Movimiento vibracional
|
|
|
- Óscar Ortiz de Zárate Rubio
- hace 9 años
- Vistas:
Transcripción
1 ESPECTROSCOPÍA
2 Movimiento vibracional El oscilador armónico como modelo de la vibración molecular Los sistemas que vibran a nivel molecular incluyen las vibraciones internas de una molécula y las vibraciones de moléculas alrededor de posiciones de equilibrio en sólidos y de posiciones de equilibrio temporales en líquidos y soluciones F k m 1 m Según la Mecánica Clásica k, cte de fuerza (propia del resorte) 1 k m m m1m m m 1, frecuencia de vibración
3 1 k La E potencial del oscilador U () es: Siendo E k 1 m v E = E ck U ( ) U() No eisten restricciones para los valores de E Según la Mecánica Cuántica solución H y = E y y ( ) Para describir un oscilador armónico según la mecánica cuánica se debe sustituir la U () en la ecuación de Schrödinger: d 8π m 1 E- k 0 d h Esta ecuación tiene soluciones sólo para ciertos valores de energía total
4 Consecuencias Cuantización de la energía E n n 1 h ( n 0, 1,,...) n, número cuántico vibracional La energía del nivel 0 no es cero en el n=0, el oscilador tiene una E vibracional E=h/ aún a 0 K todos los osciladores conservan energía vibracional (Energía del punto cero) Los niveles energéticos están igualmente espaciados: E h Funciones de probabilidad de encontrar al oscilador (partícula) a lo largo de
5 Gráficamente: Energía U (a) U( ) 1 k E 3 a n = 4 n = 3 n = n = 1 n = 0 e 1 h E 3, un valor posible de energía total del sistema U a, energía potencial en el punto a E 3 - U a, un valor posible de energía cinética en el punto a vs. Al aplicar esto a la vibración de moléculas diatómicas, hay que tener en cuenta que U( ) 1 k
6 U( ) De 1 e Energía (kcal/mol) H Br H a e v = 5 e, longitud de enlace v = 10 Ec. Morse D e, energía de enlace v = 0 Br HBr 1,0 1,5,0,5 3,0 3,5 4,0 H Br D e Contempla: -si = e U () =0 -si, U () D e H + (Å) Br separación de los niveles vibracionales 5 kcal/mol energía radiación infrarroja
7 Movimiento rotacional El rotor rígido (mov. en dos dimensiones) como modelo de la vibración molecular q centro de masa r r 1 m f m 1 Un rotor rígido diatómico consiste de dos partículas de masa m 1 y m unidas rígidamente por un conector de longitud r. Se puede pensar que esas masas son átomos conectados por un enlace químico. El rotor es colocado con su centro de masa sobre el origen de un sistema de coordenadas polares esférico. El movimiento del rotador puede ser pensado como la rotación alrededor de dos ejes perpendiculares a r.
8 La rotación de un rotor rígido puede ser descripta por el movimiento de un objeto simple de masa reducida q centro de masa r r 1 f m 1 r r r m1m m m 1 1 m La rotación de un cuerpo alrededor de un eje a través de su centro de masa se describe por el momento de inercia I: i i 1 1 i I mr m r m r I r A nivel molecular se aplica a la rotación de moléculas diatómicas y al movimiento de los e - alrededor del núcleo y girando sobre sí
9 Según la Mecánica Clásica: L L m vr L, vector momento angular, al plano de rotación Ec 1 Iw k w, velocidad angular U ( ) 0 No eisten restricciones para los valores de E No eisten restricciones para la orientación y magnitud de L Según la Mecánica Cuántica Consecuencias solución H y = E y y ( ) cuantización de la energía r E = E c k v en coordenadas polares Resolviendo la ecuación de Schrödinger para movimiento rotacional E h J J 1 8 r J = 0, 1,
10 Áplicación La transición energética entre dos estados rotacionales consecutivos en moléculas diatómicas: E h J 1 4 r midiendo E, y conocido de la molécula se determina r, long enlace valores de E rotacionales radiación en la región de las microondas cuantización del momento angular J J 1 h magnitud de L L J = 0, 1, orientación de L mh L m = J,J-1,...,0,...,-J+1, -J z n orientaciones posibles = J+1
11 z L z L L L z, componente de en el eje eterno z se condiciona orientación de L sólo son posibles sólo ciertos planos de rotación Notar: Aparecen dos n cuánticos: J y m Sólo J determina la energía m está relacionado con la orientación del movimiento Para un mismo J (misma E), el sistema presenta J+1 estados con distintas orientaciones: estados degenerados ÁTOMO DE HIDRÓGENO z H y = E y y ( r, q, f) carga en el núcleo Ze+ f q r e- 3 dimensiones coordenadas polares U del e - interactuando con el núcleo: y U Ze r planteo y soluc. para otros átomos e iones con un sólo e- Ej.: Li +, He +
12 Soluciones: cuantización de la energía E n 4 Z e n h cte n n, n cuántico principal y ( r, q, f) dependen de 3 números cuánticos: n, l y m y ( n, l, m) y, densidad de probabilidad de encontrar a los e- en el estado cuántico n, l y m concepto de orbital atómico Características de los distintos n cuánticos n, principal, es el que determina la E del e- (en hidrogenoides, no se considera interacción con otros e-) valores = 1,, 3,... al n distancia al núcleo
13 l, secundario o azimutal valores: 0, 1,,..., n-1 determina la forma de los orbitales l orbital s p d f m, magnético valores: -l, -(l-1),...,0,...,(l-1), l condiciona orientación de los orbitales m s, magnético de spin ó de spin valores: -½, ½ (no surge de Ec. Schrödinger, sino de conceptos relativistas ) Relacionados con el momento angular asociado a: A- el movimiento orbital del e- B- el movimiento de spin del e- (giro sobre sí mismo)
14 Cuantización del momento angular magnitud de L rotor rígido mov. orbital J l L L J J 1 l l 1 h h J = 0, 1,.. l = 0, 1,.. L rotor rígido orientación de L mh Lz m = J,J-1,..,0,..,-J+1, -J mh Lz m = l,l-1,..,0,..,-l+1, -l mov. spin J s s s 1 L m m s h s= ½ L z ms h m s = ±½ A- Movimiento orbital del e- l = 0 n orientaciones posibles (l+1) = 1 un único estado del sistema L 0 m 0 L z 0 momento angular nulo
15 m = 1 mh Lz L h l = 1 m 0, 1 m = 0 z L z 0 L n orientaciones posibles = 3 3 estados con L L m = -1 h Lz l l 1 h h L considerando en cada caso todas las rotaciones que generen momentos con = L z
16 B- Movimiento spin del e - (tb p + ) L momento angular interno m s = +½ s = ½ m s 1/ estados con L m s = -½ s s 1 h 3 h 4 h Lz 4 L z ms h h Lz 4
17 Formas de los orbitales atómicos z P 1 s z y r y s z P z y r y
18 p z z p y z p z y y y Orbitales d
19 Implicancias de la resolución de la ec. Schrödinger para el H Configuración electrónica Surge un orden de llenado de las orbitales: primero las que presenten mayor penetración nuclear menor E en H e hidrogenoides: E (n) 3 s 3p 3d s p 1 s en át polielectrónicos: se producen interacciones entre e- Reglas de llenado -Ppio mínima energía -Ppio de eclusión de Pauli -Regla de Hund 6 s 6p 6d... 5 s 5p 5d 4 s 4p 4d 4f 3 s 3p 3d s p 1 s E (n,l)
20 Enlaces químicos Orbitales moleculares Aproimación: CLOA (Combinación Lineal de Orbitales Atómicos) Se generan n OM y c1 y1 c y c3 y3... c y OM n n n= 1,,...n OA puros o híbridos Cuáles OA se pueden combinar? Aquellos que presenten simetrías similares respecto del eje del unión OA con energías similares
21 Qúé tipo de OM se forman? posición eje de simetría enlazantes s antienlazantes s* * no enlazantes n Ejs.: 1s 1s s 1s * A B s 1s p p s p * s p
22 p z p z p * En el formaldehído: H C O H C 6 1s (sp ) 1 (sp ) 1 (sp ) 1 p z 1 1s H s CH sp sp, s * CH C s CO sp p O 8 1s s p p y 1 p z 1, s * CO p z O p p y n O H 1 1s 1 1s H s CH, s * CH p z CO, * CO
23 Cómo se completan las OM? Reglas de llenado a OA Ej.: Conf. electrónica del formaldehído en el estado fundamental ecitación 1s 0 1s C s0 sch s CH sco CO no CO * sco * 0 0 OA localizado E Representación que permite ver la multiplicidad de spin (M) M= S+1 S, spin total: contribución al spin de todos los e- (±½) s CO * estado fundamental CO * todos los e- apareados n O S=0 M=1 singulete CO S 0 s CO
24 s CO * CO * n O transición n 0 CO * s CO * CO * n O estados ecitados CO CO s CO s CO S 1 T 1 M=. 0+1=1 singulete E S1 > E T1 M=. 1+1=3 triplete e- desapareados (T 1 ) no pueden estar próimos (Pauli) menor repulsión
Teoría del Enlace de Orbitales Moleculares (TOM)
Teoría del Enlace de Orbitales Moleculares (TOM) Conceptos Fundamentales: Combinación Lineal de Orbitales Atómicos: CLOA Moléculas diatómicas sencillas homonucleares: OM enlazantes y antienlazantes. OM
TEORÍA DE ENLACE DE VALENCIA (TEV) Heitler y London 1927 Pauling
TEORÍA DE ENLACE DE VALENCIA (TEV) Heitler y London 1927 Pauling BASES: Los electrones de enlace están localizados en la región de solapamiento de los orbitales atómicos. Para que se produzca el enlace
Física Cuántica. Moléculas II. Movimiento ionico.
Física Cuántica Moléculas II. Movimiento ionico. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2002-2003 p.1/15 El movimiento de los nucleos Born-Oppenheimer: debemos estudiar
SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE
SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE ESTRUCTURA Y PROPIEDADES MOLECULARES Temas de Mecánica Cuántica y Estructura atómica 1) Cuál es el operador asociado al observable energía,
Capítulo 3. Átomos Hidrogenoides.
Capítulo 3. Átomos Hidrogenoides. Objetivos: Introducción del concepto de orbital atómico Descripción de los números cuánticos en los orbitales atómicos Justificación cualitativa de la cuantización de
Clase N 1. Modelo Atómico II
Pre-Universitario Manuel Guerrero Ceballos Clase N 1 Modelo Atómico II ICAL ATACAMA Módulo Plan Común Síntesis De La Clase Anterior Modelo atómico Átomo Divisible en Protón Neutrón Electrón Carga: +1 Masa:
Tema 2: Enlace y propiedades de los materiales
En la mayoría de moléculas, los enlaces entre los átomos que las constituyen no es mediante la interacción coulombiana que hemos analizado en el caso del enlace iónico. Se necesita tener en cuenta el llamado
Moléculas: partícula neutra más pequeña de una sustancia dada que posee sus propiedades químicas y puede existir independientemente
Especies químicas de interés formadas por átomos: Moléculas: partícula neutra más pequeña de una sustancia dada que posee sus propiedades químicas y puede existir independientemente Iones: Especies cargada
Orbitales moleculares I
Orbitales moleculares I Introducción a lateoría de orbitales moleculares. Aplicación a moléculas homonucleares sencillas. La teoría de orbitales moleculares (OM) para describir un enlace covalente nace
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo
Enlace Químico Orbitales moleculares
QUIMICA INORGÁNICA Enlace Químico Orbitales moleculares Bibliografía Materiales: Tabla periódica Modelo de orbitales atómicos Paramagnetismo del oxígeno: Termos, grande y chicos, manguera, imán fuerte,
Los compuestos del Carbono
Los compuestos del Carbono Segunda fila de la Tabla Periódica El átomo de carbono está en el medio de la fila y en realidad no cede ni acepta electrones. Comparte sus electrones con otros carbonos al igual
Estructura electrónica molecular
Estructura electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 4 de noviembre de 2016 Índice 1. Aproximación de Born-Oppenheimer 1 2. Ion
Enlace Químico Orbitales moleculares
QUIMICA INORGÁNICA Enlace Químico Orbitales moleculares Materiales: 1ra clase: Tabla periódica Modelo de orbitales atómicos 2da clase: Paramagnetismo del oxígeno: Termos, grande y chicos, manguera, imán
UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUÍMICAS FUNDAMENTOS DE LA ESPECTROSCOPIA
Integrantes: Ipiales Gabriela Química de Alimentos Olmos Wendy Química Farmacéutica Día: Miércoles 9-11 Fecha: 05/07/2011 DEFINICIÓN DE ORBITALES ATÓMICOS Un orbital atómico representa una región del espacio
ENLACE QUÍMICO. Hidrógeno. Carbono. Agua. Etileno. Acetileno
ENLACE QUÍMICO Símbolos y estructuras de Lewis: Modelo más simple para describir el enlace químico (sólo en moléculas constituidas por átomos de elementos representativos). Hidrógeno Carbono Agua Etileno
Teoría de orbitales moleculares y orden de enlace Propiedades moleculares y configuraciones
5/30/013 GEOMETRÍA MOLECULAR Y TEORÍA DE ENLACE Teoría de orbitales moleculares y orden de enlace Propiedades moleculares y configuraciones electrónicas Geometría Molecular y Enlace Químico Especies Poliatómicas:
Enlace químico II: geometría molecular e hibridación de orbitales atómicos
Enlace químico II: geometría molecular e hibridación de orbitales atómicos Capítulo 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Teorías de cómo ocurren
Surgió alrededor de 1925, como resultados de los trabajos realizados por diversos investigadores. Este modelo nos permite explicar la composición del
Introducción al modelo mecano cuántico Surgió alrededor de 1925, como resultados de los trabajos realizados por diversos investigadores. Este modelo nos permite explicar la composición del átomo y algunos
Metas del módulo... Conectar la descripción molecular con el mundo macroscópico...
Metas del módulo... Brindar una cultura general en Fisicoquímica Moderna en el tratamiento microscópico de la materia
ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)
ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de
Teoría de Orbitales Moleculares (OM)
Teoría de Orbitales Moleculares (OM) El caso de CH4 Ricardo Agusto Valencia Mora. María Magdalena Vázquez Alvarado. Osmaly Villedas Hernández. José Luis Zavala Salgado. Friedrich Hund 1896-1997 Formula
ENLACE QUÍMICO. Hidrógeno. Carbono. Agua. Etileno. Acetileno
ENLACE QUÍMICO Símbolos y estructuras de Lewis: Modelo más simple para describir el enlace químico (sólo en moléculas constituidas por átomos de elementos representativos). Hidrógeno Carbono Agua Etileno
TEMA 6: Enlace químico en sistemas moleculares
TEMA 6: Enlace químico en sistemas moleculares Índice 1) Introducción 2) Enlaces en molécula a.i. a.ii. a.iii. a.iv. Teoría de orbitales moleculares Teoría del enlace de valencia Resonancia Polaridad 3)
ENLACE QUÍMICO UNIDADES ESTRUCTURALES DE LAS SUSTANCIAS IONES ÁTOMOS MOLÉCULAS ENLACE IÓNICO ENLACE METÁLICO ENLACE COVALENTE ENLACE COVALENTE
ENLACE QUÍMICO Y TIPOS ENLACE QUÍMICO Enlace químico es la fuerza responsable de la unión entre las unidades estructurales ( iones, átomos o moléculas) que forman la materia. UNIDADES ESTRUCTURALES DE
Capítulo 4. Átomos Polielectrónicos.
Capítulo 4. Átomos Polielectrónicos. Objetivos: Introducción del concepto de carga nuclear efectiva del orbital atómico. Contribución de las repulsiones interelectrónicas. Justificación cualitativa del
ESTRUCTURA DE LA MATERIA
ESTRUCTURA DE LA MATERIA 1. Naturaleza de la materia (el átomo). 2. Modelos atómicos clásicos. 3. Modelo mecánico cuántico. 4. Mecánica ondulatoria de Schrödinger. 5. Números cuánticos. 6. Orbitales atómicos.
Teoría atómica I: Modelos atómicos, estructura atómica y tipos de átomos. Teoría atómica II: Números cuánticos y configuración electrónica
TEORÍA ATÓMICA Teoría atómica I: Modelos atómicos, estructura atómica y tipos de átomos Teoría atómica II: Números cuánticos y configuración electrónica Aprendizajes esperados Diferenciar los distintos
TEMA 3 EL ENLACE COVALENTE
TEMA 3 EL ENLACE COVALENTE 1. Orbitales atómicos. 2. Teoría de orbitales moleculares (OM). 3. El enlace en la molécula de metano. 4. La molécula de etano. 5. La molécula de etileno. 6. La molécula de acetileno.
ÍNDICE
ÍNDICE 1 Radiación térmica y el postulado de Planck... 17 1-1 Introducción... 19 1-2 Radiación térmica... 19 1-3 Teoría clásica de la cavidad radiante... 24 1-4 Teoría de Planck de la cavidad radiante...
Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)
Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del
Teoría de Orbitales Moleculares (OM)
Teoría de Orbitales Moleculares (OM) La combinación de orbitales atómicos sobre átomos diferentes forman los llamados orbitales moleculares; dentro de este modelo se señala que los electrones que pertenecen
Teoría cuántica del enlace
IES La Magdalena. Avilés. Asturias La teoría cuántica (en su versión ondulatoria) describe al electrón mediante una función de onda, pero no podemos considerarlo como una partícula con una localización
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.
Química Orgánica I. Clase 2.
Química Orgánica I Clase 2. Enlace Quimico. Teoria de Enlace de Valencia F 2 Enlace Covalente Polar: Enlace donde la densidad electronica esta polarizada hacia uno de los dos atomos. Electronegatividad
Línea de tiempo: Modelos Atómicos
Línea de tiempo: Modelos Atómicos Modelo de Thomson 1904 Budín de pasas Demócrito (450 a. c) Teoría Atómica de Dalton1808 Modelo de Rutherford 1911 Modelo Atómico de Bohr1913 Fuente de energía V o Q Bohr
El Átomo de Bohr. Descripción mecánico-cuántica de los electrones alrededor del núcleo: orbitales atómicos
Descripción mecánico-cuántica de los electrones alrededor del núcleo: orbitales atómicos El Átomo de Bohr 1.Los electrones orbitan el átomo en niveles discretos y cuantizados de energía, es decir, no todas
TEMA 1: Estructura Atómica
TEMA 1: Estructura Atómica 1. Configuraciones electrónicas. 2. Propiedades periódicas: Energía de activación Afinidad electrónica Electronegatividad Descripción mecánico- cuántica del átomo: Orbitales
Física en las moléculas
Física en las moléculas La distancia entre los 2 átomos de Cs que forman la molécula de Cs 2 es de 0.447 nm. Si la masa de cada átomo de Cs es de 2.21 10 25 Kg. a) Calcular el momento de inercia del sistema
Uniones Químicas. Iónicas Covalentes Metálicas
Uniones Químicas Iónicas Covalentes Metálicas Unión iónica Propiedades de los Compuestos iónicos - Puntos de fusión y ebullición elevados - Sólidos duros y quebradizos - Baja conductividad eléctrica y
Rotación de moléculas poliatómicas:
Rotación de moléculas poliatómicas: M Trompos esféricos, simétricos y asimétricos. EQUIPO 3 : M A R T Í N EZ A H U M A DA E VA M A R Í A D E J ESÚS M A R T Í N EZ A L D I N O I N G R I D YA D I R A M O
Modelo atómico de la materia. Contenidos
Modelo atómico de la materia Antecedentes: Contenidos El átomo nuclear: Constituyentes del nucleo Antencedentes de la Mecanica Cuantica - Principio de Dualidad Onda-Partícula. - Principio de Incertidumbre
QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA
QUÍMICA COMÚN QC-03 NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA 2014 REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como consecuencia del principio planteado por Heisenberg se deduce
Rotación y vibración de moléculas poliatómicas
Rotación y vibración de moléculas poliatómicas Química Física Aplicada, UAM (Química Física Aplicada, UAM) Rotación y vibración de moléculas poliatómicas 1 / 1 Movimiento de rotación en moléculas poliatómicas
El enlace químico. Alejandro Solano-Peralta Facultad de Estudios Superiores Cuautitlán, UNAM
Alejandro Solano-Peralta Facultad de Estudios Superiores Cuautitlán, UNAM El enlace químico Las átomos pueden formar enlaces por compartición de electrones Dos electrones compartidos forman un enlace simple.
Radiación térmica y el postulado de Planck
Contenido Radiación térmica y el postulado de Planck 17 1-1 1-2 1-3 1.4 1.5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de Planck de 1a cavidad radiante
Soluciones a la ecuación de Schrödinger
Diplomatura Universitaria en Ciencia y Tecnología Fisica IIII Docente: Claudia González Clase 11: Soluciones a la ecuación de Schrödinger: Atomos multi-electrónicos y principio de exclusión spectros moleculares
DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA NOMBRE DE LA MATERIA FÍSICA MODERNA CLAVE DE MATERIA FS 301 DEPARTAMENTO
Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica
Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger
Capítulo 7. El enlace químico II
Capítulo 7. El enlace químico II Objetivos: Dar una visión cualitativa y una justificación de la aplicación del principio de Born-Oppenheimer en el tratamiento mecanocuántico de los sistemas moleculares.
Tema 5. ENLACE COVALENTE
Tema 5. ENLACE COVALENTE Enlace covalente Teoría del enlace de valencia Teoría de orbitales moleculares Moléculas diatómicas Moléculas poliatómicas Aplicación de la teoría de grupos a los OM http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/valenceframe.html
ENLACE QUIMICO. Teoría de enlace de valencia Hibridación de orbitales y enlaces múltiples
ENLACE QUIMICO Teoría de enlace de valencia Hibridación de orbitales y enlaces múltiples Teoría de Enlace de Valencia Teoría de Lewis: El enlace covalente se forma cuando dos átomos comparten pares de
5. MODELO CUÁNTICO. Cuantos de energía. La energía no es una magnitud continua sino que se encuentra cuantizada (agrupada en cuantos).
Cuantos de energía. La energía no es una magnitud continua sino que se encuentra cuantizada (agrupada en cuantos). Química 1º bachillerato El átomo 1 Los electrones se caracterizan por los números cuánticos.
PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS.
PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS. 1. Explique que indica el número cuántico magnético y el número cuántico de espín. Número cuántico magnético:
Introduce la aproximación de la CLOA
Teoría de Orbitales Moleculares 1 Friedrich Hund 1896-1997 Formula la TOM Adapta la TOM y la aplica a moléculas diatómicas Robert Sanderson Mulliken 1896 1986 Premio Nobel en Química 1966 Por su trabajo
Modelo de enlace iónico: Modelo electrostático simple
Modelos de Enlace Enlace iónico Modelo de enlace iónico: Modelo electrostático simple Estructuras de Lewis: Modelo de enlace por pares de electrones Teoría de Repulsión de pares electrónicos de la capa
1.6 La estructura del átomo.
.6 La estructura del átomo. Aplicaremos la mecánica cuántica al estudio de la estructura atómica interna del átomo, constituído por un núcleo y un conjunto de electrones. El átomo de Hidrógeno. Es el sistema
Examen de problemas (SOLUCIONADO)
Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Febrero 3 Feb 2006) Curso: 2005-06 Versión: 17 de febrero de 2006) Examen de problemas SOLUCIONADO) 1. [2.5 puntos]en el espectro Raman
El ÁTOMO de HIDRÓGENO
El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las
Química Física II. Tema II
Química Física II. Tema II TEMA II: LA ECUACIÓN DE SCHRÖDINGER 1. La ecuación de Schrödinger independiente del tiempo 2. La ecuación de Schrödinger dependiente del tiempo 3. Principio de incertidumbre
Hoja de Problemas 5. Física Atómica.
Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM. 3-3-26 Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas
ENLACE QUÍMICO. Teoría de orbitales moleculares y orden de enlace Propiedades moleculares y configuraciones electrónicas
ENLACE QUÍMICO Teoría de orbitales moleculares y orden de enlace Propiedades moleculares y configuraciones electrónicas Formación de Enlaces a partir de Orbitales Atómicos Especies químicas de interés
Apuntes del Modelo del átomo hidrogenoide.
Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción
ESPECTROSCOPíA INFRARROJA
ESPECTROSCOPíA INFRARROJA Química Orgánica 1 Facultad de Farmacia y Bioquímica UBA 2016 Autor: Dra. Isabel Perillo 1 Espectro electromagnético Unidades de l usadas: para UV-visible: nm (mm): 10-9 m para
Tema 3 El Átomo. Modelos Atómicos y Configuraciones Electrónicas
Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química 2015 2016 Unidad Didáctica 3 Rev 01 El Átomo. Modelos Atómicos y Configuraciones Electrónicas
Enlace químico II: geometría molecular e hibridación de orbitales atómicos
Enlace químico II: geometría e hibridación de orbitales atómicos Capítulo 10 Modelo de la repulsión de los pares de electrones de la capa de valencia (): Predice la geometría de la molécula a partir de
5. TEORÍA DEL ENLACE DE VALENCIA (TEV)
La teoría del enlace de valencia (TEV) explica el enlace covalente a partir de los orbitales. Una intersección o solapamiento de un orbital de un átomo (con un e-) con otro orbital de otro átomo distinto
Curso 0 de Química PROGRAMA UNIDAD ESTRUCTURA DE LA MATERIA 1.2. ENLACE QUÍMICO
Curso 0 de Química PROGRAMA UNIDAD 1. 1.1. ESTRUCTURA DE LA MATERIA 1.2. ENLACE QUÍMICO UNIDAD 2. 3.1. CONCEPTOS BÁSICOS 3.2. MEZCLAS Y DISOLUCIONES 3.3. REACCIONES QUÍMICAS UNIDAD 3. 4.1. TERMOQUÍMICA
TEMA 5 EL ENLACE QUÍMICO. COVALENTE
TEMA 5 EL ENLACE QUÍMICO. COVALENTE Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. El enlace covalente según Lewis 1.1. Enlaces sencillos, dobles y triples 1.2. Enlace covalente dativo
Tema 4. ESTRUCTURA ATÓMICA Y SISTEMA PERIÓDICO
Tema 4. ESTRUCTURA ATÓMICA Y SISTEMA PERIÓDICO John Dalton (1808). La imagen del átomo expuesta por Dalton en su teoría atómica, es la de minúsculas partículas esféricas, indivisibles e inmutables, iguales
2.2Evolución del modelo atómico:
Tema 2.1.- El átomo. 2.2Evolución del modelo atómico: 2.2.- Modelo mecánico cuántico ondulatorio 2.2.1.- Números cuánticos 2.3.- Configuración electrónica 2.3.1.- normal, su desarrollo y mención de: spin.
Átomos polielectrónicos Espín y configuraciones electrónicas Número y masa atómicos (isótopos) Tabla periódica y configuraciones electrónicas
ESTRUCTURA ELECTRÓNICA Espín y configuraciones electrónicas Número y masa atómicos (isótopos) Tabla periódica y configuraciones electrónicas Átomos con un solo electrón: La energía depende solamente del
TABLA PERIÓDICA Y CONFIGURACIONES ELECTRÓNICAS. Facultad de Química, UNAM. Curso: Química General 1 Mtra. Norma M. López 1
TABLA PERIÓDICA Y CONFIGURACIONES ELECTRÓNICAS Facultad de Química, UNAM. Curso: Química General 1 Mtra. Norma M. López 1 ÁTOMO Partícula muy pequeña (1 a 5 Å) Conformada por protones, neutrones y electrones.
UNIVERSIDAD NACIONAL DEL CALLAO
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA UNIDAD DE INVESTIGACIÓN DE LA FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INFORME FINAL DEL TEXTO TEXTO: MECÁNICA CUÁNTICA II
CATEDRA DE QUIMICA GENERAL TSIA
ECUACIÓN DE SCHRÖDINGER Fue Erwin Schrodinger, EN 1926quien ideó el modelo atómico actual, llamado "Ecuación de Onda", una fórmula matemática que considera los aspectos anteriores. La solución de esta
EXTRUCTURA ATOMICA ACTUAL
ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de
UNIDAD 1 INTRODUCCIÓN A LA QUÍMICA ORGÁNICA
UNIDAD 1 INTRODUCCIÓN A LA QUÍMICA ORGÁNICA Diferencia entre un compuesto orgánico e inorgánico Características Orgánico Inorgánico Fuentes Origen animal y vegetal Reino mineral Elementos Básicos C, H,
Tema 7: Espectroscopia Vibracional (IR)
Tabla 1. El espectro electromagnético Región Longitud de onda Energía de excitación Tipo de excitación Rayos x, rayos cósmicos 286 (Kcal/mol) Ultravioleta Visible Infrarrojo próximo Infrarrojo
MÉTODO DEL ENLACE DE VALENCIA
TEORÍA DE LEWIS Símbolos de Lewis Estructuras de Lewis Polaridad de los enlaces. Electronegatividad Enlace iónico y enlace covalente Orden de enlace y energía de enlace Cargas formales Resonancia Geometría
GEOMETRÍA MOLECULAR Y TEORÍA DE ENLACE
GEOMETRÍA MOLECULAR Y TEORÍA DE ENLACE Modelo de repulsión de pares de electrones en la capa de valencia Forma molecular y polaridad molecular Teoría de enlace de valencia Hibridación de orbitales y enlaces
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS
ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS PRESENTADO POR: ADRIANA LISSETH LUQUE DIAZ JORGE ENRIQUE JURADO TASCO MARCO ANTONIO HUERTA ORTIZ PABLO LABRA VÁZQUEZ MAESTRÍA EN CIENCIAS QUÍMICAS
