MOLÉCULAS INTERESTELARES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOLÉCULAS INTERESTELARES"

Transcripción

1 MOLÉCULAS INTERESTELARES El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2 constituye el 25% de la masa del MI. Las nubes más masivas no muestran emisión ni absorción de HI. En ellas el H es casi todo molecular H2. H2 es de difícil detección directa. Se observa en líneas electrónicas en el UV (en absorción) o en líneas vibracionales (en el nir). CO más fácilmente medible. A pesar de que hay una molécula de CO por cada 10 4 de H2. Jaime Zamorano UCM Curso Astrofísica del MI 5º Físicas Jaime Zamorano (con -- Universidad aportaciones de Complutense Armando Gil de Paz de ) Madrid -- Curso

2 111 lines 8 molecules detected for the first time in an extragalactic source 25 different molecular species 2

3 Espectro del hot core, G327 en un rango de 0.5 GHz!!! 3

4 En el espectro de una molécula se observarán líneas producidas en transiciones electrónicas, vibracionales (incluidas ro-vibracionales) y rotacionales. 4 4

5 Transiciones electrónicas 5 5

6 Transiciones vibracionales y rotacionales 6 6

7 Potencial de Morse Energía de disociación Potencial de Morse Curva del potencial de una molécula binaria y su aproximación armónica. 7 7

8 Transiciones vibracionales La molécula separada de su posición de equilibrio tiende a recuperarla y oscila. La ecuación de Schrödinger: Frecuencia de oscilación en la aproximación armónica simple (resolviendo la ec. con el potencial parabólico de un OAS) Valores propios: aprox. oscilador armónico Con términos anarmónicos 8 8

9 9

10 Espectro ro-vibracional del 12 CO Para una molécula lineal la rama Q (Q-branch) está prohibida Para un potencial de Oscilador Armónico Δν=±1 En general, sobretonos (Δν=±2,3,4) son más débiles que el fundamental 10 10

11 Espectro IR de líneas de CO correspondientes a una banda vibracional obtenidas con el espectrómetro NOAO Phoenix La observación simultánea de esas líneas es una ventaja a la hora de determinación de condiciones físicas y abundancias

12 GL2591 ( 12

13 Transiciones rotacionales El campo eléctrico de una onda EM ejerce un par de fuerzas sobre un dipolo eléctrico. 13

14 Espectro rotacional puro Una pequeña cantidad de energía es suficiente para poner a rotar a una molécula que se encuentra en su estado fundamental. Si esta energía es menor que la necesaria para excitar el primer estado vibracional, se producirán transiciones rotacionales puras (mm y cm). Las moléculas tienen un momento de inercia alto ya que su radio es veces el radio de los átomos. La energía cinética de rotación: Momento angular J=I w 14

15 Espectro rotacional puro Resolviendo la ecuación de Schrödinger, Donde J es el número cuántico de momento angular J=0,1,2,... (no confundir con el mom. ang. total) Si la molécula es algo elástica (no completamente rígida), Se definen: Cte de estiramiento centrífugo D y la constante rotacional Be. El espectro resulta: ν 15 15

16 Los niveles se acercan cuando se tiene en cuenta el factor de estiramiento centrífugo (D) 16 16

17 Niveles de energía 17

18 La molécula de CO Transiciones más bajas de la escalera del 12 CO transición ΔE (K) ν (GHz) λ (mm) (J=1-0) (J=2-1) (J=3-2) CO fácilmente excitable 5.5 K ß à ev La escalera del CO 18

19 19

20 La molécula de CO 0.87mm 1.3mm 115 GHz 2.7mm Espectro de emisión simulado para el CO La separación entre líneas es aprox 115 GHz 20

21 La molécula de CO Líneas más intensas del 12 CO T rot (K) J λ 10 2 à mm sub mm > IR lejano Región del espectro donde aparecerían las líneas rotacionales más intensas de acuerdo a la T de la nube (Tex=Trot). Las intensidades relativas de las líneas proporcionan Trot 21

22 22

23 Escalera de las transiciones de CO de galaxias externas 23

24 Intensidades de las líneas La determinación de las intensidades de las líneas se realiza análogamente al caso atómico. Las transiciones rotacionales (permitidas, tipo dipolar eléctrico) Probabilidad de la transición Momento dipolar eléctrico permanente de la molécula peso estadístico Función de partición: 24

