Tema 12: Arboles de decisión

Documentos relacionados
Tema 8: Árboles de decisión

Tema 7: Aprendizaje de árboles de decisión

Tema AA-4: Sesgo inductivo

Tema 7: Sesgo inductivo

Tema 4: Aprendizaje de conceptos

Aprendizaje Automático Segundo Cuatrimestre de Árboles de Decisión

Aprendizaje Automatizado. Árboles de Clasificación

Tema 13: Introducción a la Programación Lógica Inductiva

Aprendizaje Automatizado. Árboles de Clasificación

3. Árboles de decisión

D conjunto de N patrones etiquetados, cada uno de los cuales está caracterizado por n variables predictoras X 1,..., X n y la variable clase C.

Proyecto 6. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial.

~ ALGORITMO C4.5 ~ INGENIERÍA EN SISTEMAS COMPUTACIONALES INTELIGENCIA ARTIFICIAL ING. BRUNO LÓPEZ TAKEYAS

I. CARACTERISTICAS DEL ALGORITMO ID3

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 11 -

CI5438. Inteligencia Artificial II Clase 4: Aprendizaje en Árboles. Cap 18.3: RN

Aprendizaje Automatizado

Aprendizaje Automatizado

Árboles de decisión en aprendizaje automático y minería de datos

Aprendizaje Automatizado. Árboles de Clasificación

Aprendizaje Automático. Objetivos. Funciona? Notas

Aprendizaje Automático

ALGORITMO ID3. Objetivo

Tema 8: Árboles de Clasificación

MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 6: Árboles de decisión.

Inducción de Árboles de Decisión ID3, C4.5

Aprendizaje de Conceptos Introducción a los Árboles de Decisión

SISTEMAS INTELIGENTES

Aprendizaje de árboles de decisión. Aprendizaje de árboles de decisión

Inducción de Árboles de Decisión ID3, C4.5

Aprendizaje Automático: Arboles de Decisión.

Tema 3: Técnicas básicas de búsqueda para la resolución de problemas

Tema 2: Inteligencia computacional y conocimiento

Arboles de Decisión Representación de los árboles de decisión

2. Algoritmos genéticos y redes neuronales 3. Inducción de árboles clasificadores. Inducción de árboles de clasificación. Aprendizaje UPM UPM

Qué son los árboles de decisión? Inducción de árboles de decisión. Tipos de problemas abordables. Ejemplo: árbol de decisión 1

Inducción de árboles de decisión. Qué son los árboles de decisión? Tipos de problemas abordables. Ejemplo de árbol de decisión 2

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Aprendizaje de conceptos. El aprendizaje como generalización

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS.

Jesús García Herrero TÉCNICAS DE INDUCCIÓN-II

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

CRITERIOS DE SELECCIÓN DE MODELOS

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur

Tema 4: Introducción al Aprendizaje Automático

Aux 6. Introducción a la Minería de Datos

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR

Apellidos:... Nombre:...

ARBOLES DE DECISION. Miguel Cárdenas-Montes. 1 Introducción. Objetivos: Entender como funcionan los algoritmos basados en árboles de decisión.

Métodos de Inteligencia Artificial

Aprendizaje inductivo

USO DEL SOFTWARE CURRICULAR COMO TÉCNICA DE APRENDIZAJE SUPERVISADO POR COMPUTADORAS

Primera aproximación al aprendizaje automático.

Arboles de Decisión (II) Carlos Hurtado L. Depto de Ciencias de la Computación, Universidad de Chile

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Examen Parcial. Attr1: A, B Attr2: A, B, C Attr3 1, 2, 3 Attr4; a, b Attr5: 1, 2, 3, 4

Búsqueda en espacio de estados

Tema 3: Demostraciones proposicionales

TRABAJO PRÁCTICO III: Minería de datos. PARTE 01: Arboles de decisión (J48)

PROYECTO DOCENTE ASIGNATURA: "Inteligencia Artificial I"

Jesús García Herrero TÉCNICAS DE REGRESIÓN NO LINEAL

Conjuntos de Clasificadores (Ensemble Learning)

Árboles de Decisión Árboles de Sintaxis

Tema 4: Redes semánticas y marcos

Arboles de Decisión (II) Carlos Hurtado L. Depto de Ciencias de la Computación, Universidad de Chile

Métodos de Remuestreo en Aprendizaje Automático

Árboles de Decisión. Tomás Arredondo Vidal 26/3/08

Métodos para Determinar el Atributo Distinguido en Multiredes Bayesianas

TRABAJO FIN DE ASIGNATURA

Estadística con R. Clasificadores

Técnicas de clasificación. Prof. Dra. Silvia Schiaffino ISISTAN - CONICET. Inteligencia Artificial

Palabras clave: In memory, Aprendizaje automático, árboles de decisión

Tema 4: Resolución de problemas de espacios de estados

Aprendizaje Automático

Tema 1: Agentes inteligentes: Representación y razonamiento

Un árbol binario T se define como un conjunto finito de elementos, llamados nodos, de forma que:

Apellidos:... Nombre:...

Minería de Datos. Arturo Olvera López

Tema 8: Teorema de Herbrand. Tableros en lógica de primer orden

Inducción de Reglas Proposicionales

Tema: Métodos de Ordenamiento. Parte 3.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Análisis multivariante

Carteras minoristas. árbol de decisión. Ejemplo: Construcción de un scoring de concesión basado en un DIRECCIÓN GENERAL DE SUPERVISIÓN

Tema 8: Teorema de Herbrand. Tableros en lógica de primer orden

Inteligencia Artificial Técnicas de clasificación

Práctica 9. Árboles de decisión

Tema 7: Introducción al aprendizaje automático

Aprendizaje de Conceptos

Fundamentos de Inteligencia Artificial

Búsqueda en espacio de estados

Tema 6: Razonamiento con información incompleta

Tema 3: Sistema inicial de representación y razonamiento

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Clasificación Supervisada

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur

ÁRBOLES DE CLASIFICACIÓN Y REGRESIÓN

Transcripción:

Razonamiento Automático Curso 2000 2001 Tema 12: Arboles de decisión José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla RA 2000 01 CcIa Arboles de decisión 12.1

Qué es el Aprendizaje mediante árboles de decisión? El aprendizaje mediante árboles de decisión es un método de aproximación de una función objetivo de valores discretos en el cual la función objetivo es representada mediante un árbol de decisión. Los árboles aprendidos también pueden representarse como un conjunto de reglas Si entonces RA 2000 01 CcIa Arboles de decisión 12.2

Un ejemplo Cielo Temperatura Humedad Viento Agua Forecast Hacer Deporte Soleado Templada Alta Débil Fría Sigue igual No Soleado Templada Normal Débil Fría Sigue igual Sí Nublado Templada Normal Débil Fría Sigue igual Sí Lluvioso Templada Normal Fuerte Templada Cambio No Lluvioso Templada Normal Débil Fría Cambio Sí Cuándo hacemos deporte? Podemos definir el concepto Hacer Deporte? RA 2000 01 CcIa Arboles de decisión 12.3

Un ejemplo de árbol de decisión Cielo Soleado Nublado Lluvioso Humedad Si Viento Alta Normal Fuerte Debil No Si No Si RA 2000 01 CcIa Arboles de decisión 12.4

El problema de la representación El árbol anterior corresponde a la hipótesis: Representación: (Cielo = Soleado Humedad = Normal) (Cielo = Nublado) (Cielo = Lluvioso V iento = Debil) Cada nodo que no sea una hoja representa un atributo. Las aristas que partan del nodo etiquetado con el atributo A están etiquetadas con cada uno de los posibles valores del atributo A. Cada hoja corresponde a un valor de la clasificación RA 2000 01 CcIa Arboles de decisión 12.5

Cuestiones sobre árboles de decisión 1 Cuándo usar árboles de decisión? Podemos describir los ejemplos en términos de pares atributo valor La función objetivo toma valores discretos Posibilidad de ruido en el conjunto de entrenamiento 1 Pueden no conocerse los valores de algunos atributos en los ejemplos del conjunto de entrenamiento Ejemplos: Diagnóstico médico Análisis de riesgo en la concesión de créditos Elaboración de horarios RA 2000 01 CcIa Arboles de decisión 12.6

Cuestiones sobre árboles de decisión 1 Cuál es el árbol de decisión correcto? Navaja de Occam El mundo es inherentemente simple El árbol de decisión más pequeño consistente con la muestra es el que tiene más probabilidades de identificar objetos desconocidos de manera correcta Menor profundidad Menor número de nodos 1 Cómo se puede construir el árbol de decisión más pequeño? Búsqueda en escalada RA 2000 01 CcIa Arboles de decisión 12.7

Algoritmo básico (I) Árbol inicial: Árbol con un único nodo, sin etiquetar, al que asignamos como conjunto de ejemplos todo el conjunto de entrenamiento. Bucle principal: Consideramos el primer nodo, N, sin etiquetar Si los ejemplos asignados N tienen todos la misma clasificación, etiquetamos N con esa clasificación. En otro caso... RA 2000 01 CcIa Arboles de decisión 12.8

Algoritmo básico (II) Etiquetamos N con el mejor atributo A según el conjunto de ejemplos asignado. Para cada valor de A creamos una nueva arista descendente en el nodo N, y al final de cada una de esas nuevas aristas creamos un nuevo nodo sin etiquetar, N 1,..., N k. Separamos los ejemplos asignados al nodo N según el valor que tomen para el atributo A y creamos nuevos conjuntos de ejemplos para N 1,..., N k. Hasta que todos los nodos estés etiquetados Qué atributo clasifica mejor? RA 2000 01 CcIa Arboles de decisión 12.9

Entropía (Definición) Definición: Sea P = {p1, p2,..., pn} una distribución de probabilidad. Llamamos entropía b-aria de la distribución P a Hb(p1, p2,..., pn) = i=n i=1 pi log b pi La función de entropía H2(p, 1 p) = p log2 1 p + (1 p) log 2 1 1 p es muy común y nos referimos a ella como la función de entropía y se denota por H(p). Su gráfica es 1.0 0.5 Entropy(S) 0.0 0.5 1.0 p + RA 2000 01 CcIa Arboles de decisión 12.10

Entropía D es un conjunto de entrenamiento P y N son, respectivamente, la cantidad de ejemplos positivos y negativos en D T es el número total de ejemplos de D La entropía de esta distribución es: { 0, si N P = 0; Fórmula: I(P, N) = H 2 (P/T, N/T ) = P T log 2 P T N T log 2 N, si N P 0. T Ejemplo: I(9, 9) = 9 18 log 2 9 18 9 18 log 2 9 18 = 1 (El término entropía fue usado por primera vez por Clausius en 1864 e introducido en la teoría de la información por Shannon en 1948) RA 2000 01 CcIa Arboles de decisión 12.11

Otro ejemplo Día Cielo Temperatura Humedad Viento Jugar tenis D1 Soleado Alta Alta Débil No D2 Soleado Alta Alta Fuerte No D3 Lluvioso Alta Alta Débil Sí D4 Lluvioso Media Alta Débil Sí D5 Lluvioso Fría Normal Débil Sí D6 Lluvioso Fría Normal Fuerte No D7 Lluvioso Fría Normal Fuerte Sí D8 Soleado Media Alta Débil No D9 Soleado Fría Normal Débil Sí D10 Lluvioso Media Normal Débil Sí D11 Soleado Media Normal Fuerte Sí D12 Lluvioso Media Alta Fuerte Sí D13 Lluvioso Alta Normal Débil Sí D14 Lluvioso Media Alta Fuerte No Entropia([9+,5-])= -(9/14)log2(9/14)-(5/14)log2(5/14)=0 940 RA 2000 01 CcIa Arboles de decisión 12.12

Ganancia de información Ganancia(D,A)= Estimación de la reducción de la entropía en el conjunto de entrenamiento D si tomamos el atributo A y clasificamos según sus valores Ganancia(S, A) Entropia(S) donde v V alores(a) Valores(A) es el conjunto de valores del atributo A S v S Entropia(S v) S v es el subconjunto de S formado por aquellas instancias que en el atributo A toman el valor v RA 2000 01 CcIa Arboles de decisión 12.13

Otro ejemplo Supongamos que S es un conjunto de entrenamiento con 14 ejemplos 9 ejemplos positivos y 5 negativos ([9+,5-]) Unos de los atributos, V iento, puede tomar los valores Débil y Fuerte La distribución de ejemplos positivos y negativos según los valores de V iento son Positivos Negativos Débil 6 2 Fuerte 3 3 RA 2000 01 CcIa Arboles de decisión 12.14

Otro ejemplo La Ganancia de información que obtenemos si clasificamos los 14 ejemplos según el atributo V iento es: Ganancia(S,A) = Entropia(S) v V alores(a) S v S Entropia(S v) = Entropia(S) 8 14 Entropia(S Debil) 6 14 Entropia(S F uerte) = 0 940 8 14 0 811 6 14 1 00 = 0.048 RA 2000 01 CcIa Arboles de decisión 12.15

Selección del mejor atributo (I) Which attribute is the best classifier? S: [9+,5-] S: [9+,5-] E =0.940 E =0.940 Humidity Wind High Normal Weak Strong [3+,4-] [6+,1-] [6+,2-] [3+,3-] E =0.985 E =0.592 E =0.811 E =1.00 Gain (S, Humidity ) Gain (S, Wind) =.940 - (7/14).985 - (7/14).592 =.151 =.940 - (8/14).811 - (6/14)1.0 =.048 Humedad proporciona mayor ganacia de información que Viento RA 2000 01 CcIa Arboles de decisión 12.16

Selección del mejor atributo (II) Consideremos el ejemplo anterior con 14 ejemplos Ganancia(S,Cielo) = 0 246 Ganancia(S,Humedad) = 0 151 Ganancia(S,Viento) = 0 048 Ganancia(S,Temperatura) = 0 029 El atributo con el que tenemos mayor Ganancia de información es Cielo Luego, seleccionamos Cielo como atributo de decisión para el nodo raíz Para cada uno de sus posibles valores (Soleado, Lluvioso, Lluvioso) creamos una rama Clasificamos los ejemplos según los valores de Cielo En las ramas en las que los ejemplos no estén perfectamente clasificados, iteramos el proceso RA 2000 01 CcIa Arboles de decisión 12.17

Selección del mejor atributo (III) Tras el primer paso, obtenemos un árbol de decisión parcial {D1, D2,..., D14} [9+,5 ] Outlook Sunny Overcast Rain {D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14} [2+,3 ] [4+,0 ] [3+,2 ]? Yes? Which attribute should be tested here? Ssunny = {D1,D2,D8,D9,D11} Gain (Ssunny, Humidity) =.970 (3/5) 0.0 (2/5) 0.0 =.970 Gain (S sunny, Temperature) =.970 (2/5) 0.0 (2/5) 1.0 (1/5) 0.0 =.570 Gain (S sunny, Wind) =.970 (2/5) 1.0 (3/5).918 =.019 RA 2000 01 CcIa Arboles de decisión 12.18

Espacio de hipótesis El aprendizaje mediante árboles de decisión es un método de aproximación de una función objetivo de valores discretos en el cual la función objetivo es representada mediante un árbol de decisión. Podemos pensar este proceso como un proceso de búsqueda de un árbol que clasifique correctamente nuestros ejemplos. Espacio de hipótesis: Todos los posibles árboles de decisión. Método: Escalada (hill-climbing), empezando por el árbol vacío. Función de evaluación que guía la búsqueda: Ganancia de información RA 2000 01 CcIa Arboles de decisión 12.19

Comentarios (I) El espacio de hipótesis es completo: Cualquier función finita que tome valores discretos puede ser representada como un árbol de decisión. En cada elección consideramos una única hipótesis, a diferencia del algoritmo de Eliminación de Candidatos, que considerábamos simultáneamente todas las hipótesis consistentes con los ejemplos. RA 2000 01 CcIa Arboles de decisión 12.20

Comentarios (II) No permite retroceso, por lo que podemos obtener óptimos locales en lugar de óptimos globales Considera en cada paso gran cantidad de ejemplos, en contraste con otros métodos, por ejemplo Eliminación de candidatos que consideran los ejemplos uno a uno. Esto supone mayor robustez frente al ruido. RA 2000 01 CcIa Arboles de decisión 12.21

Sesgo de restricción y sesgo preferencial (I) Consideremos la búsqueda en el espacio de hipótesis en el algoritmo de árboles de decisión y el algoritmo de Eliminación de Candidatos ID3 busca de manera incompleta en un espacio de búsqueda completo. El sesgo es consecuencia únicamente del método de búsqueda. El espacio de hipótesis no introduce ningún sesgo. Llamamos a este tipo de sesgo preferencial, ya que se debe a la preferencia de unas hipótesis sobre otras. RA 2000 01 CcIa Arboles de decisión 12.22

Sesgo de restricción y sesgo preferencial (II) El algoritmo de Eliminación de Candidatos busca en un espacio de búsqueda incompleto de manera completa (i.e. devuelve todas las hipótesis del espacio consistentes con el conjunto de entrenamiento). En este caso el sesgo depende únicamente de la potencia expresiva en la representación de las hipótesis. Llamamos a este sesgo sesgo de restricción o sesgo del lenguaje. RA 2000 01 CcIa Arboles de decisión 12.23

Sistemas TDIDP 1 1 Los sistemas basados en árboles de decisión forman una familia llamada TDIDT (Top Down Induction of Decision Tree) Representantes de TDIDT: ID3 [Quinlan, 1986] C4.5 [Quinlan, 93] 1 Quinlan, J. R. C4.5: Programs for Machine Learning (Morgan Kaufmann, 1993) RA 2000 01 CcIa Arboles de decisión 12.24

Otros temas de estudio (I) Sobreajuste (overfitting) Definición: Dado un espacio de hipótesis H, una hipótesis h H se dice que sobreajusta un conjunto de entrenamiento C si existe alguna hipótesis alternativa h H tal que h clasifica mejor que h los elementos del conjunto de entrenamiento, pero h clasifica mejor que h el conjunto completo de posibles instancias. Exceso de ruido Conjunto de entrenamiento demasiado pequeño Poda (prunning) Definición: Podar un nodo de un árbol de decisión consiste en eliminar un subárbol anidado en ese nodo transformándolo en una hoja y asignándole la clasificación más común de los ejemplos de entrenamiento considerados en ese nodo RA 2000 01 CcIa Arboles de decisión 12.25

Otros temas de estudio (II) Atributos de valores continuos Medidas alternativas en la selección de atributos Atributos con valores perdidos Atributos con pesos diferentes RA 2000 01 CcIa Arboles de decisión 12.26

Ejemplo de datos Ejemplo Acción Autor Tema Longitud Sitio e1 saltar conocido nuevo largo casa e2 leer desconocido nuevo corto trabajo e3 saltar desconocido viejo largo trabajo e4 saltar conocido viejo largo casa e5 leer conocido nuevo corto casa e6 saltar conocido viejo largo trabajo e7 saltar desconocido viejo corto trabajo e8 leer desconocido nuevo corto trabajo e9 saltar conocido viejo largo casa e10 saltar conocido nuevo largo trabajo e11 saltar desconocido viejo corto casa e12 saltar conocido nuevo largo trabajo e13 leer conocido viejo corto casa e14 leer conocido nuevo corto trabajo e15 leer conocido nuevo corto casa e16 leer conocido viejo corto trabajo e17 leer conocido nuevo corto casa e18 leer desconocido nuevo corto trabajo RA 2000 01 CcIa Arboles de decisión 12.27

Arbol de decisión longitud largo saltar corto trama nuevo leer viejo autor conocido leer desconocido saltar RA 2000 01 CcIa Arboles de decisión 12.28

Búsqueda del árbol de decisión 1 Información tras la división por un Atributo: I = N1 I1+N2 I2, donde N1+N2 N1 = número de ejemplos en la clase 1 N2 = número de ejemplos en la clase 2 I1 = cantidad de información en los ejemplos de la clase 1 I2 = cantidad de información en los ejemplos de la clase 2 RA 2000 01 CcIa Arboles de decisión 12.29

Algoritmo ID3 1 Sesión?- [ aprende_ad.pl, aprende_ad_e1.pl ]. Yes?- aprende_ad(accion, [e1,e2,e3,e4,e5,e6,e7,e8,e9, e10,e11,e12,e13,e14,e15,e16,e17,e18], [autor,tema,longitud,sitio], AD). AD = si(longitud=largo, saltar, si(tema=nuevo, leer, si(autor=desconocido, saltar, leer))) Yes RA 2000 01 CcIa Arboles de decisión 12.30

Algoritmo ID3 1 Representación del problema aprende ad e1.pl val(objeto,atributo,valor) se verifica si el valor del Atributo del Objeto es Valor val(e1,accion,saltar). val(e1,autor,conocido). val(e1,tema,nuevo). val(e1,longitud,largo). val(e1,sitio,casa ).... val(e18,accion,leer). val(e18,autor,desconocido). val(e18,tema,nuevo). val(e18,longitud,corto). val(e18,sitio,trabajo). RA 2000 01 CcIa Arboles de decisión 12.31

Algoritmo ID3 1 Algoritmo de aprendizaje de árboles de decisión aprende ad(+objetivo,+ejemplos,+atributos,-ad) se verifica si AD es el árbol de decisión inducido para el Objetivo a partir de la lista de Ejemplos y Atributos aprende_ad(objetivo, Ejemplos, _, Val) :- coinciden_todos_ejemplos(objetivo, Ejemplos, Val). aprende_ad(objetivo, Ejemplos, Atributos, si(atr=valpos,apos,aneg)) :- not(coinciden_todos_ejemplos(objetivo, Ejemplos, _)), selecciona_division(objetivo, Ejemplos, Atributos, Atr, Resto_Atr), divide(ejemplos, Atr, ValPos, Positivos, Negativos), aprende_ad(objetivo, Positivos, Resto_Atr, APos), aprende_ad(objetivo, Negativos, Resto_Atr, ANeg). RA 2000 01 CcIa Arboles de decisión 12.32

Algoritmo ID3 1 Selección del mejor atributo para dividir selecciona division(+objetivo,+ejemplos,+atributos, -Atrib,-Restantes atrib) se verifica si Atributo es el mejor elemento de la lista de Atributos para determinar el Objetivo a partir de los Ejemplos (es decir, la información resultante del Objetivo en los Ejemplos usando como división el Atributo es mínima), y Restantes atributos es la lista de los restantes Atributos. Falla si para ningún atributo se gana en información. selecciona_division(objetivo, Ejemplos, [A R], Atributo, Resto_Atr) :- informacion_division(objetivo,ejemplos,a,i), selecciona_max_ganancia_informacion(objetivo,ejemplos,r,a,i, Atributo,[],Resto_Atr). RA 2000 01 CcIa Arboles de decisión 12.33

Algoritmo ID3 informacion(+objetivo,+ejemplos,-i) se verifica si I es la cantidad de información en los Ejemplos { respecto del Objetivo; es decir, 0, si N P = 0; I = P T log 2 P T N T log 2 N, si N P 0. T informacion(objetivo,ejemplos,i) :- cuenta(objetivo,_,ejemplos,np,nn), ( (NP=0 ; NN=0) -> I=0 ; NT is NP + NN, I is - NP/NT * log2(np/nt) - NN/NT * log2(nn/nt)). RA 2000 01 CcIa Arboles de decisión 12.34

Algoritmo ID3 selecciona max ganancia informacion(+objetivo, +Ejemplos, +Atributos, +Mejor atributo actual, +Mejor info actual, -Atributo, +Atributos analizados, -Resto atributos) se verifica si Atributo es el elemento de Atributos tal la información resultante del Objetivo en los Ejemplos usando como división el Atributo es mínima selecciona_max_ganancia_informacion(_,_,[],mejora,_, MejorA, A_analizados, A_analizados). selecciona_max_ganancia_informacion(objetivo, Ejs, [A R], MejorA, MejorI, Atributo, A_analizados, Resto_Atr) :- informacion_division(objetivo,ejs,a,informacion), ( Informacion > MejorI -> selecciona_max_ganancia_informacion( Objetivo,Ejs,R,MejorA,MejorI,Atributo,[A A_analizados],Resto_Atr) ; selecciona_max_ganancia_informacion( Objetivo,Ejs,R,A,Informacion,Atributo,[MejorA A_analizados],Resto_Atr) ). RA 2000 01 CcIa Arboles de decisión 12.35

Bibliografía Mitchell, T. M. Machine Learning Texto: McGraw Hill, 1997. Capítulo III. Web: http://www.cs.cmu.edu/~tom/mlbook.html Poole D., et. al Computational Intelligence. A Logical Approach Oxford University Press, 1998. RA 2000 01 CcIa Arboles de decisión 12.36