de la Espectroscopía Bidimensional
|
|
|
- Ángeles Rubio Chávez
- hace 7 años
- Vistas:
Transcripción
1 Teoría y Principios de la Espectroscopía Bidimensional Sebastián Franco Ulloa [email protected] Octubre 6,
2 Contenido 1. Espectroscopía 1D 2. Introducción a 2D 3. Experimento pump-probe 4. Anharmonicidad 5. Picos cruzados 6. TPA y fotones entrelazados 7. Comentarios finales 2
3 Espectroscopía 1D Con estas técnicas se hace interactuar una muestra con un único pulso de luz Se hace un barrido en un intervalo de frecuencias para encontrar en cuáles hay absorción (o emisión) por parte de la muestra Diferentes regiones del espectro resultan en excitaciones de diferentes tipos: Radio > RMN > Estados nucleares de espín Microondas > Espectroscopia rotacional > Estados de rotación Infrarrojo > IR > Estados vibraciones UV > UV-vis > Estados electrónicos Las frecuencias de máxima absorción con estas técnicas dan información sobre las estructura de la muestra 3
4 Espectroscopía 1D Por ejemplo: La espectroscopia infrarroja da información sobre las vibraciones de diferentes enlaces químicos. Es decir, grupos funcionales ~1700cm -1 Acetona 4
5 Espectroscopía 1D Las espectroscopia 1D tiene dos factores limitantes: 1. Las señales dependen del ambiente de aquello que está produciendo la señal 1710cm -1 Acetona 1735cm -1 Acetato de metilo 2. La resolución se ve limitada con la aparición de señales superpuestas. Cuando hay varios ambientes químicos similares en una misma molécula: Polipéptidos 5
6 Espectroscopía 2D Aunque las técnicas 1D sean útiles para la caracterización de moléculas pequeñas y diluidas, moléculas más complicadas (como aquellas de interés biológico) o en general sistemas reales requieren de métodos con más resolución Las técnicas 1D no dan información de acoplamientos intra o inter moleculares En la realidad, una molécula de acetona genera un potencial electrostático que tiene una influencia sobre los estados de una molécula vecina 6
7 Espectroscopía 2D En el caso más sencillo, se tienen dos moléculas de acetona en la muestra Dada la simetría de la acetona (momento dipolar solo a lo largo del enlace C=O) se puede modelar con un momento de transición en una única dirección Dipolo de transición: Cambio de la distribución de carga tras ser excitada la molécula El acople dependerá de las distancias y orientaciones de las dos moléculas Supongamos que sabemos describir el acople 7
8 Espectroscopía 2D Se simuló el espectro IR 2D de dos moléculas de acetona con un ángulo de 45º. Observaciones varias: 1. La diferencia entre los espectros en la distancia r entre las moléculas (intensidad del acople) 2. La diagonal corresponde al espectro 1D: Aunque debería haber un solo pico en la diagonal, una molécula se modeló con 13 C 3. El acople de las dos moléculas resulta en picos cruzados (cross-peaks) 8
9 Las grandes preguntas Qué son las 2 dimensiones? Qué da lugar a picos cruzados? 9
10 Experimento pump-probe La espectroscopía 2D consiste en un experimento de pump-probe o bombeosondeo Un primer pulso (bombeo) excita el sistema y el segundo pulso (sondeo) interroga al sistema excitado Las 2D de los espectros corresponden a un parámetro de cada pulso los cuales se barren: Usualmente frecuencias de las fuentes. Otros parámetros comunes son tiempos y frecuencias de retardo entre los pulsos El eje Z de los espectros es emisión (o absorción). Los picos pueden tener intensidad negativa o positiva
11 Anharmonicidad Para entender las espectroscopía IR-2D, un enlace se puede modelar con un potencial de Morse con varios niveles de energía Este potencial se puede modelar como un potencial armónico perturbado Este modelo hace que los niveles no sean equidistantes en energía Parámetro de anharmonicidad
12 Anharmonicidad - Diagonal Esto explica los dos tipos de señales (ganancia positiva y negativa) que se tienen Esto responde por qué los picos diagonales se ven como se ven Doble excitación Excitación Pump Probe Emisión estimulada
13 Picos cruzados Para explicar la aparición de picos cruzados es necesario considerar el acople entre modos inter o intramoleculares Consideramos un potencial que incluya un término cruzado Lo que antes eran dos sistemas con 3 niveles de energía, ahora es un sistema con 6 niveles de energía
14 Picos cruzados Pump Probe
15 Picos cruzados Un pico cruzado es una excitación con el pump y una segunda excitación nueva con el probe (8) > (3) corresponde a excitar dos veces la misma molécula El pico cruzado (8) > (1) corresponde a excitar una molécula una vez y luego la otra Pump Probe
16 Picos cruzados Si los sistemas no estuvieran acoplados, las transiciones (1) y (2) serían equivalentes Al igual que (7) y (8) Entre mayor sea el acoplamiento, más grande será ij Pump Probe
17 Picos cruzados Es importante notar que hay reglas de selección para las transiciones permitidas: Es decir, solo una molécula puede ser excitada a la vez Pump Probe
18 TPA y fotones entrelazados Toda la espectroscopía descrita hasta este punto consiste en excitaciones monógamas Una transición se puede dar a partir de dos fotones pasando por un estado virtual (espectroscopía TPA) Siguen existiendo dos pulsos (pump y probe), por lo que la espectroscopía 2D daría información sobre que parejas de frecuencias se absorben
19 TPA y fotones entrelazados El problema de TPA es que es difícil de producir Es necesario que (por chance) dos fotones lleguen en un intervalo de tiempo determinado con frecuencias específicas Por esto las señales dependen cuadráticamente de la intensidad de la fuente: Consumo de energía, recursos, tiempo y daño a la muestra!
20 TPA y fotones entrelazados Una solución es el uso de fotones entrelazados en energía: Su suma de frecuencias es la correcta para la excitación Las señales aumentan linealmente con la intensidad Cambiando el retraso entre los fotones y la frecuencia de uno de ellos se pueden estudiar las poblaciones y tiempos de vida de los estados virtuales
21 Comentarios Finales La espectroscopía 2D da información adicional de la estructura de una muestra Revela información de excitaciones que sin acoplamiento (inter o intramolecular) no se verían Se basa en dos procesos, doble excitación y emisión inducida que dan lugar a señales distintas La forma más básica es con un experimento de pump-probe en donde los ejes son las frecuencias de los pulsos Las señales observadas dependerán de las reglas de selección dipolares
22 Comentarios Finales Dependiendo de la intensidad del acoplamiento se puede determinar la distancia (y hasta orientación) entre grupos funcionales químicos Ofrece información sobre transiciones ausentes en 1D La espectroscopía 2D no se limita a sistemas de varios niveles, permite estudiar two-photon absorption y por ende estados virtuales Llevándola a cabo con fotones entrelazados se obtiene información de la población y tiempo de vida de estados virtuales
23 Muchas gracias! 23
Cuáles son las diferencias entre las transiciones. Qué requerimientos deben cumplirse para poder. Porqué las ramas del espectro no son simétricas?
Cuáles son las diferencias entre las transiciones vibracionales y las rotacionales? Porqué se aplica el modelo del rotor rígido para describir las transiciones rotacionales de una molécula diatómica? Qué
MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS
MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos
Práctica 4. Espectroscopia IR y Análisis elemental
Laboratorio de Química de Coordinación Práctica 4. Espectroscopia IR y Análisis elemental Parte II: Las técnicas Tarea previa 1. Leer los fundamentos teóricos de la práctica 2. La molécula de agua (H2O)
Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA
Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA 1. Objetivo Familiarizarse con los fundamentos de la identificación de moléculas a partir de su espectro de absorción infrarrojo.
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS Jiménez Bárcenas Nadia Rosalina López Salazar Fátima Mendoza Pérez Bernardo Monzón González César Raúl Equipo 3: Principios de estructura de la materia
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C.P.... ESPECTROSCOPIA MOLECULAR PRUEBA DE EVALUACIÓN A DISTANCIA 2013 2014 095354 Prueba Objetiva
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS PRESENTADO POR: ADRIANA LISSETH LUQUE DIAZ JORGE ENRIQUE JURADO TASCO MARCO ANTONIO HUERTA ORTIZ PABLO LABRA VÁZQUEZ MAESTRÍA EN CIENCIAS QUÍMICAS
ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA. Es el laboratorio de la química cuántica
ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA Es el laboratorio de la química cuántica RADIACIÓN ELECTROMAGNÉTICA E = h n c = nl La energía aumenta Cómo interactúa con la materia la radiación según su energía
Espectroscopía de Absorción Molecular
Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante
ESPECTROSCOPíA INFRARROJA
ESPECTROSCOPíA INFRARROJA Química Orgánica 1 Facultad de Farmacia y Bioquímica UBA 2016 Autor: Dra. Isabel Perillo 1 Espectro electromagnético Unidades de l usadas: para UV-visible: nm (mm): 10-9 m para
Interacciones intermoleculares: Espectroscopia
Interacciones intermoleculares: Espectroscopia Presentado por: Wilmer E. Vallejo Narváez 13 de Octubre de 2014 1 Contenido Introducción Espectroscopia Uv vis Espectroscopia IR Espectroscopia RMN 2 Introducción
J H,H pequeño. Equivalencia química y equivalencia magnética
La magnitud de J para 1 H, 1 H varía entre -20 y 20 Hz J a 2 enlaces 2 J H,H 10-15 Hz J a 3 enlaces 3 J H,H 3-10 Hz J a larga distancia H-C-C-C-H 4 J H,H pequeño Los J heteronucleares son mas grandes,
Problemas de Química Física II. 3º de Químicas. RAMAN y POLIATOMICAS
Problemas de Química Física II. 3º de Químicas RAMAN y POLIATOMICAS 1. Las primeras frecuencias del espectro Raman del N 2 son 19.908, 27.857, 35.812, 43.762, 51.721 y 59.622 cm -1. Sabiendo que estas
SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE
SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE ESTRUCTURA Y PROPIEDADES MOLECULARES Temas de Mecánica Cuántica y Estructura atómica 1) Cuál es el operador asociado al observable energía,
Física Cuántica. Moléculas II. Movimiento ionico.
Física Cuántica Moléculas II. Movimiento ionico. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2002-2003 p.1/15 El movimiento de los nucleos Born-Oppenheimer: debemos estudiar
Tema 3.-Espectroscopía de biomoléculas
Tema 3.-Espectroscopía de biomoléculas Tema 3.-Espectroscopía de biomoléculas 3.1.-El espectro electromagnético 3.2.-Espectros de absorción y de emisión (espontánea y estimulada) 3.2.1.-Momento dipolar
(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio
Tema 5: Técnicas espectroscópicas: Espectrofotometría 0 22 Hz Frecuencia 0 4 Hz 0 3 Hz γ X UV IR micro radio Rayos γ (gamma) λ < pm Rayos X pm-0nm Visible 400-800nm Ultravioleta 0-400 nm Longitud de onda
ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE PROTONES
ESPETROSOPÍA DE RESONANIA MAGNÉTIA NULEAR DE PROTONES La resonancia magnética nuclear es posible porque los núcleos de ciertos átomos, aquellos que tienen número de espín diferente de cero, (I ) se comportan
Tema 3.-Espectroscopía de biomoléculas
Tema 3.Espectroscopía de biomoléculas Tema 3.Espectroscopía de biomoléculas 3..El espectro electromagnético 3.2.Espectros de absorción y de emisión (espontánea y estimulada) 3.2..Momento dipolar de transición:
ESPECTROSCOPÍA VIBRACIONAL
ESPECTROSCOPÍA VIBRACIONAL Infrarrojo: La E entre estados vibracionales corresponde a la energía de la radiación infrarroja Espectros IR y la simetría molecular Cómo vibran las moléculas? Modelo: Modos
Trabajo Practico nº2
Trabajo Practico nº2 Espectroscopía de Resonancia Paramagnética Electrónica (RPE). Introducción La Resonancia Paramagnética Electrónica (RPE, en inglés EPR: Electron Paramagnetic Resonance) es una técnica
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS. Q. Yokari Godínez Loyola Q. Kristopher M. Hess Frieling Q. Rafael Adrián Delgadillo Ruiz
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS Q. Yokari Godínez Loyola Q. Kristopher M. Hess Frieling Q. Rafael Adrián Delgadillo Ruiz 1 CONTENIDO I. II. III. IV. V. VI. Introducción Anarmonicidad
Tema 7.- Principios de fotoquímica
Tema 7.- Principios de fotoquímica Introducción La rama de la química que estudia las transformaciones de las moléculas producidas por la absorción de energía electromagnética Muchas especies en la atmósfera
Espectroscopía vibracional y rotacional
Espectroscopía vibracional y rotacional Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 19 de marzo de 2015 Índice 1. Interacción de la radiación con la materia
ESPECTROSCOPÍA MOLECULAR
ESPECTROSCOPÍA MOLECULAR INTERACCIÓN RADIACIÓN-MATERIA Es el laboratorio de la química cuántica RADIACIÓN ELECTROMAGNÉTICA E = h n c = nl La energía aumenta Nota: ṽ = 1/l E = hcṽ ṽ es proporcional a la
INDICE DE DEFICIENCIA DE HIDRÓGENO TEORIA BÁSICA DE ESPECTROSCOPÍA INFRAROJA
INDIE DE DEFIIENIA DE HIDRÓGENO Y TEORIA BÁSIA DE ESPETROSOPÍA INFRAROJA QUE SE PUEDE SABER DE UNA FÓRMULA MÍNIMA DE UN OMPUESTO? SE PUEDE DETERMINAR EL NUMERO DE ANILLOS Y DOBLES ENLAES. Hidrucarburos
Efectos del solvente y del entorno local sobre la fluorescencia
Efectos del solvente y del entorno local sobre la fluorescencia C 6 C 7 Temario Efectos generales del solvente Efectos específicos del solvente Efectos de la temperatura Transferencia interna de carga
ESPECTROSCOPÍA INFRARROJA
MÉTODOS 2: ESPECTROSCOPÍA INFRARROJA Universidad Pedagógica Nacional Facultad de Ciencia y Tecnología Departamento de Química Julie Benavides Melo 2 CONTENIDOS 3 CONTENIDOS 4 CONTENIDOS ÁREAS TEMÁTICAS
Síntesis y Caracterización Estructural de los Materiales Ángel Carmelo Prieto Colorado
Síntesis y Caracterización Estructural de los Materiales Ángel Carmelo Prieto Colorado Física de la Materia Condensada, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Valladolid. Técnicas
Tema 1: Simetría y teoría de grupos.
Ejemplos y aplicaciones de la simetría: QUIRALIDAD. La quiralidad no es solo un concepto ligado a la química orgánica donde se asocia a la presencia del carbono asimétrico: QUIRALIDAD. El experimento En
Métodos Espectrofotométricos. Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.)
Métodos Espectrofotométricos Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.) 1 Radiación electromagnética Longitud de onda : Frecuencia en s -1 Hertz Numero
Tema 6. Espectroscopia para el estudio de la materia
Tema 6. Espectroscopia para el estudio de la materia 1. Introducción. Naturaleza dual de la radiación y la materia 2. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojo 4. Espectroscopía
QUIMICA ORGANICA DE BIOPROCESOS. CEBI_A3_ 4: Espectroscopía (1º parte)
CARRERA DE ESPECIALIZACION EN BIOTECNOLOGIA INDUSTRIAL FCEyN-INTI Materia de Articulación CEBI_A3 QUIMICA ORGANICA DE BIOPROCESOS Docente a cargo: Dra. Silvia Flores CEBI_A3_ 4: Espectroscopía (1º parte)
RADIACIÓN ELECTROMAGNÉTICA
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.
Tema 7: Espectroscopia Vibracional (IR)
Tabla 1. El espectro electromagnético Región Longitud de onda Energía de excitación Tipo de excitación Rayos x, rayos cósmicos 286 (Kcal/mol) Ultravioleta Visible Infrarrojo próximo Infrarrojo
INTRODUCCION (2) espectroscopía de absorción Espectroscopía de Emisión RMN Espectrometría de Masas espectrometría de fragmentación
INTRODUCCION (1) Una de las labores más difíciles dentro de la Química Orgánica es la elucidación estructural. En algunos casos es suficiente con algunos datos mínimos. Utilizando algunas propiedades Fisico-Químicas
Movimiento vibracional
ESPECTROSCOPÍA Movimiento vibracional El oscilador armónico como modelo de la vibración molecular Los sistemas que vibran a nivel molecular incluyen las vibraciones internas de una molécula y las vibraciones
El aspecto típico de un espectro UV es el que se muestra en la figura:
Elucidación estructural: espectroscopía ultravioleta-visible Utiliza la radiación del espectro electromagnético cuya longitud de onda está comprendida entre los 100 y los 800 nm (energía comprendida entre
Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción
1 Tema 7. Espectroscopia para el estudio de la materia 1801: Thomas Young. Naturaleza dual de la radiación y la materia. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojos
Espectros electrónicos de moléculas diatómicas
C A P Í T U L O 12 Espectros electrónicos de moléculas diatómicas [Contestar, razonando las respuestas brevemente (4-5 líneas).] 12.1. ESTADOS ELECTRÓNICOS DE MOLÉCULAS DIATÓMICAS 12.1-1 Por qué la energía
TALLER DE ESPECTROSCOPIA
TALLER DE ESPECTROSCOPIA RESONANCIA MAGNÉTICA PROTONICA OBJETIVOS a) Que el alumno reciba la una orientación teórica básica sobre la técnica analítica denominada Resonancia Magnética Protonica b) El alumno
Rotación de moléculas poliatómicas:
Rotación de moléculas poliatómicas: M Trompos esféricos, simétricos y asimétricos. EQUIPO 3 : M A R T Í N EZ A H U M A DA E VA M A R Í A D E J ESÚS M A R T Í N EZ A L D I N O I N G R I D YA D I R A M O
Solución de la ecuación de Schrödinger para el oscilador armónico
Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión
Práctica 5. Espectroscopia UV-Vis de compuestos de coordinación Tarea previa
Laboratorio de Química de Coordinación Parte II: Las técnicas Práctica 5. Espectroscopia UV-Vis de compuestos de coordinación Tarea previa 1.- Leer los fundamentos teóricos de la práctica 2.- Dibujar el
La espectroscopia de resonanc resonan ia magnética nuclear (RMN) es un fenóme fenóm no
Resonancia Magnética Nuclear de Sólidos y su aplicación ala caracterización de polímeros Carlos García Aparicio Madrid, 2012 La espectroscopia de resonancia magnética nuclear (RMN) es un fenómeno que ocurre
Espectro Electromagnético
1 Espectro Electromagnético La luz es radiación electromagnética y está compuesta por una parte eléctrica y otra magnética. Las particulas subatómicas, electrones y fotones, tienen propiedades de partículas
TEMA 2: Resonancia Magnética Nuclear RMN-1H y 13C Fundamentos
Fundamentos La Resonancia Magnética Nuclear (RMN) es la técnica que mayor información estructural proporciona. Ello se debe a que se observan los núcleos de los átomos y se puede conocer la influencia
MOLÉCULAS INTERESTELARES
MOLÉCULAS INTERESTELARES El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2 constituye el 25% de la
ASIMETRÍA! MOLECULAR. Grupo # Claudia Flores Christian Castro Luis López
ASIMETRÍA! MOLECULAR Grupo # 5 200911024 Claudia Flores 200921127 Christian Castro 200923657 Luis López En las moléculas orgánicas, la presencia de asimetría es causada en la mayoría de los casos por la
La Mecánica Cuántica. La Espectroscopia Infrarroja
La Mecánica Cuántica. La Espectroscopia Infrarroja 1. La Espectroscopia Infrarroja La luz que ven nuestros ojos no es más que una parte del espectro electromagnético. La luz se puede considerar como un
ESPECTROSCOPÍA EJEMPLOS DE ELUCIDACION ESTRUCTURAL DE COMPUESTOS. Elucidación estructural: Ejemplo 1 Dados los siguientes espectros:
ESPECTROSCOPÍA EJEMPLOS DE ELUCIDACION ESTRUCTURAL DE COMPUESTOS Elucidación estructural: Ejemplo 1 Dados los siguientes espectros: 1) Empezaremos por encontrar la formula molecular, pues no la tenemos.
Aplicaciones de la Química Cuántica. Examen de problemas. 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso:
Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso: 2005-06 Examen de problemas 1. [3.0 puntos]el espectro de rotación del 1 H 35 Cl en fase gas muestra bandas
Espectroscopía de Absorción Molecular
Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante
Interacciones moleculares en sistemas biológicos
Interacciones moleculares en sistemas biológicos Qué es una molécula? Compuesto con estequeometría y estructura bien definida y no fácilmente disociable Qué es una macromolécula biológica? Molécula grande
Espectroscopía electrónica molecular
Espectroscopía electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 2017/2018 Índice 1. Símbolos de los términos moleculares 2 2. Estructura fina vibracional
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS QUÍMICAS LICENCIATURA: QUÍMICO ÁREA ESPECÍFICA DE: FÍSICO-QUÍMICA
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS QUÍMICAS LICENCIATURA: QUÍMICO ÁREA ESPECÍFICA DE: FÍSICO-QUÍMICA NOMBRE DE LA ASIGNATURA: ESPECTROSCOPÍA MOLECULAR CÓDIGO: LQU 591 FECHA
Método Extendido de Hückel
TEORIA Este método fue ampliamente popularizado por Hoffmann a finales de los años 50, y posteriormente las aproximaciones realizadas se deben a Wolfsberg y Helmholz a principios de los 60. Este método
MATERIAL 09 TEMA: ESPECTROSCOPÍA DE ABSORCION MOLECULAR EN EL ULTRAVIOLETA
MATERIAL 09 TEMA: ESPECTROSCOPÍA DE ABSORCION MOLECULAR EN EL ULTRAVIOLETA y EL VISIBLE La espectroscopia de absorción molecular en el ultravioleta y visible se emplea en el análisis cuantitativo y es
MOLÉCULAS INTERESTELARES
MOLÉCULAS INTERESTELARES Transiciones electrónicas El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2
TALLER DE ESPECTROSCOPIA
TALLER DE ESPECTROSCOPIA I. OBJETIVOS a) Conocer los principios fundamentales que rigen la interacción energía-materia (radiación electromagnética-moléculas) en uno de los métodos espectroscópicos más
UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUÍMICAS FUNDAMENTOS DE LA ESPECTROSCOPIA
Integrantes: Ipiales Gabriela Química de Alimentos Olmos Wendy Química Farmacéutica Día: Miércoles 9-11 Fecha: 05/07/2011 DEFINICIÓN DE ORBITALES ATÓMICOS Un orbital atómico representa una región del espacio
MOLÉCULAS INTERESTELARES
MOLÉCULAS INTERESTELARES El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2 constituye el 25% de la
Tipos de enlaces. Intramoleculares: Intermoleculares: Metálico. Iónico. Covalente. Fuerzas de Van de Waals Enlaces de hidrógeno.
El enlace químico Tipos de enlaces Intramoleculares: Iónico. Covalente. Intermoleculares: Fuerzas de Van de Waals Enlaces de hidrógeno. Metálico. Enlace iónico Se define como la fuerza electrostática
DETERMINACIÓN ESTRUCTURAL (Teoría) CURSO , GRUP A 9 de febrero Apellidos... Nombre...
DETERMINAIÓN ESTRUTURAL (Teoría) URS 2003-2004, GRUP A 9 de febrero 2004 Apellidos... Nombre... 1.- Que diferencias espera encontrar entre el 3 - y el 3 -D. a) en sus espectros de masas. El ión molecular
1.- Introducción. - Identificación de materiales y aditivos. - Análisis cuali y cuantitativo
1.- Introducción - Identificación de materiales y aditivos - Análisis cuali y cuantitativo - Estudio de estructura molecular (conformación, estereoquímica, cristalinidad y orientación). - Interacciones
Interacciones moleculares
Interacciones moleculares Recuerde Gas: Interacciones entre partículas son mínimas. Sólido y líquido: Interacciones entre partículas son suficientes para mantenerlas cerca (aunque los sólidos tienen diferentes
Modelos Colectivos. Introducción.
Modelos Colectivos. Introducción. El modelo de capas predice que todos los núcleos par -par tienen J P =0 en su estado fundamental. En el caso del 130 Sn sus 50 protones saturan la capa 1g 9/ mientras
Metas del módulo... Conectar la descripción molecular con el mundo macroscópico...
Metas del módulo... Brindar una cultura general en Fisicoquímica Moderna en el tratamiento microscópico de la materia
Espectroscopía Infrarroja de Biomoléculas y Biomateriales
LABORATORIO DE BIOMATERIALES - FACULTAD DE CIENCIAS Espectroscopía Infrarroja de Biomoléculas y Biomateriales Manual de Ejercicios Santiago Botasini Eduardo Méndez 2014 U N I V E R S I D A D D E L A REPÚBLICA
Curso de Química Inorgánica II Escuela de Ciencias Químicas Facultad de Ciencias UPTC. PhD. Jovanny Arlés Gómez Castaño
Curso de Química Inorgánica II Escuela de Ciencias Químicas Facultad de Ciencias UPTC PhD. Jovanny Arlés Gómez Castaño Introducción Los complejos de los metales d desempeñan un papel importante en la química
Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo
Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo Double-click MARCIA Double-click BALAGUERA-GELVES here here to to edit edit text. text. Gisela León Colón Ph. D. UPR-Bayamón Espectroscopia y el
Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H
Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie
