SEPTIEMBRE Opción A

Documentos relacionados
SEPTIEMBRE Opción A

Selectividad Septiembre 2007 SEPTIEMBRE 2007

JUNIO Bloque A

JUNIO Opción A

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León

Selectividad Junio 2005 JUNIO 2005

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León

Selectividad Septiembre 2004 SEPTIEMBRE 2004

Pruebas de Acceso a las Universidades de Castilla y León

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones

Examen global Matemáticas C.C.S.S. 28 Mayo ( ) PRIMERA EVALUACIÓN + + = + =

MATEMÁTICAS CCSS 2º DE BACHILLERATO

JUNIO Opción A

SEPTIEMBRE 2003 PRUEBA A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

OPCIÓN DE EXAMEN Nº 1

SOLUCIÓN Se trata de un problema de programación lineal. Organicemos los datos en una tabla: FÁBRICAS Nº DE HORAS SILLAS MESAS TABURETES COSTE

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIAS SOCIALES.

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

3 2 ) 1) = ( 11 8 ) ( 22 11

Modelo 1 ( ) OPCIÓN A EJERCICIO 1. Se consideran las matrices A = B= a) (0.75 puntos) Efectúe la operación A.B t

Pruebas de Acceso a las Universidades de Castilla y León Junio 2003

EVAU. Junio matematiib.weebly.com

OPCIÓN DE EXAMEN Nº 1

OPCIÓN DE EXAMEN Nº 1

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 2017) Selectividad-Opción A Tiempo: 90 minutos 2 3 A = , y B = 3 5 1

OPCIÓN A. Restricciones. i. El club de fútbol dispone de un máximo de 2 millones de euros para fichajes de futbolistas españoles y extranjeros

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

Selectividad Junio 2004 JUNIO 2004

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Selectividad Junio 2007 JUNIO 2007

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. SEPTIEMBRE 2018 OPCIÓN A

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A.

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)

DESARROLLO DE LAS UNIDADES DIDÁCTICAS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2013) Selectividad-Opción A Tiempo: 90 minutos

OBJETIVOS, CONTENIDOS y CRITERIOS DE EVALUACIÓN. COMPETENCIAS.

NÚMERO PERROS GATOS COSTE. A x 4x 3x 240x. B y 2y 6y 400y. Obtengamos, gráficamente, la región factible (solución del conjunto de restricciones):

Prueba de acceso a la universidad. Matemáticas aplicadas a las Ciencias Sociales II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

CANTABRIA. Índice. Junio de Septiembre de Criterios generales de corrección:

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2007

Si llamamos: X: nº monedas 0.5 Y: nº monedas 0.2 Z: nº monedas 0.1

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

OBJETIVOS DE LAS MATEMÁTICAS APLICADAS A LAS CIENCIAS

OPCIÓN DE EXAMEN N.º 1. b1) (0,75 puntos) Para qué valores de a tenemos un sistema compatible determinado?

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

MATERIA: MATEMÁTICAS APLICACADAS A LAS CIENCIAS SOCIALES

Pruebas de Acceso a las Universidades de Castilla y León

R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα

Llamando: y = número de kg de B. La función objetivo a minimizar es: F (x, y) = 5x + 4y. con las restricciones: y 1,5x x 500 y 500 x + y 600 x 0 y 0

14.1. Modelo Opción A

C t

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

x = nº amarillos y = nº blancos z = nº rojos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

t = ( ) En una tienda de ropa figura la siguiente información: Tres pantalones cuestan lo mismo que una camisa y cuatro

Bárbara Cánovas Conesa

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2

Curso 2º de bachillerato de humanidades y ciencias sociales Matemáticas Aplicadas a las Ciencias Socia

IES EMILIO CASTELAR Curso 2016/2017

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s.

MATEMÁTICAS 2º BACHILLERATO

JUNIO Opción A

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015-coincidente) Selectividad-Opción A Tiempo: 90 minutos 5 7 C = 1 5

, donde denota la matriz traspuesta de B.

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2016) Selectividad-Opción A Tiempo: 90 minutos

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) 3. Se considera la función

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A

Transcripción:

Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos valores del parámetro a. a) Resuélvelo siempre que sea compatible..- Se desea construir un depósito con forma de prisma rectangular de base cuadrada y con una capacidad de 360 m 3. Los costes por m son los siguientes: 40 para el fondo, 30 para las paredes laterales y 60 para el techo del depósito. Calcula las dimensiones del depósito para que su coste sea el menor posible. 3.- La estatura de los alumnos de un colegio es una variable aleatoria que tiene una distribución normal de desviación típica 5 cm. Se ha elegido una muestra de 100 alumnos de ese colegio comprobándose que la estatura media es de 170 cm. Calcula: a) El intervalo de confianza para la estatura media con un nivel de confianza del 99 %. b) El tamaño muestral mínimo necesario para conseguir, con un nivel de confianza del 95 %, un error máximo de 8 cm en la estimación de la estatura media. 4.- En la cesta de una frutería hay 10 nectarinas blancas y 7 nectarinas amarillas. Si se compran nectarinas al azar, cuál es la probabilidad de que ambas sean blancas? Dpto. Matemáticas 1 / 1 IES Ramón Olleros

Septiembre 010 (Prueba Específica) Opción B 1.- Un alfarero dispone semanalmente de 150 kg de arcilla de tipo A y de kg de arcilla de tipo B para la fabricación de ánforas y jarrones. La producción de un ánfora requiere 3 kg de arcilla de tipo A y 1 kg de tipo B, pero la de un jarrón necesita 6 kg de arcilla de tipo A y 500 gramos de arcilla de tipo B. Por limitaciones de espacio para el almacén, como máximo puede fabricar 6 vasijas (entre ánforas y jarrones). El precio de venta de un ánfora es 0 euros y el de un jarrón es 30 euros. Utiliza técnicas de programación lineal para hallar el número de ánforas y de jarrones que debe fabricar el alfarero para que su recaudación sea máxima. Cuál es esa recaudación máxima? x si x B- Sea la función f (x) = x +. 0 si x = a) Determina sus puntos de discontinuidad y su derivada en x = y en x =. b) Dibuja la gráfica de la función. c) Explica la relación existente entre la derivada y la tasa de variación media en un punto, indicando lo que significa el valor obtenido de la derivada de la función f (x) en x =. 3.- De 1500 individuos enfermos 90 padecen hepatitis, 135 anemia y el resto otras enfermedades. Todas esas enfermedades no se presentan juntas en ninguno de ellos. Se sabe que la ictericia se presenta en el 76 % de los enfermos de hepatitis, en un 7 % de los enfermos de anemia y en un 0 % en el resto de los enfermos. Nos encontramos con uno de los individuos por la calle. a) Determina la probabilidad de que presente ictericia. b) Hablamos con el individuo y nos dice que tiene ictericia, qué enfermedad es más probable que padezca, hepatitis o anemia? 4.- El 5 % de los clientes de una entidad bancaria son morosos. Cuál es la probabilidad de encontrar al menos un moroso entre 10 clientes elegidos al azar? Dpto. Matemáticas / IES Ramón Olleros

Septiembre 010 (Prueba Específica) SOLUCIONES Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos valores del parámetro a. a) Resuélvelo siempre que sea compatible. a) Consideremos la matriz de los coeficientes A y la matriz ampliada A : A = 1 1 3 4 1 A = 1 1 3 4 4 1 a Estudiemos los rangos de estas matrices. Se tiene que rango A = siempre pues en ella podemos encontrar un menor de orden dos no nulo, como por ejemplo: 1 1 3 = + 3 = 5 0 Por otra parte, el determinante de A, A, viene dado por: A = 1 1 3 4 4 1 a = a + 6 16 16 4 + 3a = 5a 30 Dicho determinante se anula para a = ± 6. Por tanto: Si a ± 6 rango A = rango A = 3 S.I. Sin solución. Si a = ± 6 rango A = rango A = nº de incógnitas = S.C.D. Solución única. b) Vamos a resolverlo para el caso de que sea compatible determinado (a = ± 6 ). En este caso, podemos tomar como ecuaciones principales las dos primeras ecuaciones, y utilizando el método de Gauss-Jordan, obtenemos que: 1 1 f f 3 f 1 1 1 3 4 0 5 Dpto. Matemáticas 3 / 3 IES Ramón Olleros

Septiembre 010 (Prueba Específica) El sistema equivalente que se obtiene es: x y = 5y = Despejando y de la última ecuación se obtiene que y = ecuación, se llega a que x = 8. Por tanto la solución es: 5 8 x = 5 y = 5. Sustituyendo este valor en la primera 5.- Se desea construir un depósito con forma de prisma rectangular de base cuadrada y con una capacidad de 360 m 3. Los costes por m son los siguientes: 40 para el fondo, 30 para las paredes laterales y 60 para el techo del depósito. Calcula las dimensiones del depósito para que su coste sea el menor posible. Necesitamos que el coste del depósito sea mínimo. Dicho coste viene dado por: Coste total (x, y) = 40 x + 30 4xy + 60 x = 100x + 10xy La relación entre las variables viene dada por la capacidad: 360 Por tanto: y = x Capacidad = Volumen = x y = 360 cm 3 Sustituyendo en el coste total: Le aplicamos la técnica de máximos y mínimos: Entonces: Coste total (x) = C (x) = 100x + 4300 x 4300 C (x) = 00x x 4300 C (x) = 0 00x x = 0 00x 3 4300 = 0 x = 6 Dpto. Matemáticas 4 / 4 IES Ramón Olleros

Septiembre 010 (Prueba Específica) Veamos que es un mínimo con la ª derivada: 86400 C (x) = 00 + 3 x C (6) = 00 + 400 = 600 > 0 Mínimo 360 360 360 Las dimensiones de la caja para un coste mínimo son x = 6 m e y = = = = 10 m. x 6 3 6 3.- La estatura de los alumnos de un colegio es una variable aleatoria que tiene una distribución normal de desviación típica 5 cm. Se ha elegido una muestra de 100 alumnos de ese colegio comprobándose que la estatura media es de 170 cm. Calcula: a) El intervalo de confianza para la estatura media con un nivel de confianza del 99 %. b) El tamaño muestral mínimo necesario para conseguir, con un nivel de confianza del 95 %, un error máximo de 8 cm en la estimación de la estatura media. a) Consideremos la variable aleatoria X, que indica la estatura de los alumnos del colegio. Dicha variable aleatoria se distribuye según una distribución normal N (µ, 5). El intervalo de confianza pedido será de la forma: σ x zα/, x+ zα/ n σ n en el que x = 170 cm, n = 100, σ = 5 cm y a un nivel de confianza del 99 % le corresponde un z α / =,58. Así pues: σ I = x zα/, x+ zα/ n σ = (170,58 n 5 100, 170 +,58 5 ) = (163,55; 176,45) 100 σ b) El error admitido, E, viene dado por E = z α /, siendo σ la desviación típica poblacional, n n el tamaño muestral y z α / el valor correspondiente en la tabla normal para una confianza 1 α. En nuestro caso, para una confianza del 95 %, z α / = 1,96. Como además tenemos que σ = 5 cm y el error E ha de ser menor que 8, se tendrá: 1,96 5 n < 8 n > 6,15 n > 37,51565 Por tanto, el tamaño muestral debe ser n 38. Dpto. Matemáticas 5 / 5 IES Ramón Olleros

Septiembre 010 (Prueba Específica) 4.- En la cesta de una frutería hay 10 nectarinas blancas y 7 nectarinas amarillas. Si se compran nectarinas al azar, cuál es la probabilidad de que ambas sean blancas? Este problema se puede resolver utilizando el siguiente diagrama de árbol, en el cual elegimos dos nectarinas de manera consecutiva y sin devolución (B: nectarina blanca ; A: nectarina amarilla ): 10/17 B 9/16 B 7/16 A 7/17 A 10/16 B 6/16 A Si se compran nectarinas al azar, la probabilidad de que ambas sean blancas es: 10 9 90 45 P (1B B) = P (1B) P (B / 1B) = = = 0,3309 17 16 7 136 También podemos resolver este problema usando la combinatoria y la regla de Laplace. Dicha regla nos dice que la probabilidad de un suceso S viene dada por: P (S) = Número decasos favorables Número de casos posibles En nuestro ejercicio, los casos posibles, son los grupos de dos nectarinas que se pueden formar con las 17 que hay en la cesta, y vienen dados por las combinaciones sin repetición de 17 elementos en grupos de, : C 17 17 C 17 = = 136 Para calcular el número de casos favorables, observemos que las dos nectarinas han de ser blancas, y por tanto el número total de casos favorables vendrá dado por las combinaciones sin repetición de 10 elementos en grupos de, : C 10 Por tanto, la probabilidad pedida viene dada por: 10 C 10 = = 45 P ( nectarinas blancas) = Número decasos favorables Número de casos posibles = 45 136 0,3309 Dpto. Matemáticas 6 / 6 IES Ramón Olleros

Septiembre 010 (Prueba Específica) Opción B 1.- Un alfarero dispone semanalmente de 150 kg de arcilla de tipo A y de kg de arcilla de tipo B para la fabricación de ánforas y jarrones. La producción de un ánfora requiere 3 kg de arcilla de tipo A y 1 kg de tipo B, pero la de un jarrón necesita 6 kg de arcilla de tipo A y 500 gramos de arcilla de tipo B. Por limitaciones de espacio para el almacén, como máximo puede fabricar 6 vasijas (entre ánforas y jarrones). El precio de venta de un ánfora es 0 euros y el de un jarrón es 30 euros. Utiliza técnicas de programación lineal para hallar el número de ánforas y de jarrones que debe fabricar el alfarero para que su recaudación sea máxima. Cuál es esa recaudación máxima? Sean x e y el número de ánforas y de jarrones respectivamente. A partir del enunciado del problema podemos establecer las siguientes condiciones: 3x + 6y 150 x + 0,5y x + y 6 x 0 y 0 La función a maximizar es: F (x, y) = 0x + 30y Dibujemos la región factible: Los vértices de esta región son los puntos: A = (0, 0) ; B = (, 0) ; C = (16, 8) ; D = (, 4) ; E = (0, 5) El máximo de la función objetivo se presentará en uno de estos puntos. Veamos en cual: F (0, 0) = 0 0 + 30 0 = 0 F (, 0) = 0 + 30 0 = 440 F (18, 8) = 0 18 + 30 8 = 600 F (, 4) = 0 + 30 4 = 760 F (0, 5) = 0 0 + 30 5 = 750 Por tanto el número de ánforas y de jarrones que debe fabricar el alfarero para que su recaudación sea máxima es ánforas y 4 jarrones. La recaudación máxima será en ese caso de 760. Dpto. Matemáticas 7 / 7 IES Ramón Olleros

Septiembre 010 (Prueba Específica) x si x B- Sea la función f (x) = x +. 0 si x = a) Determina sus puntos de discontinuidad y su derivada en x = y en x =. b) Dibuja la gráfica de la función. c) Explica la relación existente entre la derivada y la tasa de variación media en un punto, indicando lo que significa el valor obtenido de la derivada de la función f (x) en x =. x a) Para cualquier punto x, la función g (x) = es continua y derivable pues las funciones x + racionales son continuas y derivables en su dominio. Por tanto el único punto donde se pueden presentar problemas de continuidad o derivabilidad es en x =. Estudiemos si es continua en él. Para que lo fuera debería cumplirse que: f ( ) = Lim f ( x) Tenemos que: x f ( ) = 0 Lim f ( x) = x x x Lim x + = Por tanto la función no es continua en x =. De igual modo no será derivable en él (por no ser continua). Calculemos por otra parte f (): 1 ( x+ ) ( x ) 1 4 f (x) = = ( x+ ) ( x+ ) f () = 4 = 1 ( + ) 4 b) La gráfica de la función es: c) En muchas ocasiones, los valores de la tasa de variación media de la función y = f (x) en intervalos [a, b] se aproximan a cierto número cuando el extremo b se aproxima al extremo a. Este número se llama tasa de variación instantánea o derivada de la función f en x = a y se define como: Dpto. Matemáticas 8 / 8 IES Ramón Olleros

Septiembre 010 (Prueba Específica) f (a) = Lim b a f ( b) f( a) b a Si expresamos el valor variable a + h = b, tenemos que h = b a de tal manera que cuando b a se cumplirá que h 0. Por tanto, la derivada en x = a también puede ser expresada de la siguiente manera: f (a) = Lim h 0 f ( a+ h) f( a) h Por tanto la derivada es el límite, si existe, cuando h 0, de la tasa de variación media. 3.- De 1500 individuos enfermos 90 padecen hepatitis, 135 anemia y el resto otras enfermedades. Todas esas enfermedades no se presentan juntas en ninguno de ellos. Se sabe que la ictericia se presenta en el 76 % de los enfermos de hepatitis, en un 7 % de los enfermos de anemia y en un 0 % en el resto de los enfermos. Nos encontramos con uno de los individuos por la calle. a) Determina la probabilidad de que presente ictericia. b) Hablamos con el individuo y nos dice que tiene ictericia, qué enfermedad es más probable que padezca, hepatitis o anemia? Consideremos los siguientes sucesos: H : padecer hepatitis A : padecer anemia O : padecer otras enfermedades I : padecer ictericia Podemos confeccionar el siguiente diagrama de árbol: 90/1500 135/1500 175/1500 H A O 0,76 I 0,4 I 0,7 I 0,73 I 0,0 I 0,80 I a) Con el diagrama de árbol anterior y aplicando el teorema de la probabilidad total, tenemos que: = P (I) = P (H) P (I / H) + P (A) P (I / A) + P (O) P (I / O) = 90 135 175 0,76 + 0,7 + 0,0 = 0,0456 + 0,043 + 0,17 = 0,399 1500 1500 1500 Dpto. Matemáticas 9 / 9 IES Ramón Olleros

Septiembre 010 (Prueba Específica) b) Calculemos la probabilidad de padecer hepatitis o anemia, sabiendo que dicho individuo tiene ictericia, aplicando el teorema de Bayes: P (H / I) = 90 0,76 P( H) P( I / H) P( H I) = = 1500 = 0,1901 P( I) P( I) 0,399 P (A / I) = 135 0,7 P( A) P( I / A) P( A I) = = 1500 = 0,1013 P( I) P( I) 0,399 Por tanto, sabiendo que un individuo tiene ictericia, es más probable que padezca hepatitis a que padezca anemia. 4.- El 5 % de los clientes de una entidad bancaria son morosos. Cuál es la probabilidad de encontrar al menos un moroso entre 10 clientes elegidos al azar? Consideremos la variable aleatoria X que nos indica el número de morosos. Dicha variable sigue una distribución de probabilidad binomial: X ~ B (10; 0,05) n = 10; p = 0,05; q = 0,95 Como sabemos, para la B (n, p), la probabilidad de r aciertos en n intentos es: n P (X = r) = p r r q n r En este caso nos piden encontrar al menos un moroso entre 10 clientes elegidos al azar, esto es: P (X 1) = 1 P (X = 0) P (X 1) = 1 P (X = 0) = 1 10 0 0,050 0,95 10 1 0,5987 0,4013 Dpto. Matemáticas 10 / 10 IES Ramón Olleros