico Ley de Gauss El número de líneas de campo que atraviesan una determinada superficie depende de la orientación de esta última con respecto a las líneas de campo. ds es un vector
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
INTERACCIÓN ELÉCTRICA. LEY DE COULOMB.
INTERACCIÓN ELÉCTRICA. LEY DE COULOMB. Existe una propiedad de la materia que influye en la materia que la rodea y que definimos como carga eléctrica, un número con el cuál somos capaces de explicar ciertas
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL
PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL 1. La distancia entre los centros de dos esferas es 3 m. La fuerza entre ellas es.75 x10-1 N. Cuál es la masa de cada esfera, si la masa de una
Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética
70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
5. Ley de Gauss. Flujo del campo electrostático: ley de Gauss. Aplicaciones: simetría plana, cilíndrica y esférica.
5. Ley de Gauss Flujo del campo electrostático: ley de Gauss. Aplicaciones: simetría plana, cilíndrica y esférica. 1 FLUJO DE UN CAMPO VECTORIAL El Concepto General de Flujo: Algo multiplicado por Area
MATERIALES DIELÉCTRICOS
MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar
Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.
ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre
DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD
DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD - 24.11.15 NOMBRE: GRUPO: INSTRUCCIONES: Este examen consta de de cuatro componentes: Componente conceptual de 10
TALLER DE ELECTROMAGNETISMO PRIMER CORTE
TALLER DE ELECTROMAGNETISMO PRIMER CORTE Departamento De Fı sica y Geologı a, Universidad De Pamplona TEMAS: Todos los referentes al primer corte. Los ejercicios esta n clasificados en tres categorı as
FIS1533/FIZ Examen Facultad de Física
FIS533/FIZ022 - Examen Facultad de Física Nombre: Pontificia Universidad Católica de Chile Segundo Semestre 204-24 de Noviembre Tiempo para responder: 50 minutos Sección: Buenas Malas Blancas Nota Instrucciones
GUÍA 2: CAPACITORES Y DIELECTRICOS Electricidad y Magnetismo
GUÍA 2: CAPACITORES Y DIELECTRICOS Primer Cuatrimestre 2013 Docentes: Dr Alejandro Gronoskis Lic María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad
Intensidad del campo eléctrico
Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través
1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 7 1/10
1º E.U.I.T.I.Z. Curso 2006-2007. Electricidad y Electrometría. Problemas resueltos tema 7 1/10 2.- La carcasa semiesférica de la figura, de radio interior R = 1 m y espesor despreciable, se encuentra en
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
Departamento de Física y Química
1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice
El Campo Eléctrico INTRODUCCIÓN
INTRODUCCIÓN En este tema introduciremos el campo eléctrico y veremos cómo puede describirse mediante las líneas de campo, las cuales indican la magnitud y dirección del campo, discutiremos el comportamiento
FISICA III. Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA
: FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA Temas Ley de Coulomb. Campo eléctrico Movimiento de una partícula cargada en un campo
Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.
1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
TEMA 0: Herramientas matemáticas
1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica
INTERACCIÓN ELÉCTRICA
INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo
