UNIDAD I. Estructura atómica y enlaces interatómicos

Documentos relacionados
LA TABLA PERIÓDICA. 1

Contenido. 3.- Carga nuclear efectiva y reactividad. 4.- Propiedades periódicas:

Tema II: Estructura atómica y tabla periódica

Las que tienen relación con el de tamaño: LAS PROPIEDADES PERIÓDICAS. Se pueden separar en dos grupos: PERIODICIDAD

Contenidos LA TABLA PERIÓDICA. Primeras clasificaciones periódicas. Primeras clasificaciones periódicas. Triadas de Döbereiner (1829) (Enlace Web):

El átomo: sus partículas elementales

Unidad 7 LA TABLA PERIÓDICA.

Tabla Periódica y Propiedades Periódicas

La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica.

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.

El resultado es el Sistema Periódico. -En el sistema periódico los elementos están colocados por orden creciente de su número atómico (Z).

Guía de Estudio para 1er Parcial Temas Selectos de Química

3.1. Estructura atómica

Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares

Clase N 1. Modelo Atómico I

TEMA 2 TEMA PROPIEDADES PERIÓDICAS DE LOS PROPIEDADES PERIÓDICAS DE ELEMENT LOS

Enlace Químico. Colegio San Esteban Diácono Departamento de Ciencias Química Iº Medio Prof. Juan Pastrián / Sofía Ponce de León

ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS

Actividad: Cómo son las configuraciones electrónicas?

Unidad I: Propiedades Periódicas: Masa y Enlace

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS

Aprendizaje esperado. Conocer la tabla periódica y sus características generales, estableciendo una relación con la configuración electrónica.

Tema 2_3. Átomos Polielectronicos y Sistema Periódico

Enlaces Primarios o fuertes Secundarios o débiles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

ACADEMIA DE QUÍMICA TURNO VESPERTINO

ESTRUCTURA DE LA MATERIA QCA 01 ANDALUCÍA. 1.- Defina: a) Energía de ionización. b) Afinidad electrónica. c) Electronegatividad.

1. Uno de los grandes aciertos de los postulados de Mendeleiev respecto a la ordenación de los elementos fue:

Tema 5: El átomo y sus uniones.

Los elementos químicos

LA TABLA PERIÓDICA. Cuestiones generales. Propiedades periódicas

Propiedades Periódicas y Propiedades de los elementos

LA MATERIA. Características de los átomos

Docente: Raquel Villafrades Torres. Química General

Introducción: La importancia del enlace. químicos. Nos interesa conocer las propiedades físico-químicas de las diferentes sustancias que existen

Unidad 3 Curso: Química General 1 Mtra. Norma Mónica López.

Química I. Contenido. Bloque I Reconoces a la Química como una herramienta para la vida 2

Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

Capítulo 5. Propiedades periódicas de los elementos

Capacidad de combinación. Capacidad de combinación La última capa de electrones de un átomo, se le conoce como capa de electrones de valencia

Sistema Periódico de los elementos. 2º Bachillerato

La Tabla Periódica de los Elementos. Propiedades períodicas atómicas.

En la tabla periódica los elementos se clasifican periodos y grupos o familias.

Configuración Electrónica

Estructura de la materia y Sistema Periódico

ENLACES QUÍMICOS. Los enlaces químicos, son las fuerzas que mantienen unidos a los átomos.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

Fuerzas Intermoleculares. Materia Condensada.

Química General UNEFA

Departamento de Física y Química. Ies Dr. Rodríguez Delgado. Ronda Nivel 1º Bachillerato

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4

Problemario de Talleres de Estructura de la Materia. DCBI/UAM-I. Obra Colectiva del. / Revisión octubre del 2012 UNIDAD 2

QUÍMICA FUNDAMENTAL. Tabla Periódica

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014

Puntos de ebullición.

Interacciones químicas de no enlace. Fuerzas de van der Waals

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica

Guía Temática de Química

3 - Cómo podemos diferenciar un elemento químico de un compuesto, según la teoría de Dalton?

Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Ejercicios resueltos de 3º de E.S.O.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

COLEGIO PEDAGOGICO DE LOS ANDES. Asignatura: QUIMICA. Docente: Lic. Karina Díaz Pacheco Estudiante:

LA TABLA PERIÓDICA. La evolución de la clasificación de los elementos tiene en sus principales momentos ubicación por grupos de elementos como lo son:

EL SISTEMA PERIODICO HISTORIA DEL SISTEMA PERIÓDICO

TABLA PERIODICA. Ciencias naturales Ambientes Raymond Chang

Configuración Electrónica

Tabla Periódica y Propiedades Periódicas

CONTENIDO T1 EL ÁTOMO Y EL SISTEMA PERIÓDICO...3 T2 EL ENLACE QUÍMICO...7 T3 FORMULACIÓN Y NOMENCLATURA INORGÁNICA...13

5ª UNIDAD ELEMENTOS Y COMPUESTOS

UNIDAD 10.- LAS UNIONES ENTRE ÁTOMOS. Cuestiones de evaluación inicial. 2.- Cuántos protones y cuantos neutrones tiene el Carbono?

1/20/2015. Desarrollo Histórico de la Tabla Periódica. La Química antes de la Tabla Periódica İİİ Un gran desorden!!!

Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el

1. La búsqueda de los elementos. 2. Sistema periódico actual. 3. Los símbolos de los elementos. 4. Elementos naturales y artificiales. 5.

INTRODUCCIÓN A LA QUÍMICA

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

Solución: Son sustancias moleculares la a) y la e), porque los átomos que las forman son de elementos no metálicos.

LA TABLA PERIÓDICA. H Li Be B C N O. F Na Mg Al Si P S

ies menéndez tolosa 1 Escribe la combinación o combinaciones de números cuánticos correspondientes a: a) un electrón 1s y b) un electrón 4f.

Enlaces químicos I: conceptos básicos. Capítulo 9

El Modelo Moderno y resultados de nuestro interés

Modelo atómico de la materia.

La tabla periódica. Julius Lothar Meyer. Dimitri Ivanovich Mendeleev

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 3: ENLACES QUÍMICOS

ESTRUCTURA, VALORACIÓN Y CONTENIDOS DEL EXAMEN DE QUÍMICA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PARA MAYORES DE 25 AÑOS.

TEMA 3.2 El Enlace Covalente

EXTRUCTURA ATOMICA ACTUAL

PARTÍCULAS DEL ÁTOMO MODELOS ATÓMICOS. TEMA 7 Pág. 155 libro nuevo

Con posterioridad el físico alemán Sommerfeld introdujo en el modelo la posibilidad de órbitas elípticas. Köningsberg, Munich, 1951

EJERCICIOS DE ENLACE. a) Amoniaco. b) Tricloruro de boro. c) Metano.

M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV

Conocer las formas de clasificación de los elementos según grupo y periodo. Identificar los criterios de clasificación de los elementos químicos.

11. FUERZAS INTERMOLECULARES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 3: ENLACES QUÍMICOS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA CIENCIAS NATURALES: QUIMICA ESTUDIO TABLA PERIODICA. GRADO DECIMO

Transcripción:

UNIDAD I Estructura atómica y enlaces interatómicos

Unidad I Contenido: 1.1. Estructura atómica. 1.1.1 Conceptos fundamentales. 1.1.2 Estructura electrónica en los átomos. 1.1.3 La tabla periódica. 1.2. Enlaces atómicos en sólidos. 1.2.1 Fuerzas y energías de enlace. 1.2.2 Enlaces interatómicos primarios. 1.2.3 Enlace secundario o enlace de van der Waals. 1.2.4 Moléculas. 2

Teoría Atómica En 1808, John Dalton estableció las hipótesis sobre las que fundó su teoría atómica: a) Los elementos están formados por partículas pequeñas llamadas átomos. Todos los átomos de un elemento son idénticos (tamaño, masa, propiedades químicas) y diferentes de los de otro elemento. b) Los compuestos están formados por átomos de más de un elemento en una relación que es un número entero o una fracción sencilla. c) Una reacción química consiste en la separación, combinación o reordenamiento de los átomos, los cuales no se crean ni se destruyen.

El átomo Es la unidad básica que puede intervenir en una combinación química. Está formado por partículas subatómicas, de las cuales las más importantes son los electrones, los protones y los neutrones. Los electrones son partículas con carga negativa que se encuentran en lugares energéticos conocidos como rempes u orbitales. Su masa es de 9.1 x 10-28 g. Los protones son partículas con carga positiva que se encuentran en el núcleo atómico y cuya masa es de 1.67 x 10-24 g. Los neutrones son partículas eléctricamente neutras, que se encuentran en el núcleo y que tienen una masa un poco mayor que la de los protones.

El átomo Partícula Masa (g) Carga Coulombs Carga unitaria Electrón 9.1 x 10-28 g -1.6022 x 10-19 - 1 Protón 1.67 x 10-24 g +1.6022 x 10-19 + 1 Neutrón 1.675 x 10-24 g 0 0

Número atómico, Masa atómica. Isótopos y Peso atómico El número de protones en el núcleo de un elemento se conoce como número atómico (Z). El número de protones y de neutrones presentes en el núcleo de un átomo de un elemento se conoce como número de masa. Cuando se mide en uma (unidades de masa atómica, referidas a la masa de un átomo de carbono 12), se llama masa atómica (A). A = p + n Algunos elementos presentan más de una masa atómica, dependiendo del número de neutrones en su núcleo. A estos átomos se les llama isótopos. El peso atómico de un elemento es el promedio de las masas de los isótopos naturales expresado en uma.

Modelos atómicos A principios del siglo XX, Bohr propuso un modelo planetario para explicar la estructura atómica: en el centro del átomo se encontraba el núcleo donde están los protones y los neutrones y rodeando dicho núcleo, los electrones giraban distribuidos en capas o niveles energéticos. Entre más cercanos estuvieran al núcleo, menor energía presentaban. Este modelo no explicaba algunos resultados experimentales y por ello, a finales de los 1920, Schrödinger y Heisenberg propusieron un modelo mecánico cuántico.

Heisenberg decía que es imposible saber con exactitud la posición y la velocidad de un electrón en un momento dado (Principio de incertidumbre), por lo que se describieron regiones estadísticas de mayor probabilidad electrónica -rempe- que definen la posible posición de un electrón en determinado momento. Estas regiones también se conocen como orbitales atómicos y presentan algunos subniveles. La posición de un electrón puede definirse por 4 números cuánticos: n, l, m y s.

Modelo atómico de Bohr. r 0 = radio de la órbita más cercana al núcleo. E 0 = valor absoluto de la energía de la órbita más cercana al núcleo. h es La constante de Planck; k es la constante de la fuerza de Coulomb, Z es el número atómico del átomo, e es la carga del electrón, m e es la masa del electrón, v es la velocidad del electrón en la órbita y r el radio de la órbita. 1. El electrón gira alrededor del núcleo en un conjunto fijo de órbitas permitidas, denominadas estados estacionarios: en ellos gira sin absorber ni emitir energía. m e v r Postulados 2. Solo están permitidas aquellas órbitas en las cuales el momento angular del electrón es un múltiplo entero de h/2π. Ze 2 r 2 2 = K rn 0 m vr 2 e E h = n 2 π = rn 0 n = E n 2 9

Modelo atómico de Bohr. rn 0 2 E = rn 0 n = r 0 = radio de la órbita más cercana al núcleo. Radio de Bohr (0.53 Å). r 2 ε 0 0 = π 2. me. Ze. E 0 = valor absoluto de la energía de la órbita más cercana al núcleo. Estado fundamental del átomo de hidrógeno (13.6 ev). E h. E n m. e 4. Z 2 = e 0 8. ε 2. h 2 0 2 10

3. Los electrones pueden saltar de una órbita permitida a otra absorbiendo (si la órbita final está mas alejada del núcleo) o emitiendo (si la órbita final está mas cercana al núcleo) energía en forma de radiación electromagnética. E = hν El modelo del átomo de Bohr fue incapaz de explicar lo siguiente: Los espectros de átomos más complejos que átomo de hidrógeno. Variación de la intensidad de las líneas espectrales. La disposición y la distribución de los electrones en varias órbitas. La estructura fina de las líneas espectrales de hidrógeno. Los efectos de Stark y Zeeman. 11

n: es el número cuántico principal describe el nivel energético en el que está un electrón dado. Toma valores enteros (1, 2, 3...) y define el tamaño del orbital; cuanto mayor sea, mayor será el volumen. l: es el número cuántico del momento angular; hace referencia al subnivel energético. El valor del momento angular, indica la forma del orbital y el momento angular. l = [ desde 0 hasta (n 1)] Para l = 0, orbitales s Para l = 1, orbitales p Para l = 2, obitales d Para l = 3, orbitales f Para l = 4, orbitales g m: es el número cuántico magnético y describe la orientación del orbital en el espacio. m = -l, -l+1,, 0,, l-1, l s: es el número cuántico del espín electrónico y corresponde al giro del electrón. El valor del espín, puede ser +1/2 ó -1/2. Al orbital sin el valor de s se le llama orbital espacial, al orbital con el valor de s se le llama espínorbital. Según el Principio de exclusión de Pauli, dos electrones no pueden tener los mismos números cuánticos.

Orbitales s 13

Orbitales p 4p 3p 2p 14

Orbitales d 15

Orbitales f 16

17

Orbitales electrónicos!!!conoce el orbital electrónico que quieras http://www.orbitals.com/orb/orbtable.htm#table3

5ta Conferencia (DE. Solvay), 1927 Bruselas, Bélgica 19

Configuración electrónica La disposición de los electrones en los diversos orbitales atómicos se conoce como configuración electrónica y cumple con algunas reglas básicas: a) un orbital no puede tener más de dos electrones, los cuales deben girar en direcciones opuestas. b) los electrones no se juntan en un orbital si existe otro disponible con la misma energía.

Existe un orden en que se llenan los orbitales y está descrito en la tabla siguiente: Siguiendo la dirección que indica cada una de las diagonales se determina el orden de llenado de los subniveles en los respectivos niveles.

Configuraciones electrónicas de los gases nobles Grupo 18: He, Ne, Ar, Kr, Xe, Rn 22

Fósforo: Número atómico 15 1s 2 2s 2 2p 6 3s 2 3p 3 Aluminio: Número atómico 13: 1s 2 2s 2 2p 6 3s 2 3p 1 Potasio: Número atómico 19: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Ejercicios: Escribir la configuración electrónica del S, Ni, Va, Se; números atómicos 16, 28, 23, 34, respectivamente.

Configuraciones electrónicas con kernell Para simplificar una configuración electrónica se puede utilizar la notaciones kernell de los gases nobles y partir del gas noble cuyo número de electrones sea inmediato inferior al del átomo que va a representar. Por lo tanto tomando en cuenta esto; debemos tener presente la terminación de las configuraciones electrónicas de los gases nobles. Para representar las configuraciones electrónicas de kernell de los elementos químicos periodo dos (renglón dos) se utiliza el gas noble del periodo uno (renglón uno). 24

Ejemplo 1.- Configuración kernell del carbono: 6C = 1s 2 2s 2 2p 4 2He =1s 2 6C = [ 2 He] 2s 2 2p 4 25

Ejemplo 2.- Configuración kernell de la plata: 47Ag = 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 9 36Kr = 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 47Ag = [ 36 Kr] 5s 2 4d 9 26

Diagramas energéticos o configuraciones gráficas 27

Principios energéticos El principio de Aufbau 28

Electrón diferencial 29

Tabla periódica Los elementos químicos presentan algunas propiedades debido a la configuración electrónica que presentan. Estas propiedades se repiten de manera periódica y fue Dmitri Mendeleev quien lo descubrió en 1869. Este investigador organizó los elementos en grupos o familias químicas, cuyas propiedades químicas dependen del número de electrones que se encuentran en el último nivel energético (electrones de valencia). Asimismo, describió 7 períodos, correspondientes a los 7 niveles energéticos en los que pueden encontrarse los electrones de todos los elementos conocidos a la fecha.

http://www.ptable.com/?lang=es#writeup/wikipedia

Grupos de la Tabla Periódica Bloque Grupo Nombres Config. Electrón. s 1 2 Alcalinos Alcalino-térreos n s 1 n s 2 p 13 14 15 16 17 18 Térreos Carbonoideos Nitrogenoideos Anfígenos Halógenos Gases nobles n s 2 p 1 n s 2 p 2 n s 2 p 3 n s 2 p 4 n s 2 p 5 n s 2 p 6 d 3-12 Elementos de transición n s 2 (n 1)d 1-10 f El. de transición Interna (lantánidos y actínidos) n s 2 (n 1)d 1 (n 2)f 1-14 32

Ley periódica, Tamaño atómico, energía de ionización y afinidad electrónica. Algunas propiedades físicas y químicas de los átomos varían periódicamente, de acuerdo con su número atómico y es lo que conocemos como Ley periódica. Entre estas propiedades se encuentran el tamaño atómico: el radio atómico disminuye de izquierda a derecha en la tabla periódica (del grupo I al VII) y aumenta de arriba abajo (del período 1 al 7).

La energía de ionización, que es la energía necesaria para que un átomo pierda un electrón de su nivel externo de energía, aumenta conforme se avanza en un período y disminuye de arriba abajo en un grupo. La afinidad electrónica (electronegatividad), que es la capacidad que tiene un átomo para adquirir o ganar un electrón, aumenta a través de un período y disminuye en el grupo.

Radio atómico Es la mitad de la distancia de dos átomos iguales que están enlazados entre sí. Puede ser: radio covalente (para no metales) radio metálico (para los metales) 36

Variación del radio atómico en un periodo En un mismo periodo disminuye hacia la derecha. Es debido a que los electrones de la última capa estarán más fuertemente atraídos. Periodo 2 Ed. Santillana. Química 2º Bachillerato. 37

Variación del radio atómico en un grupo. En un grupo, el radio aumenta al aumentar el periodo, pues existen más capas de electrones. Grupo 1 Ed. Santillana. Química 2º Bachillerato. 38

Aumento en el radio atómico 39

Radio iónico Es el radio que tiene un átomo que ha perdido o ganado electrones, adquiriendo la estructura electrónica del gas noble más cercano. Los cationes son menores que los átomos neutros (menor repulsión de e ). Los aniones son mayores que los átomos neutros (mayor repulsión electrónica). Ed. Santillana. Química 2º Bach. 40

Energía o potencial de ionización (EI) Es la mínima energía necesaria para extraer un e de un átomo neutro, gaseoso y en su estado fundamental y formar un catión. M (g) M + (g) + 1e - Es siempre positiva (proceso endotérmico) y se expresa en ev/átomo o en kj/mol. Se habla de 1ª EI (EI 1 ), 2ª EI (EI 2 ),... según se trate del primer, segundo,... e extraído. La EI aumenta hacia arriba en los grupos y hacia la derecha en los periodos por disminuir el radio. La EI de los gases nobles, al igual que la 2ª EI en los metales alcalinos, es enorme. 41

Variación de la Energía de ionización (EI). Aumento en la Energía de ionización 42

Electronegatividad (χ ) La electronegatividad (χ) mide la tendencia de un átomo en una molécula a atraer los e hacía sí. Pauling estableció una escala de electronegatividades entre 0 7 (Fr) y 4 (F). χ aumenta hacia arriba en los grupos y hacia la derecha en los periodos. 43

Carácter metálico Es una propiedad relacionada con las propiedades físicas y químicas de los elementos. El carácter metálico aumenta hacia la izquierda en un periodo y hacia abajo en un grupo. 44

45

1.2 Enlaces atómicos en sólidos 46

Fuerzas y energías de enlace. Enlace químico: es la unión de dos o más átomos con el fin de alcanzar la estabilidad química. La estabilidad química se alcanza cuando los átomos poseen ocho electrones en su nivel energético mas externo. Regla del octeto. Electrones de valencia. Estructura de Lewis. 47

Fuerzas de enlace Al aproximarse los átomos ejercen fuerzas sobre otros. Las fuerzas son de dos tipos, atractivas y repulsivas. La fuerza atractiva depende del tipo de enlace en particular que une a los átomos. La fuerza repulsiva depende del solapamiento de los niveles energéticos mas externos de los átomos. FF NN = FF AA + FF RR El equilibrio se alcanza cuando FF AA + FF RR = 0 y los átomos permanecen separados 48 una distancia de equilibrio r 0.

Energía de enlace La energía de enlace entre dos átomos, E 0 corresponde a Ia energía en el punto mínimo de la gráfica, y representa Ia energía necesaria para separar a los dos átomos una distancia infinita. 49

Enlace iónico Siempre existe entre compuestos formados por elementos metálicos y no metálicos. Los átomos del elemento metálico ceden fácilmente sus electrones de valencia al átomo del no metal, que es un buen aceptor de electrones. Ambos adquieren la configuración electrónica estable formando iones. 50

NaCl Las fuerzas atractivas del enlace son fuerzas de Coulomb. Las cargas positivas y negativas se atraen entre sí. La magnitud del enlace iónico es igual en todas direcciones alrededor de un ion y se denomina no direccional. Las energías de enlace suelen valer de 600 a 1500 kj/mol (de 3 a 8 ev x atomo), que son elevadas y se refleja en las altas temperaturas de fusión. 51

Propiedades de los compuestos iónicos. Son sólidos a temperatura ambiente y tienen punto de fusión elevado (mayor a 400 ºC) porque las fuerzas electrostáticas que mantienen unidos a los iones en un compuesto iónico son muy fuertes. En el estado sólido cada catión esta rodeado por un número especifico de aniones y viceversa. Son duros y quebradizos, solubles en agua, y sus disoluciones acuosas conducen la electricidad, debido a que estos compuestos son electrolitos fuertes. También conducen la electricidad, al estar fundidos. En estado sólido son malos conductores de la electricidad.

Enlace covalente La configuración electrónica estable del enlace covalente se consigue compartiendo electrones entre átomos vecinos. Dos átomos unidos covalentemente contribuyen cada uno al enlace con al menos un electrón. Los electrones compartidos se consideran de ambos átomos. Se da principalmente entre átomos de elementos no metálicos. En moléculas tales como H 2, Cl 2, F 2, o con átomos diferentes como CH 4, H 2 O, HF. 53

Metano CH 4 El enlace covalente es direccional: existe entre átomos específicos y el la dirección de los en que hay electrones compartidos. Aparece en sólidos elementales como el diamante (carbono), silicio, germanio, y en compuestos sólidos de elementos localizados a la derecha de la tabla periódica, como el GaAs y el SiC. 54

Compuestos covalentes-propiedades La mayoría de los compuestos covalentes son insolubles en agua. Si se llegan a disolver las disoluciones acuosas no conducen la electricidad, porque estos compuestos son no electrolitos. Al estado líquido o fundido no conducen la electricidad porque no hay iones presentes.

56

Enlace metálico Los metales y aleaciones presentan enlace metálico. Los materiales metálicos tienen uno, dos, o cuando mas, tres electrones de valencia. Los electrones de valencia del solido no pertenecen a ningún átomo en particular y son mas o menos libres de circular a través de todo el metal. Se puede interpretar que pertenecen al metal, formando un "mar de electrones" o una " nube de electrones". 57

Los electrones libres contrarrestan las fuerzas repulsivas generadas entre cationes (cargados positivamente ). El enlace metálico tiene carácter no direccional. Los electrones libres actúan como elemento de unión de los iones cargados positivamente. 58

Enlace secundario o de Van der Waals Los enlaces secundarios, de Vander Waals, o físicos son débiles en comparación con los primarios o químicos. Las energías de enlace características son del orden de 10 kj/mol (0.1 ev/átomo). Surgen de dipolos atómicos y moleculares. El enlace es el resultado de Ia atracción entre el extremo positivo de un dipolo y Ia región negativa del dipolo vecino. Enlaces por puente de hidrógeno. 59

Enlace dipolo inducido fluctuante. En una molécula que normalmente es simétrica eléctricamente se puede crear un dipolo inducido par Ia distribución espacial de los electrones respecto a los núcleos cargados positivamente. Todos los átomos están vibrando constantemente y pueden causar distorsiones instantáneas en Ia simetría eléctrica de los átomos y moléculas, creando dipolos eléctricos. Este tipo de enlace es el responsable de Ia condensación y, a veces, de Ia solidificación de los gases inertes y de otras moléculas eléctricamente neutras y simétricas, tales como H2 y Cl2. En aquellos materiales en los cuales predominan enlaces debidos a dipolos inducidos, las temperaturas de fusión y ebullición son extremadamente bajas. Son los enlaces intermoleculares mas débiles. 60

61

Enlace dipolo inducido-molécula polar. Enlace con dipolos permanentes. 62