25 Líneas moleculares Densidades, Temperaturas y Masas Los niveles rotacionales de energía más bajos de las moléculas más sencillas tienen energías del orden de K. Las líneas observadas proporcionan información sobre un amplio rango de condiciones físicas del MI. La radiación de líneas moleculares procede de nubes densas y frías que no presentan radiación en líneas atómicas. Las líneas moleculares son los únicos trazadores de condiciones físicas de las nubes moleculares. 25

26 Estados cuánticos La energía rotacional está cuantizada. Las colisiones con moléculas y átomos pueblan los niveles excitados o, lo que es lo mismo, cambian la energía rotacional de la molécula. 26

27 Radiación Las transiciones radiativas espontáneas se producen a niveles de energía inmediatamente inferiores. El fotón tiene frecuencia: Espectro de emisión: 27

28 Intensidad relativa como trazador de densidad Los niveles de energía pueden ser excitados bajo condiciones muy diferentes del MI bien sea por colisiones o por transiciones radiativas espontáneas. Muchas colisiones (alta densidad) Pocas colisiones (baja densidad) 28

29 Intensidad relativa como trazador de temperatura Alta temperatura significa mayor velocidad o energía de los colisionantes. Los niveles excitados de mayor energía estarán más poblados que a baja T. Las intensidades relativas nos informan de la T. Temperatura baja Temperatura alta 29

30 30

31 Intensidad relativa como trazador de temperatura Los niveles excitados de mayor energía estarán menos poblados: A baja Temperatura A baja Densidad La temperatura de excitación (Tex) se obtiene de la razón entre poblaciones de dos niveles. Tex puede ser baja debido a que la temperatura cinética (Tk) lo es o porque la densidad es baja. En régimen de baja densidad la Tex es generalmente diferente para diferentes transiciones. Comparando estas Tex para cada transición se separan los efectos de temperatura cinética y densidad. 31

32 Aproximación de dos niveles Emisividad de una línea Línea débil si es pequeña. 32

33 Aproximación de dos niveles Intensidad de la línea proporcional a Probabilidad de transición radiativa Población del nivel de origen. Línea débil si es pequeña. En este caso, las desexcitaciones colisionales son importantes incluso para densidades bajas. En el estado estacionario, la ecuación de balance detallado (ritmo de transiciones entre los dos niveles se iguala) 33

34 Aproximación de dos niveles Ritmo de transiciones colisionales Densidad de energía media del campo de radiación. Intensidad Usando las relaciones de Einstein Perfil normalizado Tk es la temperatura cinética 34

35 Aproximación de dos niveles Usando las relaciones de Einstein obtenemos las poblaciones relativas de los niveles que vienen dados por Tex. Tex no es ni la Tb ni la Tk. exp N2 g h = 2 ν 21 N1 g1 k T ex La emisividad: 35

36 Emisividad y temperatura de excitación versus C/A C/A pequeño à transiciones radiativas dominan, emisividad independiente de A 21 y Tex à Tb C/A grande à transiciones colisionales dominan, emisividad pequeña y Tex à Tk (termalización) 36

37 Aproximación de dos niveles La intensidad que mediríamos de esa línea (T 21 =Tex): 37

38 Aproximación de dos niveles La abundancia para La densidad total y la temperatura cinética son necesarias para comprender la física de las nubes moleculares. Si las colisiones dominan à Todas las T 21 se hacen iguales a Tk à Todas las líneas con τ>> 1 tendrían la misma intensidad. y 38

39 Temperatura cinética El MI es ópticamente espeso universalmente para esta línea. La probabilidad de la transición radiativa es muy pequeña à à Las colisiones dominan la excitación de la línea La temperatura cinética se obtiene directamente de la Tex (T 21 ) 39

40 Densidades A partir de líneas más débiles que las del CO (pues para las de CO el medio es ópticamente espeso). Existen muchas moléculas para las que T 21 < Tk debido a que los ritmos de excitación colisional son menores que los de emisiones espontáneas o desexcitación espontánea. Se resuelven simultáneamente las ecuaciones que ligan todos los niveles implicados Combinaciones (n,tk) compatibles con las múltiples transiciones medidas en cada molécula. 40

41 Densidades A mayor momento dipolar se necesita mayor densidad para elevar T 21 a Tk Diferentes moléculas muestrean diferentes regímenes de densidad. (n > 10 7 cm -3 para que J=3à 2 del CS llegue a 50K) 41

42 Densidades, Truco del CO Es un método para determinar densidades (y masas) de nubes a) si densidad tan baja que no se excitan emisiones de otras moléculas b) si las abundancias de otras moléculas son muy pequeñas. Abundancia solar: Si la nube es ópticamente delgada para Y 42

43 Densidades, Truco del CO Lo que se observa generalmente es, que implica La temperatura de excitación se obtiene de las observaciones de como 43

44 Densidades, Truco del CO Si se supone Y para líneas ópticamente delgadas 44

45 Relación N( 13 CO) - extinción correlacionada con la extinción Fuera de las nubes à fotones UV de la radiación interestelar destruyen la mayor parte de las moléculas. En el interior de las nubes à cantidad de moléculas destruidas depende del espesor óptico de la nube para esa radiación UV. 45

46 Relación abundancias CO H 2 Relación controvertida. Comparando abundancias de CO con las densidades de columna de H 2 obtenidas en el IR y UV, para nubes densas La masa total de la nube molecular se determina con esta densidad de columna y datos del tamaño angular y distancia. CO-to-H2 Conversion Factor 46

47 Nebulosa Protoplanetaria M1-92 en el óptico HST Bujarrabal et al. (1998) A&A 331,361 47

48 M1-92 en CO 48

49 M1-92 en CO MODELO M1-92 Condiciones físicas en M1-92 N(cm -3 ) T(K) Condensación central 1.5 x Conchas huecas 5 x Flujo Bipolar 5 x

MOLÉCULAS INTERESTELARES

MOLÉCULAS INTERESTELARES MOLÉCULAS INTERESTELARES Transiciones electrónicas El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2

Más detalles

MOLÉCULAS INTERESTELARES

MOLÉCULAS INTERESTELARES MOLÉCULAS INTERESTELARES El espectro radio e IR del MI está plagado de líneas moleculares. Las moléculas se encuentran en preferencia en nubes frías, oscuras y polvorientas. H2 constituye el 25% de la

Más detalles

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS Jiménez Bárcenas Nadia Rosalina López Salazar Fátima Mendoza Pérez Bernardo Monzón González César Raúl Equipo 3: Principios de estructura de la materia

Más detalles

Cuáles son las diferencias entre las transiciones. Qué requerimientos deben cumplirse para poder. Porqué las ramas del espectro no son simétricas?

Cuáles son las diferencias entre las transiciones. Qué requerimientos deben cumplirse para poder. Porqué las ramas del espectro no son simétricas? Cuáles son las diferencias entre las transiciones vibracionales y las rotacionales? Porqué se aplica el modelo del rotor rígido para describir las transiciones rotacionales de una molécula diatómica? Qué

Más detalles

R E G I O N E S H II. Nebulosas gaseosas. Nebulosas gaseosas. Nebulosas gaseosas

R E G I O N E S H II. Nebulosas gaseosas. Nebulosas gaseosas. Nebulosas gaseosas R E G I O N E S Las nebulosas gaseosas son regiones HII en las que un cúmulo de estrellas está ionizando una región de HI. H II Jaime Zamorano -- Universidad Complutense de Madrid -- Curso 2002-2003 1

Más detalles

R E G I O N E S H II. Nebulosas gaseosas. Las nebulosas gaseosas son regiones HII en las que un cúmulo de estrellas está ionizando una región de HI.

R E G I O N E S H II. Nebulosas gaseosas. Las nebulosas gaseosas son regiones HII en las que un cúmulo de estrellas está ionizando una región de HI. R E G I O N E S H II Jaime Zamorano -- Universidad Complutense de Madrid -- Curso 2002-2003 1 Nebulosas gaseosas Las nebulosas gaseosas son regiones HII en las que un cúmulo de estrellas está ionizando

Más detalles

MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR

MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR En el MI se observan valores de parámetros físicos muy diferentes. Sin embargo sólo existen algunas fases o regímenes distintos. Jaime Zamorano -- Universidad

Más detalles

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS. Q. Yokari Godínez Loyola Q. Kristopher M. Hess Frieling Q. Rafael Adrián Delgadillo Ruiz

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS. Q. Yokari Godínez Loyola Q. Kristopher M. Hess Frieling Q. Rafael Adrián Delgadillo Ruiz ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS Q. Yokari Godínez Loyola Q. Kristopher M. Hess Frieling Q. Rafael Adrián Delgadillo Ruiz 1 CONTENIDO I. II. III. IV. V. VI. Introducción Anarmonicidad

Más detalles

Física Cuántica. Moléculas II. Movimiento ionico.

Física Cuántica. Moléculas II. Movimiento ionico. Física Cuántica Moléculas II. Movimiento ionico. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2002-2003 p.1/15 El movimiento de los nucleos Born-Oppenheimer: debemos estudiar

Más detalles

MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR

MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR MORFOLOGÍA A GRAN ESCALA DEL MEDIO INTERESTELAR En el MI se observan valores de parámetros físicos muy diferentes. Sin embargo sólo existen algunas fases o regímenes distintos. Jaime Zamorano -- Universidad

Más detalles

MORFOLOGÍA A GRAN ESCALA DEL MI

MORFOLOGÍA A GRAN ESCALA DEL MI MORFOLOGÍA A GRAN ESCALA DEL MI ~ Gas atómico caliente ~ Nubes atómicas frías En el MI se observan valores de parámetros físicos muy diferentes. Sin embargo sólo existen algunas fases o regímenes distintos.

Más detalles

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS

EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS EQUILIBRIO CINÉTICO Y PROCESOS RADIATIVOS El MI está fuera del equilibrio termodinámico (TE). La densidad de energía media de la radiación estelar corresponde a un TE de T=3K. La energía media de estos

Más detalles

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS PRESENTADO POR: ADRIANA LISSETH LUQUE DIAZ JORGE ENRIQUE JURADO TASCO MARCO ANTONIO HUERTA ORTIZ PABLO LABRA VÁZQUEZ MAESTRÍA EN CIENCIAS QUÍMICAS

Más detalles

Examen de problemas (SOLUCIONADO)

Examen de problemas (SOLUCIONADO) 1. [3.0 puntos] Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre Curso: 2004-05 Examen de problemas SOLUCIONADO a Determinar las frecuencias rotacionales en Hz de la molécula

Más detalles

ESPECTROSCOPÍA VIBRACIONAL

ESPECTROSCOPÍA VIBRACIONAL ESPECTROSCOPÍA VIBRACIONAL Infrarrojo: La E entre estados vibracionales corresponde a la energía de la radiación infrarroja Espectros IR y la simetría molecular Cómo vibran las moléculas? Modelo: Modos

Más detalles

MEDIO INTERESTELAR DE LA GALAXIA. GAS ATÓMICO: HI 21 cm ESTRUCTURA DE LA GALAXIA

MEDIO INTERESTELAR DE LA GALAXIA. GAS ATÓMICO: HI 21 cm ESTRUCTURA DE LA GALAXIA MEDIO INTERESTELAR DE LA GALAXIA GAS ATÓMICO: HI 21 cm ESTRUCTURA DE LA GALAXIA Jaime Zamorano -- Universidad Complutense de Madrid -- Curso 2002-2003 1 GAS ATÓMICO: HI 21 cm Gas atómico en nuestra galaxia:

Más detalles

ESPECTROS MOLECULARES.

ESPECTROS MOLECULARES. ESPECTROS MOLECULARES. La Espectroscopía molecular es más complicada que la atómica, por una razón principal: las moléculas tienen estructuras más complejas y los estados energéticos son más numerosos

Más detalles

Anarmonicidad y resonancias en vibraciones de moléculas

Anarmonicidad y resonancias en vibraciones de moléculas Anarmonicidad y resonancias en vibraciones de moléculas PRINCIPIOS DE ESTRUCTURA DE LA MATERIA DR. LUIS ALBERTO VICENTE HINESTROZA WILLIAM GARCÍA SANTOS ARMANDO MARTÍNEZ DE LA PEÑA ELIA MÉNDEZ VARGAS Ciencia

Más detalles

Espectroscopía vibracional y rotacional

Espectroscopía vibracional y rotacional Espectroscopía vibracional y rotacional Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 19 de marzo de 2015 Índice 1. Interacción de la radiación con la materia

Más detalles

Medio interestelar en galaxias (ISM)

Medio interestelar en galaxias (ISM) Medio interestelar en galaxias (ISM) Ejemplo: galaxia del Sombrero, polvo y gas. El ISM es: La materia entre estrellas La atmósfera de una galaxia El ISM contiene información sobre temperatura, presión,

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

λ α ESPECTROS DE RADIOFUENTES ESPECTROS DE RADIOFUENTES EMISIÓN DE CONTINUO CONTRAPARTIDAS Rohlfs capítulo 8 Kraus 8.28 y siguientes Índice espectral:

λ α ESPECTROS DE RADIOFUENTES ESPECTROS DE RADIOFUENTES EMISIÓN DE CONTINUO CONTRAPARTIDAS Rohlfs capítulo 8 Kraus 8.28 y siguientes Índice espectral: EPECTRO DE RADIOFUENTE EPECTRO DE RADIOFUENTE Índice espectral: α λ α α α λ α α Jaime Zamorano -- Universidad Complutense de Madrid -- Curso 2001-2002 1 2 CONTRAPARTIDA HDF- Radio vs optical EMIIÓN DE

Más detalles

Movimiento vibracional

Movimiento vibracional ESPECTROSCOPÍA Movimiento vibracional El oscilador armónico como modelo de la vibración molecular Los sistemas que vibran a nivel molecular incluyen las vibraciones internas de una molécula y las vibraciones

Más detalles

Solución de la ecuación de Schrödinger para el oscilador armónico

Solución de la ecuación de Schrödinger para el oscilador armónico Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión

Más detalles

Problemas de Química Física II. 3º de Químicas. RAMAN y POLIATOMICAS

Problemas de Química Física II. 3º de Químicas. RAMAN y POLIATOMICAS Problemas de Química Física II. 3º de Químicas RAMAN y POLIATOMICAS 1. Las primeras frecuencias del espectro Raman del N 2 son 19.908, 27.857, 35.812, 43.762, 51.721 y 59.622 cm -1. Sabiendo que estas

Más detalles

MEDIO INTERESTELAR DE LA GALAXIA. GAS ATÓMICO: HI 21 cm. GAS ATÓMICO: HI 21 cm ESTRUCTURA DE LA GALAXIA. GAS ATÓMICO: HI 21 cm

MEDIO INTERESTELAR DE LA GALAXIA. GAS ATÓMICO: HI 21 cm. GAS ATÓMICO: HI 21 cm ESTRUCTURA DE LA GALAXIA. GAS ATÓMICO: HI 21 cm MEDIO INTERESTELAR DE LA GALAXIA GAS ATÓMICO: HI 21 cm Gas atómico en nuestra galaxia: M total (HI) ~ 4.8 10 9 M solares (4.4% M vis ) No en nubes como el H 2 sino en filamentos, burbujas, cascarones.

Más detalles

ÍNDICE

ÍNDICE ÍNDICE 1 Radiación térmica y el postulado de Planck... 17 1-1 Introducción... 19 1-2 Radiación térmica... 19 1-3 Teoría clásica de la cavidad radiante... 24 1-4 Teoría de Planck de la cavidad radiante...

Más detalles

Espectroscopía de vibración rotación de moléculas diatómicas

Espectroscopía de vibración rotación de moléculas diatómicas C A P Í T U L O 7 Espectroscopía de vibración rotación de moléculas diatómicas 7.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 7.1 Deduzca la ecuación de Schrödinger nuclear de una molécula poliatómica

Más detalles

Anarmonicidad y Resonancia en Vibraciones de Moléculas Estructura de la materia. Profesor: Luis Alberto Vicente Hinestroza

Anarmonicidad y Resonancia en Vibraciones de Moléculas Estructura de la materia. Profesor: Luis Alberto Vicente Hinestroza Anarmonicidad y Resonancia en Vibraciones de Moléculas Estructura de la materia. Profesor: Luis Alberto Vicente Hinestroza Laura Morales Toledo Víctor Augusto Moreno Martínez Jaime Arturo Pérez Reséndiz

Más detalles

Aplicaciones de la Química Cuántica. Examen de problemas. 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso:

Aplicaciones de la Química Cuántica. Examen de problemas. 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso: Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre (12 Sep 2006) Curso: 2005-06 Examen de problemas 1. [3.0 puntos]el espectro de rotación del 1 H 35 Cl en fase gas muestra bandas

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción

Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción 1 Tema 7. Espectroscopia para el estudio de la materia 1801: Thomas Young. Naturaleza dual de la radiación y la materia. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojos

Más detalles

N i,m e ( χ i,m. kt ) (4.1)

N i,m e ( χ i,m. kt ) (4.1) 4.3. Excitación térmica. Formula de Boltzmann # Intensidad de una línea depende de ( al menos en sentido cualitativo): Número de átomos del elemento en el estado de ionización correspondiente Número de

Más detalles

Clase VII Termodinámica de energía solar fototérmica

Clase VII Termodinámica de energía solar fototérmica Clase VII Termodinámica de energía solar fototérmica Alejandro Medina Septiembre 2015 http://campus.usal.es/gtfe Espectro electromagnético y radiación térmica La radiación térmica es energía electromagnética

Más detalles

El cuerpo negro. Figura 3.1: Cuerpo negro

El cuerpo negro. Figura 3.1: Cuerpo negro Capítulo 3 El cuerpo negro. Cuerpo negro: Distribución de fotones dentro de un recinto cuyas paredes se mantienen en equilibrio termodinámico (T = cte.): radiación del cuerpo negro (BB). Figura 3.1: Cuerpo

Más detalles

ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA. Es el laboratorio de la química cuántica

ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA. Es el laboratorio de la química cuántica ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA Es el laboratorio de la química cuántica RADIACIÓN ELECTROMAGNÉTICA E = h n c = nl La energía aumenta Cómo interactúa con la materia la radiación según su energía

Más detalles

Espectros electrónicos de moléculas diatómicas

Espectros electrónicos de moléculas diatómicas C A P Í T U L O 12 Espectros electrónicos de moléculas diatómicas [Contestar, razonando las respuestas brevemente (4-5 líneas).] 12.1. ESTADOS ELECTRÓNICOS DE MOLÉCULAS DIATÓMICAS 12.1-1 Por qué la energía

Más detalles

Vibración y rotación de moléculas diatómicas

Vibración y rotación de moléculas diatómicas C A P Í T U L O 7 Vibración y rotación de moléculas diatómicas [Contestar, razonando las respuestas brevemente (4-5 líneas).] 7.1. SEPARACIÓN DE BORN-OPPENHEIMER 7.1-1 Cual es la base física de la denominada

Más detalles

Medio Interestelar. E = Ef - Ei = E(nf) - E(ni) = h ν. E = - k 2 Z 2 e 4 me/(2ħ 2 ) [1/ni 2-1/nf 2 ] y ν = E/h o λ = c/( E/h)

Medio Interestelar. E = Ef - Ei = E(nf) - E(ni) = h ν. E = - k 2 Z 2 e 4 me/(2ħ 2 ) [1/ni 2-1/nf 2 ] y ν = E/h o λ = c/( E/h) El modelo de Bohr: líneas de emisión del hidrógeno E = Ef - Ei = E(nf) - E(ni) = h ν E = - k 2 Z 2 e 4 me/(2ħ 2 ) [1/ni 2-1/nf 2 ] y ν = E/h o λ = c/( E/h) Si nf = y ni = 1 E = k 2 Z 2 e 4 me/(2ħ 2 ) =

Más detalles

BJ(J + 1) = (2J + 1) exp. máximo d(n J/N 0 ) + (2J + 1) exp. 2 (2J + 1) 2 B kt = 0 (2J + 1)2 = 2kT B J =

BJ(J + 1) = (2J + 1) exp. máximo d(n J/N 0 ) + (2J + 1) exp. 2 (2J + 1) 2 B kt = 0 (2J + 1)2 = 2kT B J = Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Febrero Curso: 004-05 Examen de problemas SOLUCIONADO) Versión: 8 de septiembre de 005) 1. [3.0 puntos] a) Deduce la expresión que permite

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Radiación térmica y el postulado de Planck

Radiación térmica y el postulado de Planck Contenido Radiación térmica y el postulado de Planck 17 1-1 1-2 1-3 1.4 1.5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de Planck de 1a cavidad radiante

Más detalles

Rotación de moléculas diatómicas

Rotación de moléculas diatómicas Rotación de moléculas diatómicas Química Física Aplicada, UAM 23 de enero de 2011 (Química Física Aplicada, UAM) Rotación de moléculas diatómicas 23 de enero de 2011 1 / 29 Movimiento nuclear en moléculas

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Tema 7.- Principios de fotoquímica

Tema 7.- Principios de fotoquímica Tema 7.- Principios de fotoquímica Introducción La rama de la química que estudia las transformaciones de las moléculas producidas por la absorción de energía electromagnética Muchas especies en la atmósfera

Más detalles

Espectroscopía electrónica molecular

Espectroscopía electrónica molecular Espectroscopía electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 2017/2018 Índice 1. Símbolos de los términos moleculares 2 2. Estructura fina vibracional

Más detalles

Espectroscopía electrónica de moléculas diatómicas

Espectroscopía electrónica de moléculas diatómicas C A P Í T U L O 12 Espectroscopía electrónica de moléculas diatómicas 12.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 12.1 Demuestre que el operador reflexión ˆσ v no conmuta con el operador momento

Más detalles

Práctica 4. Espectroscopia IR y Análisis elemental

Práctica 4. Espectroscopia IR y Análisis elemental Laboratorio de Química de Coordinación Práctica 4. Espectroscopia IR y Análisis elemental Parte II: Las técnicas Tarea previa 1. Leer los fundamentos teóricos de la práctica 2. La molécula de agua (H2O)

Más detalles

EXAMEN (fecha: 12/05/2004)

EXAMEN (fecha: 12/05/2004) ESPECTROSCOPÍA EXAMEN (fecha: /05/004) Enunciados, resolución y soluciones: () La serie del espectro del catión He +, que corresponde al conjunto de transiciones en las que el electrón salta desde un nivel

Más detalles

Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA

Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA 1. Objetivo Familiarizarse con los fundamentos de la identificación de moléculas a partir de su espectro de absorción infrarrojo.

Más detalles

INDICE DE DEFICIENCIA DE HIDRÓGENO TEORIA BÁSICA DE ESPECTROSCOPÍA INFRAROJA

INDICE DE DEFICIENCIA DE HIDRÓGENO TEORIA BÁSICA DE ESPECTROSCOPÍA INFRAROJA INDIE DE DEFIIENIA DE HIDRÓGENO Y TEORIA BÁSIA DE ESPETROSOPÍA INFRAROJA QUE SE PUEDE SABER DE UNA FÓRMULA MÍNIMA DE UN OMPUESTO? SE PUEDE DETERMINAR EL NUMERO DE ANILLOS Y DOBLES ENLAES. Hidrucarburos

Más detalles

Métodos Espectrofotométricos. Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.)

Métodos Espectrofotométricos. Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.) Métodos Espectrofotométricos Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.) 1 Radiación electromagnética Longitud de onda : Frecuencia en s -1 Hertz Numero

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

radiación electromagnética

radiación electromagnética radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de

Más detalles

1 EL OSCILADOR ARMONICO

1 EL OSCILADOR ARMONICO 1 EL OSCILADOR ARMONICO 1.1 Autofunciones y Autovalores El potencial del oscilador armónico en una dimensión corresponde a la siguiente expresión matemática: V = 1 kx (1) donde k es la constante de la

Más detalles

Espectroscopía de Absorción Molecular

Espectroscopía de Absorción Molecular Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante

Más detalles

Rotación y vibración de moléculas poliatómicas

Rotación y vibración de moléculas poliatómicas Rotación y vibración de moléculas poliatómicas Química Física Aplicada, UAM (Química Física Aplicada, UAM) Rotación y vibración de moléculas poliatómicas 1 / 1 Movimiento de rotación en moléculas poliatómicas

Más detalles

SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE

SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE SELECCION DE PREGUNTAS REPRESENTATIVAS SOBRE TEMAS DEL MODULO DE ESTRUCTURA Y PROPIEDADES MOLECULARES Temas de Mecánica Cuántica y Estructura atómica 1) Cuál es el operador asociado al observable energía,

Más detalles

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio Tema 5: Técnicas espectroscópicas: Espectrofotometría 0 22 Hz Frecuencia 0 4 Hz 0 3 Hz γ X UV IR micro radio Rayos γ (gamma) λ < pm Rayos X pm-0nm Visible 400-800nm Ultravioleta 0-400 nm Longitud de onda

Más detalles

Examen de problemas (SOLUCIONADO)

Examen de problemas (SOLUCIONADO) Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Febrero 3 Feb 2006) Curso: 2005-06 Versión: 17 de febrero de 2006) Examen de problemas SOLUCIONADO) 1. [2.5 puntos]en el espectro Raman

Más detalles

ESPECTROSCOPíA INFRARROJA

ESPECTROSCOPíA INFRARROJA ESPECTROSCOPíA INFRARROJA Química Orgánica 1 Facultad de Farmacia y Bioquímica UBA 2016 Autor: Dra. Isabel Perillo 1 Espectro electromagnético Unidades de l usadas: para UV-visible: nm (mm): 10-9 m para

Más detalles

ESPECTROSCOPÍA MOLECULAR

ESPECTROSCOPÍA MOLECULAR ESPECTROSCOPÍA MOLECULAR INTERACCIÓN RADIACIÓN-MATERIA Es el laboratorio de la química cuántica RADIACIÓN ELECTROMAGNÉTICA E = h n c = nl La energía aumenta Nota: ṽ = 1/l E = hcṽ ṽ es proporcional a la

Más detalles

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 5.- DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades Ópticas de los Materiales Absorción y emisión de luz. Color de los materiales. Interacción de luz con los materiales. Efectos ópticos no

Más detalles

La Mecánica Cuántica. La Espectroscopia Infrarroja

La Mecánica Cuántica. La Espectroscopia Infrarroja La Mecánica Cuántica. La Espectroscopia Infrarroja 1. La Espectroscopia Infrarroja La luz que ven nuestros ojos no es más que una parte del espectro electromagnético. La luz se puede considerar como un

Más detalles

Tema 6. Espectroscopia para el estudio de la materia

Tema 6. Espectroscopia para el estudio de la materia Tema 6. Espectroscopia para el estudio de la materia 1. Introducción. Naturaleza dual de la radiación y la materia 2. Interacción Radiación-materia. Ley de Lambert-Beer 3. Espectroscopía InfraRojo 4. Espectroscopía

Más detalles

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014 Interacción de la radiación electromagnética con la materia L.C.Damonte 014 Interacción de la radiación electromagnética con la materia o Los fotones se clasifican de acuerdo a su origen: Rayos (0.1MeV-5MeV)

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Bolilla 3: Espectroscopía de microondas, infrarrojo y Raman.

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Bolilla 3: Espectroscopía de microondas, infrarrojo y Raman. Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Bolilla 3: Espectroscopía de microondas, infrarrojo y Raman. 3. Transiciones rotacionales: espectros-copía de microondas. Determinaremos:

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

Diapositivas del curso de Seminario Interdisciplinario I (Maestría): Plasmas binarios de alcohol etílico con gases inertes.

Diapositivas del curso de Seminario Interdisciplinario I (Maestría): Plasmas binarios de alcohol etílico con gases inertes. UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Seminario Interdisciplinario I (Maestría) Diapositivas del curso de Seminario Interdisciplinario I (Maestría):

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 06/03/18 FUNDAMENTOS DE LA MECÁNICA

Más detalles

Programa Química Cuántica (09534) Facultad de Ciencias Químicas. M. Dolores Troitiño Lorna Bailey

Programa Química Cuántica (09534) Facultad de Ciencias Químicas. M. Dolores Troitiño Lorna Bailey Programa 2004-2005 Química Cuántica (09534) M. Dolores Troitiño Lorna Bailey Facultad de Ciencias Químicas Química Cuántica (09534) Tema 1. Tema 2. Tema 3. Tema 4. Tema 5. Tema 6. Tema 7. Tema 8. Tema

Más detalles

Introducción a la Optoelectrónica

Introducción a la Optoelectrónica 86.47 66.57 Introducción a la Optoelectrónica Responsables de la materia: Profesor: Dr. Ing. Martín G. González Clase N 1 Planificación Qué conocimientos se recomiendan para este curso? Electromagnetismo

Más detalles

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 3. Mecanismos de emisión de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 3. Mecanismos de emisión de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles