1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena.

Documentos relacionados
1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

Departamento de Tecnología MECANISMOS

Actividad de Aula 2.0. Engranajes

3º ESO - Ejercicios de mecanismos HOJA 1

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

3º ESO TECNOLOGIAS MECANISMOS

Los dientes de los engranajes: 1.- Impiden el deslizamiento lo que a su vez permite que los ejes que giran con un sistema de engranajes, puedan estar

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2

Actividades Recuperación septiembre 2º ESO

móvil) conectado a un mecanismo de tracción.

4. TRANSMISIÓN DE MOVIMIENTO

QUÉ SON LOS MECANISMOS?

El objetivo de esta actividad es practicar la relación de transmisión y reflexionar sobre las peculiaridades del mecanismo de polea-correa.

ACTIVIDADES DE MECANISMOS

Tecnología 2.º ESO. Actividades. Unidad 3 Mecanismos CUESTIONES SENCILLAS EDITORIAL TEIDE

DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍA 3º E.S.O. I.ES. SIERRA DE LÍJAR. OLVERA

BLOQUE 2. OPERADORES MECÁNICOS

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014

MÁQUINAS SIMPLES UNIDAD 6

2- MECANISMOS DE TRANSMISIÓN DE GIRO

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1.

UNIDAD 3.- MECANISMOS

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 18: Elementos de máquinas y sistemas (I)

APUNTES DE MECANISMOS E.S.O.

Relación de Transmisión (Mecanismos de Transmisión Circular)

TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:...

Examen de MECANISMOS Junio 94 Nombre...

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo

BLOQUE II. MÁQUINAS Y MECANISMOS

UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA. Actividades

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

MECANISMOS Y MÁQUINAS SIMPLES

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS

MECÁNICA II CURSO 2004/05

U.T. 4: Máquinas y Mecanismos (2ºESO)

MECANISMOS. Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo.

Tecnología 1º E.S.O. Nombre y apellidos: Curso: 1

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

Mecanismos ÍNDICE. Autora: M.Luz Luna Calvo. Tecnologías 1º ESO. Mecanismos

Tipos de engranajes. a. Ejes paralelos. b. Ejes concurrent es. c. Ejes que se cruzan Tornillo sin fincorona. Cilíndricohelicoidal.

Un mecanismo nos ayuda a realizar un trabajo, modificando la forma o entidad de la fuerza que realizamos.

EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS

Tema 5. Mecanismos y máquinas

LA ELABORACIÓN DEL LINO EN ASTURIAS (José cuevas, s XIX)

EJERCICIOS DE MECANISMOS

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre...

MECANISMOS. Indice. 3r ESO 35

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN)

b) Podemos aplicar la misma fórmula anterior para el número de vueltas Nv. Es decir:

TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO

Engranaje Conducido. Se logra hacer girar un engranaje conducido en el mismo sentido que el motor añadiendo otro, denominado loco, entre ellos.

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza.

1.4 Acoplamientos de protección o seguridad Limitadores de par mecánicos Tecnotrans

LOS MECANISMOS: MÁQUINAS EN MOVIMIENTO.

TEMA 5 : MECANISMOS RELACIÓN 1: PROBLEMAS DE PALANCAS.

Examen de MECANISMOS Junio 97 Nombre...

Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

ELEMENTOS DE REGULACIÓN

Engranaje. Tipos de engranajes. Por aplicaciones especiales se pueden citar: Planetarios Interiores De cremallera

Tema 7.- MECANISMOS. Palanca. Transmisión lineal. Polipasto. Rueda de fricción. Engranaje

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

S24t.- Engranajes. ejora M

d a =d+2h a d f =d-2h f NUMERO DE DIENTES (z): es el número de dientes de la rueda.

TEMA 4: MECANISMOS. 2º E.S.O. I.E.S. "San Isidro" Talavera --Dpto. de Tecnología--

SEGUNDO TALLER DE REPASO

MATEMÁTICAS GRADO DÉCIMO

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

UNIDAD DE MECANISMOS

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

EJERCICIOS TECNOLOGÍA INDUSTRIAL I EJERCICIO 1

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

ENGRANAJE DE TORNILLO SIN FIN

AGRO ORGA SA TARIFA DE PRECIOS DE VENTA AL PÚBLICO MARZO 2016 (IVA NO INCLUIDO) TARIFA RECAMBIOS PICADORA-ENSILADORA MODELO B - BN

TRANSMISIÓN POR ENGRANAJES Unidad 2. Elementos de Transmisión

MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTO

Capítulo 1 Introducción a los accionamientos de máquinas

MÁQUINAS Y MECANISMOS.

1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende del número de revoluciones d) 0,5

Tema 3: MECANISMOS Y MÁQUINAS.

APORTE AL DISEÑO DE ENGRANAJES NO CIRCULARES CILÍNDRICOS RECTOS

MECANISMOS Toni Saura IES Salvador Gadea - Aldaia

I) Situación inicial: Planteamiento del problema y estudio de posibilidades para llevar a cabo el desmontaje

Mediante herramienta de corte periférico Mediante herramienta de corte frontal

MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS.

Tablas de Engranajes

Máquinas y Mecanismos

1. Indica a los alumnos qué material deben tomar para armar su proyecto. A continuación se especifican los tipos y cantidades.

VII. Engranes en general

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

TRANSMISIÓN DE POTENCIA POR BANDAS

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Construcciones técnicas, engranajes y máquinas

Transcripción:

Ficha nº:3 Transmisión circular. 1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. 2) Descripción: Ruedas de fricción: Son sistemas formados por dos o más ruedas que se encuentran en contacto directo. Permiten transmitir un movimiento giratorio entre dos ejes paralelos. Transmisión por correa: Sistema similar a anterior en el que las ruedas giran arrastradas por correas. La correa de transmisión trabaja por rozamiento con la polea sobre la que va montada sin que se produzca deslizamiento. Engranajes: Sistema formado por ruedas dentadas que engranan entre si, sin deslizamiento. El movimiento de una rueda se transmite a la otra mediante el empuje de sus dientes. Transmisión por cadena: Sistema caracterizado por el uso de una cadena y dos ruedas dentadas unidas a los ejes entre los que se desea transmitir el movimiento. 3) Dibujo (croquis): - Ruedas de fricción: - Transmisión por correa: - Engranajes: Rectos Helicoidales.

-Transmisión por cadena: 4) Expresiones para la resolución de problemas: - La velocidad de giro de los mecanismos se llama velocidad angular (N) y la medimos en revoluciones por minuto (rpm) que es el número de vueltas que da el mecanismo en un minuto. - Relación entre velocidades: Es la inversa a la de los tamaños de las ruedas, podemos conseguir multiplicar, reducir o mantener la velocidad de giro. N 2 D1 = N 1 D2 N 1 D1=N 2 D2 - N: Velocidad de giro,medida en revoluciones por minuto o vueltas que puede dar una rueda o polea en un minuto. - D: Diámetro de la rueda. -Para engranajes, cambiar D por Z (número de dientes): N2 Z1 = N1 Z2 N 1 Z 1=N 2 Z 2 - Relación de transmisión (i): La relación de transmisión (i) es un número que nos indica cómo se transmite la velocidad de rotación de un mecanismo. Si la relación de transmisión es 2, el mecanismo duplica la velocidad. Si es 1 la mantiene. Y si es 0,5 la velocidad de salida es la mitad que la de entrada. i= - Trenes de poleas: D1 D2 N 4 D 1 D 3 = N 1 D2 D 4

5) Aplicaciones y ejemplos. (Ejercicio...) 6) Ejercicios. 1.- Calcular la velocidad de giro de una polea de 40 mm de diámetro si es arrastrada, (utilizando una correa) por otra de 120 mm de diámetro que gira a 300 r.p.m. Dibuja el mecanismo indicando sus elementos... 2.-Sabiendo que el eje motriz gira en sentido horario, en qué sentido girará el último elemento?.

3.- El tambor de la lavadora de la figura mide 45 cm de diámetro, y la polea del motor, 9 cm. a) Calcula la relación de transmisión. b) Calcula la velocidad del tambor cuando el motor gira a 450 rpm. 4.-Dados los siguientes sistemas de transmisión: a) Calcula la relación de transmisión de ambos sistemas. b) Cuál de los dos sistemas tiene una relación de transmisión mayor? c) Para qué sirve la rueda del medio? d) Si la rueda de 10 dientes gira a 120 rpm, a qué velocidad girará la de 40 dientes? 5.- Un ciclista utiliza un plato de 60 dientes y un piñón de 15 dientes, como se observa en la figura: a) Calcula la relación de transmisión. b) Si el ciclista pedalea a 40 rpm, a qué velocidad gira la rueda la bicicleta? de 6.- Sea el sistema de poleas formado por el dibujo de abajo: La velocidad de la polea motriz (1) es de 100rpm y los diámetros son respectivamente 5cm (1), 10cm (2), 5 cm (3) y 10cm (4). - Calcula las dos relaciones de diámetros (R), entre las poleas 1-2 y 3-4. - Calcula la velocidad de las poleas 2, 3 y 4.

7.-Dado el sistema de engranajes de la figura: a) Cuál es la velocidad de la rueda dentada F si la rueda A gira a 2000 rpm? b) Cuál será el sentido de giro de la rueda F si la rueda A gira en sentido antihorario? 10 ejercicios más 1- Hallar la relación de transmisión i de un sistema de engranajes simple en donde el engranaje motriz A (piñón) tiene z1=10 dientes y el engranaje de salida (rueda) tiene z2=20 dientes. 2- Tenemos un sistema de engranajes simple formado por dos ruedas dentadas de dientes rectos. Conocemos n1 =15 rpm, z1= 60 y z2 = 20. Dibuja el sistema. a) Calcula el valor de n2 en rpm. b) Indica si el sistema es reductor o multiplicador. 3- Sabemos que dos ruedas dentadas forman un engranaje simple y conocemos que n1=9 rpm, z1=100. Cuántos dientes tiene que tener z2, si queremos que n2=18rpm? 4- En el taller del aula de Tecnología tenemos un taladro de columna y, queremos saber a qué velocidad tendrá que girar el motor de dicho taladro (velocidad de entrada n1), si transmite el movimiento a una broca a través de dos ruedas dentadas de, z1=50 e z2=150. La broca gira a 600 rpm (velocidad de salida n2). 5- Tenemos un mecanismo sinfín corona que tiene una entrada, el sinfín gira a n1=1000 rpm, y la corona tiene 50 dientes, cuál será la velocidad de la corona? 6- Calcula el valor de la relación de transmisión "i" de un mecanismo sinfín corona si la velocidad de entrada del sinfín es de 2000 rpm y la de salida de la rueda es de 80 rpm 7- Tenemos una bicicleta (trasmisión por cadena), cuya rueda motriz tiene 54 dientes y el piñón conducido 24 dientes, si el ciclista pedalea a razón de 40 rpm cuál será la velocidad de la rueda trasera de la bicicleta?. 8- Según el tren de engranajes de la figura, determina la velocidad de la rueda de salida (árbol de salida, representado por la letra C), siendo la motriz la A. Decir si el sistema es reductor o multiplicador.

9- Un piñón motriz de 60 dientes da 1000 rpm (revoluciones por minuto), si queremos que las revoluciones de salida sean 600 rpm. Con cuál de estos debemos de engranarlo: con uno que tenga 30 dientes, o con uno que tenga 70 dientes, o con uno que tenga 100 dientes?, por qué?. 10- Miguel Indurain batió el record del mundo con un plato (rueda motriz) de 60 dientes y un piñón de 14 dientes. El diámetro de su rueda trasera era de 67 cm. Que distancia recorría en cada pedalada?. Datos: no se tiene en cuenta ningún rozamiento. Soluciones. 1. 0,5 2. a) 45rpm b) Multiplicador. 3. 50 dientes. 4. 1800rpm. 5. 20rpm. 6. 25 vueltas el tornillo por 1 de la corona. 7. 90rpm 8. 1000rpm, reductor. 9. 100 dientes 10. 9m cada pedalada.