C t
|
|
|
- Ricardo Martin Botella
- hace 8 años
- Vistas:
Transcripción
1 1 Universidad de Castilla la Mancha PAEG Junio.016 JUNIO 016 Opción A adas las matrices: A = ( 1 1); = (-3 1) y C = ( 0 3 ) a) Realiza la siguiente operación: (A ) C T (donde C T es la matriz transpuesta de C) b) Explica la razón por la cual las dos matrices siguientes no tienen inversa: M = ( ) y N = ( ) A - = ( 1 1) - (-3 1) = ( 4 0 ) (A - ) C t = ( 4 0 ) ( C t = ( ) ) = ( ) Para que una matriz tenga inversa tiene que ser cuadrada y su determinante debe ser distinto de cero. En el caso de la matriz M no tiene inversa ya que la matriz no es cuadrada, sino de orden x3. La matriz N sí es cuadrada, vamos a estudiar su determinante: N = = Por este motivo no tiene inversa, porque su determinante es nulo..- Cierto dulce tradicional está compuesto exclusivamente por tres ingredientes: harina de trigo, huevo y miel. El porcentaje de harina es el triple de la suma de los porcentajes de los otros dos ingredientes. Además, la diferencia entre el porcentaje de harina y el de huevo es seis veces el porcentaje de miel. a) Plantea el sistema de ecuaciones que nos permita averiguar el porcentaje de cada ingrediente en este dulce. b) Resuelve el sistema planteado en el apartado anterior. X = % harina de trigo Y = % huevo Z = % miel x + y + z = 100 x + y + z = 100 { x = 3(y + z) { x - 3y - 3z = 0 x - y = 6z x - y - 6z = 0 ( x + y + z = 100 { 4y + 4z = 100 z = 10 y = 15 x = 75-10z = ) E =E 1 -E ( ) ( E 3 =E 1 -E E 3 =E -E Por tanto, el porcentaje de harina es del 75%, el de huevo del 15% y el de miel del 10% ) Se considera la función f(x)= { t + t - 5x si x 1 (x-3) + t si x>1 a) Para qué valor de t la función f(x) es continua en x = 1? b) Para t = 0, calcula los extremos relativos de la función f(x) en el intervalo (1,+ ). c) Para t = 0, calcula los intervalos de crecimiento y decrecimiento de la función f(x) en (1,+ ). Para que sea continua en x=1: lim- f(x) = lim f(x) = f(1) x 1 x 1 + { lim f(x) = x 1 - t +t-5 lim f(x) = 4+t + x 1 f(1) = t +t-5 t +t-5 = 4+t t = ±3 Para t=0 en el intervalo (1, + ), la función toma el valor: f(x) = (x 3). Se trata de una parábola con vértice en (3, 0), por tanto tiene un mínimo en (3, 0). Siendo los intervalos de crecimiento: Crece: (3, + ) ecrece: (1, 3) 4.- e la función f(x) = ax 3 + bx + cx + d sabemos que tiene un máximo relativo en el punto (1,) y que tiene un punto de inflexión en el punto (0,0). Con estos datos, halla los valores de los parámetros a, b, c y d. Si tiene un máximo relativo en (1,) significa que f (1) = 0 y que f(1) = : f (x)= 3ax + bx + c 3a + b + c = 0 a + b + c + d = Si tiene un punto de inflexión en (0, 0) significa que f (0)=0 y que f(0)=0:
2 árbara Cánovas Conesa f (x)= 6ax + b b = 0 b = 0 d = 0 Sabiendo ya los coeficientes b y d, podemos calcular a y c mediante un sistema: Por lo que la función queda: f(x) = -x 3 + 3x Examen Selectividad _ Matemáticas _ CCSS _ Castilla la Mancha { 3a + c = 0 a + c = { a = - c {6-3c + c = 0 c = 3 a = En una empresa de Toledo se producen dos modelos de vajillas: A y. El 10% de las vajillas son del modelo A y el 0% del modelo. La probabilidad de que una vajilla del modelo A sea defectuosa es 0.0 y de que una vajilla del modelo sea defectuosa es a) Elegida una vajilla al azar, cuál es la probabilidad de que sea defectuosa? b) Se escoge al azar una vajilla y resulta defectuosa, cuál es la probabilidad de que sea del modelo A? Suceso A = modelo A P(A) = 0.1 Suceso = modelo P() = A P ( )= 0.0 A P ( )= La probabilidad de que sea defectuosa: P() La probabilidad de que sea defectuosa: P( A ) P() = P(A) P ( A ) + P() P ( ) = P() = P ( A ) = P(A ) = P ( A ) P(A) = P() P() P() = La longitud de un determinado insecto sigue una distribución normal de media desconocida y desviación típica σ = 0.5 centímetros. Se toma una muestra aleatoria de tamaño 40 y se calcula la media muestral, siendo esta igual a.47 centímetros. a) Calcula el intervalo de confianza para la media poblacional con un nivel de confianza del 5%. b) Es razonable que la media de la longitud del insecto sea μ =., con un nivel de confianza del 5 %? Obtén un valor razonable para la media de la longitud de este insecto μ con ese mismo nivel de confianza. Razona tus respuestas. Nos piden un IC para la media de una población normal con desviación típica conocida: x ± Zα n Para calcular el valor de Z /, hay que tener en cuenta que a un nivel de confianza del 0.5, le corresponde un nivel de significación = Como el valor correspondiente a P(Z <0.05) no aparece en la tabla: Es decir, el valor buscado es 1.6. Por tanto, el IC pedido es: P(Z<0.05) = 1 P(Z<0.75) (x ± Zα 0.5 ) = (.47 ± 1.6 ) = (.30,.63) n 40 No es razonable concluir que la media poblacional sea.cm con un nivel de confianza del 5%, ya que este valor no pertenece al intervalo que hemos calculado a un nivel de significación del 5%. Cualquier valor que esté dentro del intervalo calculado será un valor razonable para la media de la longitud del insecto.
3 3 Opción JUNIO Un aficionado a la artesanía dedica su tiempo libre a decorar botijos y jarrones. Cada mes decora un máximo de 10 botijos y un máximo de 10 jarrones. edica una hora a decorar un botijo y horas a decorar un jarrón. Puede dedicar cada mes un máximo de 4 horas a esta afición. Vende toda su producción mensual, y cobra 6 euros por cada botijo y 18 euros por cada jarrón. Se propone obtener el máximo beneficio mensual posible con las condiciones mencionadas. a) Expresa la función objetivo. b) Escribe mediante inecuaciones las restricciones del problema y representa gráficamente el recinto definido. c) Halla el número de botijos y jarrones que debe decorar cada mes para obtener un beneficio máximo e indica a cuánto asciende ese beneficio máximo. x: nº de botijos y: nº de jarrones La función objetivo viene dada por: (x, y) = 6x + 18y Restricciones (0, 10) 10 C (4, 10) 8 7 (10, 7) x y = 4 (10, 7) { 0 y 10 { x + 0 = 4 (4, 10) x + y A (0, 0) E (10, 0) Para obtener el beneficio máximo: (0, 0) = 0 (0, 10) = 180 (4, 10) = 04 (10, 7) = 186 (10, 0) = 60 Por tanto, el beneficio máximo asciende a 04. Y para ello debe decorar 4 botijos y 10 jarrones..- Los precios de mis tres frutos secos favoritos son: almendras a 6 euros/kg; avellanas a 16 euros/kg y cacahuetes a 10 euros/kg. En el supermercado he tomado algunos kilos de cada uno de estos frutos secos y he llenado una caja de kilos, por la que he pagado 0 euros. En esta caja, la suma de los kilos de avellanas más los de cacahuetes es igual al doble de los kilos de almendras. a) Plantea el sistema de ecuaciones que nos permita averiguar cuántos kilos de cada fruto seco he comprado. b) Resuelve el sistema planteado en el apartado anterior. x = kg almendras y = kg avellanas z = kg cacahuetes x + y + z = { 6x + 16y + 10z = 0 x = y + z x + y + z = { 6x + 16y + 10z = 0 x - y - z = 0 ( ( ) E =E -6E 1 ( E 3 =E 1 -E x + y + z = ) { 10y + 4z = 54 z = 4 y = x = 3-18z = Es decir, he comprado 3 kg de almendras, kg de avellanas y 4 kg de cacahuetes. 36) 18 E 3 =3E -10E 3 (x-t) si x<0 3.- Se considera la función f(x)= { 1 si x=0 (x-1) si x>0 a) Halla el valor de t para que f sea continua en x = 0. b) Para t = 1, representa gráficamente la función f. Para que sea continua: Es decir, f(x) es continua en x = 0 para t = ±1. lim- f(x) = lim x 0 x 0 - (x-t) = t lim- f(x) = lim f(x) = f(0) lim f(x) = lim x 0 x x 0 x 0 + (x-1) = 1 { f(0) = 1
4 árbara Cánovas Conesa 4 (x+1) si x<0 Para t = -1, la función queda: f(x)= { 1 si x=0 (x-1) si x>0 f(x) = (x + 1) = x + x + 1 f(x) = (x - 1) = x - x + 1 Examen Selectividad _ Matemáticas _ CCSS _ Castilla la Mancha Vértice: Vx= -b = - Vy= -1 a (-1, 0) Cortes con eje y: (0, 1) Vértice: Vx= -b a = Vy= 1 (1, 0) Cortes con eje y: (0, 1) Al comenzar el año ponemos en marcha el estudio de la evolución de la población de un tipo de insectos. Hemos llegado a la conclusión de que esa población se ajusta a la función: f(x) = x4 + 5 x3 + 7 donde x está en meses, con 0 x 1 y f(x) está en decenas de individuos. a) Calcula cuántos insectos tenemos al comenzar el estudio (x = 0) y cuántos al terminarlo (x = 1). b) etermina en qué intervalo la población crece y en cuál decrece. c) etermina en qué momento la población de insectos es máxima y a cuántos individuos asciende. Al comenzar el estudio tendremos: f(0) = 7 decenas de insectos = 70 insectos Al finalizar el estudio: f(1) = 70 insectos Para estudiar el crecimiento de la función, trabajamos con la primera derivada: f (x) = - 15 x x f (x) = 0-15 x x = 0 x (- 15 x ) = 0 {x 1 = 0 x = 0 f (1) >0 f (10) <0 El primer intervalo no hace falta estudiarlo ya que no pertenece al dominio de la función. Por tanto, la función es creciente en (0, ) y decreciente en (, +). La población será máxima para los valores de x e y dónde exista un máximo: (, 7), es decir, en el noveno mes habrá 7 insectos, que es el número máximo de insectos que habrá en un año. 5.- Se sabe que una máquina determinada tiene una probabilidad de tener una avería de 0.1. Tenemos una empresa con 4 máquinas como las anteriores que funcionan de forma independiente. a) Cuál es la probabilidad de que las cuatro tengan una avería? b) Cuál es la probabilidad de que ninguna tenga una avería? c) Cuál es la probabilidad de que al menos una de las máquinas tenga una avería? La variable X: que una máquina tenga una avería, sigue una distribución binomial de tamaño 4 y probabilidad de éxito 0.1: ~ (4, 0.1). La probabilidad de que las cuatro tengan una avería: P(X=4) = ( 4 4 ) P(X=4) = La probabilidad de que ninguna esté averiada: P(X=0) = ( 4 0 ) P(X=0) = La probabilidad de que al menos una tenga una avería: P(X 1) = 1 - P(X<1) = 1 - [P(X=0)] = P(X 1) = 0.343
5 5 JUNIO Se sabe que las puntuaciones de los alumnos en la PAEG siguen una distribución normal de desviación típica σ = 1. Los siguientes datos representan las puntuaciones de 15 alumnos elegidos al azar: 7.8, 6.8, 6.7, 6., 7.4, 8.1, 5., 6., 7.5, 8.3, 7.5, 7.1, 6.1, 7.0 y 7.5. a) etermina el intervalo de confianza para la media poblacional de la puntuación en la PAEG con un nivel de confianza del 7%. b) Sería razonable pensar que esta muestra proviene de una población normal con media μ= 6 con un nivel de confianza del 7%? Y con un nivel de significación igual a 0.08? Razona tus respuestas. Nos piden el intervalo de confianza para la media poblacional con desviación típica conocida, es decir: IC = (x ± Zα ). n Nos hace falta la media: x = x = Para calcular el valor de Z /, hay que tener en cuenta que a un nivel de confianza del 0.7, le corresponde un nivel de significación = Como el valor correspondiente a P(Z <0.015) no aparece en la tabla: Es decir, el valor buscado es Z / =.17. Por tanto: P(Z<0.015) = 1 P(Z<0.85) IC = (x ± Zα n ) = (7.1 ±.17 1 ) IC =(6.55, 7.68) 15 No sería razonable decir que la media poblacional sea 6, ya que está fuera del intervalo calculado para un nivel de confianza del 7%. Si el nivel de significación aumenta hasta 0.08, el valor de Z / disminuiría, por lo que el intervalo sería más estrecho, por lo que tampoco sería razonable.
Propuesta A B = M = (
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se
Universidad de Castilla la Mancha PAU/LOGSE Septiembre Opción A
1 Universidad de Castilla la Mancha PAU/LOGSE Septiembre.01 Opción A SEPTIEMBRE 01 1.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones
M = 3I + A 2 = 3 M = X B = I X B B -1 = I B -1 X I= B -1 X = B -1
-3 - - 0 3 4 www.clasesalacarta.com Universidad de Castilla la Mancha PU/LOGSE Reserva-.03 RESERV 03 Opción - 0.- adas las matrices: -3 y -3 0 a) Calcula la matriz M (3I ), donde I es la matriz identidad
x = nº cajas mazapán y = nº cajas piñón z = nº cajas almendras
www.clasesalacarta.com Universidad de Castilla la Mancha PAG Septiembre.05 Septiembre 05 Opción A.- a) Despeja la matriz X en la siguiente ecuación matricial: XA + X = B, suponiendo que todas las matrices
= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =
www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas
, obtén la expresión de la matriz X del apartado anterior. (0.5 ptos) 3 4. (0.5 ptos) (0.25 ptos por la inversa)
Evaluación para el Acceso a la Universidad Convocatoria de 017 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se podrá
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 014-015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Instrucciones: a) Duración: 1 hora y 30 minutos. b) Elija una de las dos opciones
(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta B 1. a) Despeja la matriz X en la siguiente ecuación
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2013) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 203) Selectividad-Opción A Tiempo: 90 minutos 3 2 0 Problema (2 puntos) Dada la matriz A = 0. a) Calcúlese A x b) Resuélvase el sistema de ecuaciones
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)
Propuesta A 1. Dadas las matrices y a) Calcular la matriz M = (2 I + A) 2, donde I es la matriz identidad de orden 3. b) Calcula, si es posible, la matriz X tal que X B = I, donde I es la matriz identidad
Modelo 1 ( ) OPCIÓN A EJERCICIO 1. Se consideran las matrices A = B= a) (0.75 puntos) Efectúe la operación A.B t
Instrucciones: a Duración: hora y minutos. b Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida. c En cada ejercicio, parte o apartado se indica la puntuación máxima
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)
Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2000-2.001 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro
SEPTIEMBRE Opción A
Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta A 1. Dada la ecuación matricial I + 3 X + A X B. Se pide:
UCLM - Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 04 Propuesta B Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 3-4 CONVOCATORIA: MATERIA: Matemáticas Aplicadas a las CC SS - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo debe
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) 3. Se considera la función
Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = 2x + y sujeta a las siguientes restricciones: x y 1 x + y 2 x 0 y 0 a) Dibuja la región factible. (1 punto)
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Una empresa láctea se plantea la producción de dos nuevas bebidas A y
UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017
INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = y B = 1 1 2 1 1 n 1 1 1, X = a) Hallar los valores
Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS
Modelo 3 OPCIÓN A. Pasando4B al2º miembro: AX = C 4 B A AX = A ( C 4 B). = ( 4 ) = ( 4 ) I X A C B X A C B
Instrucciones: a) Duración: 1 hora y 3 minutos. b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida. c) En cada ejercicio, parte o apartado se indica la puntuación
OPCIÓN A. x 2 2x si x < 1,
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2016-2017 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Bárbara Cánovas Conesa ) = 1 24
67 70 Junio 0 Dada la ecuación matricial: X AX = B AX. Se pide: a) esuelve matricialmente la ecuación b) Si A = ( 4 5 ) B = ( ) calcula la matriz X. 9 4 X AX = B AX X AX + AX = B X + AX = B (I + A)X =
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz
El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A
Prueba de Acceso a la Universidad JUNIO Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN A Una
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000
4 6 8 4 6 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Septiembre. SEPTIEMBRE Opción A.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo
Examen global Matemáticas C.C.S.S. 28 Mayo ( ) PRIMERA EVALUACIÓN + + = + =
Examen global Matemáticas C.C.S.S. Mayo (-). (a) Dado el sistema lineal: PRIMER EVLUCIÓN + + + (a-) añade una ecuación para que el sistema sea incompatible. + + + + + + es y el de la matriz ampliada es,
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
8.- Obtén el valor de n para que el polinomio sea divisible entre x + 3.
1º BACHILLERATO CCSS NÚMEROS Y ÁLGEBRA 1.- Calcula: a) 5,2 10 2 + 3,15 10-2 4,2 10-3 b)(3,6 10 3 ) : (1,2 10-4 ) 2.- Realiza las siguientes operaciones: 3.- Racionaliza: 4.- Racionaliza: 5.- Simplifica
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A 1 1 x 0 1 Sean las matrices A, B y C 1 1 x 0 1 a) (1 punto) Encuentre el valor o valores de x de forma que B A 1 b) (1 punto) Igualmente para que B C A c) (1 punto) Determine x para que A B C
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,
EVALUACIÓN DE BACHILLERATO PARA EL ACCCESO A LA UNIVERSIDAD (EBAU) FASE GENERAL CURSO MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
EVALUACIÓN DE BACHILLERATO PARA EL ACCCESO A LA UNIVERSIDAD (EBAU) FASE GENERAL CURSO 2016 2017 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas
JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A
Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
Universidad de Castilla la Mancha Septiembre Propuesta A
A.- árbara Cánovas Conesa 67 7 Universidad de Castilla la Mancha Septiembre.7 Propuesta A www.clasesalacarta.com Septiembre 7 a) Calcula razonadamente el área de la región determinada por la curva f()
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 205) Selectividad-Opción A Tiempo: 90 minutos Problema (2 puntos) Se consideran las matrices 3 A = 6 2 3 y B = 2 a) Calcúlese A 5 e indíquese
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 205) Selectividad-Opción A Tiempo: 90 minutos Problema (2 puntos) Se consideran las matrices 3 A = 6 2 3 y B = 2 a) Calcúlese A 5 e indíquese
UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales
Matemáticas Aplicadas a las Ciencias Sociales II Soluciones
Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es
Bárbara Cánovas Conesa
Bárbara Cánovas Conesa 637 70 3 www.clasesalacarta.com Junio 07 ada la función f() { + a si b 9 si > a) Calcula razonadamente los parámetros a y b para que f() sea derivable en todo R. b) Enuncia el teorema
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR
APLICADAS A LAS CIENCIAS SOCIALES
IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Enunciado Germán-Jesús Rubio Luna e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado
Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad
Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente
Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010
Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder
IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes 010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1_A Sea el recinto del plano
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m
Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que
= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =
SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 04-05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Instrucciones: a) Duración: hora y 30 minutos b) Elija una de las dos opciones
OPCIÓN A EJERCICIO 1.
Matem. Apl. a las CC.SS. II Examen Final 206/7 Duración: hora y 30 minutos. Elige sólo una de las dos opciones A o B, y contesta los ejercicios de la opción elegida. No uses bolígrafo rojo ni lápiz. Respeta
Junio de 2011 (Específico 6) Solución Germán-Jesús Rubio Luna
Junio de 011 (Específico 6) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 010-011 JUNIO (Específico) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN
PROPUESTA A. . Se pide: 4. Se considera la función f ( x) b) Si A, calcula la matriz X que cumple A. X I, donde I es la matriz identidad de
PROPUESTA A. a) Despeja la matri X en la siguiente ecuación matricial: 7 I X + A X = B, suponiendo que todas las matrices son cuadradas del mismo orden (I es la matri identidad). (.75 puntos) b) Si A,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
x + 3y 3 2x y 4 2x + y 24
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.
VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo
Propuesta A. =, despeja y calcula la matriz X. (0.75 ptos)
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Junio = = t el mismo significado que el producto anterior
Instrucciones: a) Duración: 1 hora y 30 minutos. b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida. c) En cada ejercicio, parte o apartado se indica la puntuación
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de astilla y León MATEMÁTIAS APLIADAS A LAS IENIAS SOIALES EJERIIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESOGER UNA DE LAS DOS OPIONES Y DESARROLLAR LAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
2 4. c d. Se verifica: a + 2b = 1
Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
ESTADÍSTICA Y PROBABILIDAD
(distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0
Ejercicios de ecuaciones, sistemas, inecuaciones.
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Ecuaciones, sistemas. Pág 1/11 Ejercicios de ecuaciones, sistemas, inecuaciones. 1. x 4 10x 2 + 9 = 0 2. 3. x 4 61x 2 + 900 = 0 4. x 4 25x 2 + 144 = 0 6. 7.
Curso: 2º Grupo: B Día: 18 - IV CURSO
3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule
