CAMPO ELÉCTRICO ÍNDICE

Documentos relacionados
Temario 4.Campo Eléctrico

Bárbara Cánovas Conesa

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

FÍSICA 2ºBach CURSO 2014/2015

CAMPO ELÉCTRICO CARGAS PUNTUALES

FISICA 2º BACHILLERATO CAMPO ELECTRICO

CAMPO ELÉCTRICO MODELO 2016

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1

CAPÍTULO III Electrostática

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática

Tema: Electrostática 02/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Campo eléctrico Cuestiones

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Interacción electromagnética I. Campo eléctrico

Módulo 1: Electrostática Campo eléctrico

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

TEMA 2. CAMPO ELECTROSTÁTICO

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Física 2º Bach. Campo eléctrico 19/02/10

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

Tema 3 : Campo Eléctrico

Electrostática II. QUÍMICA. Prof. Jorge Rojo Carrascosa

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo.

Campo Eléctrico en el vacío

j, E c = 5, J, E P = J)

Interacciones Eléctricas La Ley de Coulomb

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

INTENSIDAD DE CAMPO ELECTRICO (E)

2 o Bachillerato. Interacción Electromagnética I Campo Eléctrico. Prof. Jorge Rojo Carrascosa

Módulo 1: Electrostática Potencial eléctrico

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO

4. El Campo Eléctrico

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

Boletín Temas 1 y 2 P 1

El Campo Eléctrico. Distribuciones discretas de carga

Tema 1.-Fuerzas eléctricas

Fuerzas entre cargas. Ley de Coulomb. Campo eléctrico.1º bachillerato

2 Energía electrostática y Capacidad

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Unidad I: Electrostática.

Fuerzas eléctricas y campo eléctrico

Electricidad. Error! Marcador no definido.

Física 2º Bach. Campo eléctrico 11/02/09

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

DIELÉCTRICOS Y CONDENSADORES

FIS1533/FIZ I1

III A - CAMPO ELÉCTRICO

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

Unidad I: Electrostática.

Instituto de Física Universidad de Guanajuato Agosto 2007

CAMPO ELÉCTRICO 1.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA.

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

CAMPO ELÉCTRICO Nm 2

Última modificación: 1 de agosto de

Física 2º Bacharelato

CÓMO DETECTAR UN CAMPO ELÉCTRICO?

Campo y potencial eléctrico de una carga puntual

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

29.1. El flujo de un campo vectorial. Capítulo 29

CONCEPTO La electrostática es parte de la física que es estudia el comportamiento de las cargas eléctricas en reposo.

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

2º Bachillerato Física Tema 2. Campo eléctrico CAMPO ELÉCTRICO

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Principios de Termodinámica y Electromagnetismo

Campo eléctrico. Electricidad elektron ámbar. posteriormente. La esfera se mueve hacia La varilla. La esfera se mueve hacia La varilla

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

Capítulo 3: Campos Electromagnéticos Estáticos

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

TEMA 3: CAMPO ELÉCTRICO

29.1. El flujo de un campo vectorial. Capítulo 29

INTERACCIÓN ELÉCTRICA

q 1 q 3 r12 r13 q Energía potencial electrostática

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA

23/05/2018. Unidad Nº 8

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

CAMPO ELECTRICO. (TEMA 5) Fernando Escudero Ramos/I.E.S. Fernando de los Ríos

II. ELECTROSTÁTICA. Carga eléctrica:

Introducción. Flujo Eléctrico.

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

Temas a trabajar: Campo y potencial eléctrico

I. T. Telecomunicaciones Universidad de Alcalá

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

Transcripción:

CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial eléctrico 8. Superficies equipotenciales 9. Conductores en equilibrio electrostático BIBLIOGRAFÍA: Caps. 21, 22 y 23 del Tipler Mosca, vol. 2, 5ª ed. Caps. 23, 24 y 25 del Serway Jewett, vol. 2, 7ª ed.

1. INTRODUCCIÓN La materia está compuesta por átomos, los cuales a su vez están compuestos de electrones, protones y neutrones. La unidad de carga en el SI es el culombio (C), que se define como la cantidad de carga transportada en un segundo por una corriente de un amperio: 1 C = 1 A s La carga del electrón equivale a: Frotando ámbar con lana Fenómenos de electrización Ámbar Ámbar Repulsión e 1.6 10 19 C Al ser una cantidad relativamente grande, es usual utilizar submúltiplos del culombio: Frotando vidrio con seda Vidrio Repulsión Vidrio Miliculombio: 1 mc = 10 3 C Microculombio: 1 μc = 10 6 C Nanoculombio: 1 nc = 10 9 C Ámbar Atracción Vidrio

1. INTRODUCCIÓN Partícula Masa (kg) Carga (C) Electrón 9.1 10 31 1.6 10 19 Protón 1.67 10 27 1.6 10 19 Neutrón 1.67 10 27 0 Z: Número atómico (número de protones). Define a cada elemento de la tabla periódica. A: Número másico (número de protones + neutrones). Puede ser distinto para átomos del mismo elemento químico (isótopos). Un átomo tiene el mismo número de protones que de electrones (es neutro): Q = Z q p Z q e = 0. Un átomo con exceso o defecto de electrones se dice que es un ión (negativo o positivo respectivamente). ~10 14 m ~10 10 m Protón Neutrón Electrón

1. INTRODUCCIÓN Conservación de la carga eléctrica La carga eléctrica no se crea ni se destruye, pero puede transferirse de unos cuerpos a otros, de forma que sus cargas totales o netas sí que pueden cambiar. Que un cuerpo tenga carga neta nula no quiere decir que no tenga carga eléctrica: Tiene tantas cargas positivas como negativas que se cancelan unas con otras. Cuando un sistema es aislado, no puede haber intercambio de carga con el exterior y por consiguiente su carga total no cambia.

2. LEY DE COULOMB Establece la fuerza que una carga eléctrica ejerce sobre otra. Z r 1 q 1 u 12 r 12 = r 2 - r 1 Fuerza que q 1 ejerce sobre q 2 F 12 = 1 4πε 0 q 1 q 2 r 12 2 u 12 r 2 Y q 2 u 12 = r 12 r 12 Ley de acción-reacción X F 12 = F 21 ε 0 : Permitividad dieléctrica del vacío: ε 0 = 8.85 10 12 C 2 /Nm 2 u 12 : Vector unitario que indica la dirección de la fuerza. 1 = k 9 10 9 Nm2 4πε 0 C 2 F 12 = k q 1q 2 2 r u 12 12 Constante de Coulomb

Principio de superposición: 2. LEY DE COULOMB La fuerza total que experimenta una carga q, situada en una posición r (en el punto P), en presencia de N cargas q i situadas en posiciones r i es la suma vectorial de cada una de las fuerzas individuales F i dadas por la Ley de Coulomb: Z F F 2 F 3 P F 1 q F = N i=1 F i = q N 4πε 0 i=1 qi r ip 2 u ip X r 1 r r 1P r 2 r 2P Y r 3P r 3 q 1 q 2 q 3 Si el medio en el que se encuentran las cargas no es el vacío, la permitividad dieléctrica cambia, siendo su valor ε = κε 0, donde κ es la constante dieléctrica relativa del medio (también se suele designar por ε r ). Para cualquier medio material, el valor de κ es siempre mayor que 1 y por tanto, la fuerza entre dos cargas eléctricas siempre será mayor en el vacío que en un medio material.

2. LEY DE COULOMB Ejercicio Una carga eléctrica q 3 = +3 μc está situada en un punto A de coordenadas (3,2) m. Qué fuerza experimentará dicha carga debido a la presencia de otras dos cargas q 1 = +5 μc y q 2 = 2 μc situadas en los puntos (0,0) m y (-2,-3) m? 5 4 3 q 3 2 A 1 q 1 0-1 -2 q 2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5

3. CAMPO ELÉCTRICO El campo eléctrico es una propiedad que se da en una determinada región del espacio según la cual cualquier carga situada en dicha región experimentará una fuerza eléctrica. Este concepto surge como alternativa a la visión de interacción instantánea entre cargas vista hasta ahora a través de la Fuerza de Coulomb. Según el concepto de campo eléctrico (propuesto por primera vez por Faraday), una carga q da lugar a un cambio en las propiedades del espacio que la rodea, de forma que cualquier otra carga q situada en dicha región experimentará una fuerza eléctrica. Equivalentemente, la carga q genera una propiedad en el espacio que la rodea, y esta propiedad actúa sobre cualquier otra carga en dicho espacio, produciendo una fuerza sobre ella. A esta propiedad se la denomina campo eléctrico. Z q q 0 E F E = F q 0 F = q 0 E Y Intensidad de campo eléctrico E = N C X

Principio de superposición: 3. CAMPO ELÉCTRICO El campo eléctrico creado en una posición r por una distribución discreta de N cargas q i situadas en posiciones r i es la suma vectorial de los campos individuales E i creados por cada una de las cargas en esa posición: Z E E E 2 3 P E 1 E = N i=1 E i = 1 N 4πε 0 i=1 qi r ip 2 u ip X r 1 r r 1P r 2 r 2P Y r 3P r 3 q 1 q 2 q 3 Si en el punto r en el que se calcula el campo eléctrico se coloca una carga q, la fuerza que experimenta esta carga será: F r = qe r

3. CAMPO ELÉCTRICO Ejercicio Calcular el campo eléctrico producido en el punto A de coordenadas (3,2) m por dos cargas puntuales q 1 = +5 μc y q 2 = 2 μc situadas en los puntos (0,0) m y (-2,-3) m. Qué fuerza eléctrica experimentará una carga de + 3 μc situada en el punto A? 5 4 3 2 A 1 q 1 0-1 -2 q 2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5

4. LÍNEAS DE CAMPO ELÉCTRICO Las líneas de campo eléctrico o líneas de fuerza son la representación gráfica del campo eléctrico. Se caracterizan porque el vector E es siempre tangente a ellas y su sentido debe coincidir con el de E. Nos indican la dirección y sentido de la fuerza sobre las cargas inmersas en ese campo. Reglas para la representación gráfica de las líneas de campo eléctrico: 1. Las líneas de campo salen de las cargas positivas y entran en las cargas negativas. Equivalentemente, las cargas eléctricas positivas son fuentes del campo eléctrico y las cargas negativas son sumideros del campo eléctrico, por lo que las líneas de campo eléctrico sólo pueden empezar o terminar en las cargas eléctricas. 2. El número de líneas que entran o salen de las cargas eléctricas tiene que ser proporcional al valor de la carga. 3. La densidad de líneas tiene que ser proporcional a la magnitud del campo eléctrico. 4. Dos líneas de campo no pueden cortarse en un punto. 5. Las líneas deben dibujarse simétricamente saliendo de o entrando hacia las cargas eléctricas. 6. A grandes distancias de una distribución finita de cargas, la configuración de líneas de campo será la misma que la producida por una carga puntual de carga igual a la de la distribución.

4. LÍNEAS DE CAMPO ELÉCTRICO Carga positiva: Fuente Dipolo eléctrico + Carga negativa: Sumidero +

4. LÍNEAS DE CAMPO ELÉCTRICO Cuadrupolo eléctrico + +

5. DISTRIBUCIONES CONTINUAS DE CARGA ELÉCTRICA Las cargas pueden aparecer como distribuciones continuas, ya sean lineales, superficiales o volumétricas. En estos casos, dividiremos la distribución en pequeños diferenciales de carga, dq, de forma que la carga total de ésta puede ser calculada como la suma de todos los diferenciales de carga o integral: Q = dq Dependiendo de la forma de la distribución, se definen las siguientes distribuciones de carga: Lineal Superficial Volumétrica Q Q Q dq λ = dq dl dq σ = dq ds dq ρ = dq dv

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS El flujo de una magnitud vectorial (en nuestro caso de campo eléctrico) da una idea de la cantidad de ese campo, o el número de líneas de campo, que atraviesa una determinada superficie. Si la superficie encierra una carga, el número de líneas que atraviesa dicha superficie será proporcional a la carga. Φ = S Ed S = S E cos En ds Z n E n es un vector unitario perpendicular a la superficie. Si la superficie es cerrada, el flujo será positivo cuando la línea de campo salga y será negativo cuando entre. En general, el flujo neto para una superficie cerrada es: Y Φ = S Ed S = S E cos En ds X d S θ E d S θ E d S θ E

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS Cuál será el flujo de campo eléctrico a través de una superficie cerrada, de forma arbitraria, próxima a una carga que está fuera de ella? E El número de líneas de campo que entran en la superficie es el mismo que el número de líneas que salen!!! q Φ = S Ed S = 0 El flujo del campo eléctrico a través de una superficie cerrada que no contiene carga en su interior es siempre nulo.

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS Dipolo encerrado por una superficie S de forma arbitraria: La carga encerrada es cero. Cuadrupolo encerrado por una superficie S de forma arbitraria: La carga encerrada es cero. + + + En ambos casos el flujo del campo eléctrico es nulo, ya que a través de la superficie cerrada entran tantas líneas de campo eléctrico como salen.

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS Ejercicio Una carga puntual q está situada en el centro de una superficie esférica de radio R. Cuál es el flujo neto de campo eléctrico a través de la superficie de la esfera? E d S Φ = q ε 0 q R El resultado es independiente del radio de la esfera. No solo eso, además, es independiente de la forma de la superficie!

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS Ley de Gauss: El flujo del campo eléctrico a través de cualquier superficie cerrada es igual a la carga neta situada en el interior de dicha superficie dividida por la permitividad dieléctrica. Φ = S Ed S = Q int ε 0 Esta ley establece una relación general entre el flujo del campo eléctrico E a través de una superficie cerrada S y la carga encerrada Q int en dicha superficie. A la superficie S se le suele llamar superficie gaussiana.

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS La ley de Gauss permite calcular el campo eléctrico generado por cargas puntuales y por distribuciones de carga en problemas con gran simetría. Procedimiento para aplicar la ley de Gauss: Se debe elegir la superficie gaussiana S con la simetría adecuada de modo que los vectores campo eléctrico E y superficie d S, sean, en cualquier punto de la superficie, o bien paralelos o bien perpendiculares. Así, se tiene que: Φ = S Ed S = S E cos En ds = 0 si E es paralelo a d S E S si E es perpendicular a d S Por lo tanto, E S = Q int ε 0 S es el área de la superficie gaussiana.

6. FLUJO DEL CAMPO ELÉCTRICO. LEY DE GAUSS Ejercicio Calcular el campo eléctrico producido por una esfera de radio R y carga total Q, cuando la carga está distribuida uniformemente en todo el volumen de la esfera. Ejercicio Calcular el campo eléctrico producido por un casquete esférico de radio R y carga total Q (en este caso, la carga se distribuye uniformemente sobre la superficie de la esfera). Ejercicio Calcular el campo eléctrico producido por un plano infinito de densidad de carga σ.

7. POTENCIAL ELÉCTRICO El campo eléctrico es un campo conservativo: El trabajo necesario para desplazar una carga de un punto a a otro punto b sólo depende de las posiciones r A y r B : W A B = C 1 Fd r = C 2 Fd r = C 3 Fd r X Z q 0 C 1 C 2 A r A r B Y F = q 0 E C 3 d r B Esto permite definir la energía potencial para una carga en cada punto del espacio: W A B = U B U A = U Trabajo realizado por la fuerza conservativa (por el campo eléctrico en nuestro caso) para trasladar la carga q 0 del punto A al punto B. Las dimensiones físicas de la energía potencial son las mismas que las del trabajo. La unidad SI para ambas magnitudes es el Julio.

7. POTENCIAL ELÉCTRICO W A B = U B U A = U Así, el trabajo realizado por el campo para trasladar una carga de una posición A a otra posición B es igual al incremento de la energía potencial de la carga cambiado de signo. Criterio de signos: 1) Si la carga se mueve espontáneamente del punto A al punto B sin la acción de una fuerza externa, entonces el trabajo será positivo (trabajo realizado por el campo) y el incremento de energía potencial de la carga será negativo (la energía potencial de la carga disminuye). 2) Si la carga no se mueve espontáneamente del punto A al punto B, sino que se requiere la acción de una fuerza externa, entonces el trabajo será negativo (trabajo realizado sobre el campo) y el incremento de energía potencial de la carga será positivo (la energía potencial de la carga aumenta). + + + + + + + + + A q > 0 A q < 0 B B W A B > 0 Trabajo realizado por el campo W A B < 0 Trabajo realizado sobre el campo

7. POTENCIAL ELÉCTRICO La relación entre fuerza eléctrica y campo eléctrico es: F r = qe r W A B = A B F r d r = A B qe r d r = q A B E r d r = U W A B q = A B E r d r = U q = V V = U q = W A B q Se define el potencial eléctrico V como la energía potencial U por unidad de carga o el trabajo por unidad de carga. V = J C = V (voltio) E = V L = V m

7. POTENCIAL ELÉCTRICO El trabajo realizado por el campo para trasladar una carga q de un punto A a otro B es igual a la variación de la energía potencial de la carga entre A y B, cambiada de signo: W A B = U = U B U A = U A U B Que también se puede expresar de la siguiente manera: W A B = U = q V = q V B V A = q V A V B Ejercicio Una carga puntual, q = 5 nc, se mueve de un punto A en donde el potencial eléctrico vale 100 V, a otro punto B donde el potencial eléctrico vale 20 V. Cuál es el trabajo realizado sobre la carga por el campo eléctrico? Cuál es la variación de la energía potencial de la carga? Aumenta o disminuye?

7. POTENCIAL ELÉCTRICO Al dejar una carga en presencia de un campo eléctrico, ésta se acelerará en la dirección del campo eléctrico si es positiva, o en la dirección contraria si es negativa. Suponiendo una carga positiva, ésta se acelerará en la dirección y sentido que marque el campo eléctrico, aumentando su energía cinética y disminuyendo su energía potencial, al ser el campo eléctrico conservativo. Si disminuye la energía potencial de la carga será porque se mueve de zonas de mayor potencial eléctrico a otras en las que el potencial eléctrico es menor. Así, las líneas de campo eléctrico marcan la dirección en la que disminuye el potencial eléctrico. 4 Ejemplo 3 Las líneas discontinuas de la figura (circunferencias concéntricas) representan las superficies equipotenciales generadas por una carga puntual positiva situada en el centro. Las líneas de campo eléctrico son líneas rectas divergentes. 2 1 V 1 = 2400 V V 2 = 1200 V V 3 = 800 V V 4 = 600 V

7. POTENCIAL ELÉCTRICO Potencial eléctrico producido por una carga puntual: Z q 0 B Diferencia de potencial entre los puntos A y B: V = V B V A = A B Edr X q A Y E = 1 4πε 0 q r 2 B 1 q V = V B V A = A 4πε 0 r 2 dr = = q B dr 4πε 0 r 2 = q q 4πε 0 r B 4πε 0 r A A El potencial eléctrico, como cualquier función potencial, está definido salvo una constante. Se suele tomar como origen de potenciales el infinito, quedando entonces: V r = V B q 4πε 0 r = kq r V A

7. POTENCIAL ELÉCTRICO La energía potencial eléctrica de un sistema de cargas puntuales es el trabajo necesario para transportar cada carga desde el infinito hasta sus posiciones finales. Este trabajo realizado es independiente del orden en que se transportan las cargas. Así, la energía potencial de una carga aislada es nula, puesto que no cuesta ningún trabajo trasladar esa carga de un punto a otro si no hay presentes campos eléctricos. Energía potencial eléctrica de una carga q 2 situada a una distancia r 12 de otra carga q 1 : U = q 2 V 1 = q 2 q 1 4πε 0 r 12 = q 1q 2 4πε 0 r 12 Si añadimos una tercera carga q 3 al sistema, habrá que incluir dos términos más en la fórmula del cálculo de la energía potencial: U = q 2 V 1 + q 3 V 1 + q 3 V 2 = q 1q 2 4πε 0 r 12 + q 3q 1 4πε 0 r 13 + q 3q 2 4πε 0 r 23 Es sencillo demostrar que la energía electrostática de un sistema de n cargas puntuales es: n U = 1 2 i=1 q i V i

Principio de superposición: 7. POTENCIAL ELÉCTRICO El potencial eléctrico creado en una posición r por una distribución discreta de N cargas q i situadas en posiciones r i es la suma escalar de los potenciales individuales V i producidos por cada carga en esa posición: Z P r r 1P V r 2P Y r 3P r 3 q 3 V r = N i=1 V i r = 1 N 4πε 0 i=1 qi r ip X r 1 r 2 q 1 q 2

7. POTENCIAL ELÉCTRICO Ejercicio Calcular el potencial eléctrico producido en el punto A de coordenadas (3,2) m por dos cargas puntuales q 1 = +5 μc y q 2 = 2 μc situadas en los puntos (0,0) m y (-2,-3) m. Cuál será la energía potencial del sistema de cargas si se añade una tercera carga de +3 μc en el punto A? 5 4 3 2 A 1 q 1 0-1 -2 q 2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5

8. SUPERFICIES EQUIPOTENCIALES El trabajo necesario para desplazar infinitesimalmente, d r, una carga de prueba q 0 en presencia de un campo eléctrico E es: dw = Fd r dv = Ed r V = E r r perpendicular a E V = 0 V constante r paralelo a E Variación máxima de V Una superficie equipotencial es el lugar geométrico de todos los puntos que se encuentran al mismo potencial. Todos los puntos de una superficie equipotencial se encuentran en un plano perpendicular al campo eléctrico. El trabajo empleado en desplazar una carga entre dos puntos A y B de una superficie equipotencial es nulo ya que W B A = q V A V B y en una superficie equipotencial el potencial es constante en todos los puntos. En particular, V A = V B, y por tanto W B A = 0.

8. SUPERFICIES EQUIPOTENCIALES Las líneas contínuas negras representan el campo eléctrico. Las líneas discontínuas rojas representan las superficies equipotenciales. Campo constante (Condensador plano-paralelo) Carga puntual Dipolo eléctrico El potencial es constante en todos los puntos de una superficie equipotencial. Las líneas de campo eléctrico son siempre perpendiculares a las superficies equipotenciales. La dirección del vector campo eléctrico apunta en el sentido de los potenciales decrecientes.

8. SUPERFICIES EQUIPOTENCIALES Ejercicio Una carga puntual q = 1 9 10 5 C está situada en el origen de coordenadas. 1) Qué forman tienen las superficies equipotenciales generadas por la carga? 2) A qué distancia de la carga están situadas las superficies equipotenciales de 20000 V, 40000 V, 60000 V, 80000 V y 100000 V? Están equiespaciadas estas superficies? 3) Estimar la intensidad del campo eléctrico entre las superficies equipotenciales de 80000 V y 100000 V dividiendo la diferencia entre los potenciales entre la diferencia de sus radios. Comparar esta estimación con el valor exacto del campo eléctrico en el punto medio entre ambas superficies.

9. CONDUCTORES EN EQUILIBRIO ELECTROSTÁTICO En el interior de un conductor en equilibrio electrostático el campo eléctrico debe ser nulo. De no ser así, ese hipotético campo eléctrico desplazaría las cargas libres, generando corrientes en su interior. Al aplicar un campo externo sobre un conductor, las cargas libres se redistribuyen creando un campo eléctrico que anula el campo externo dentro del conductor. Utilizando la Ley de Gauss, se puede demostrar que la carga eléctrica neta de un conductor se encuentra ubicada en su superficie. E Superficie gaussiana Ley de Gauss: n Φ = S Ed S = Q int ε 0 S E S = σ S ε 0 E = σ ε 0 Campo eléctrico justamente fuera de un conductor