deformaciones y roturas. LECCIÓN 2: SUELO Y CIMENTACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "deformaciones y roturas. LECCIÓN 2: SUELO Y CIMENTACIÓN"

Transcripción

1 LECCIÓN 2: SUELO Y CIMENTACIÓN La sustentación de los edificios La misión del sistema parcial de sustentación y de los subsistemas en que éste puede subdividirse, consiste en recibir y trasladar hasta el suelo el conjunto de cargas a que se halla sometido el edificio. Para ello, el sistema de sustentación, o como suele denominarse, la estructura, cuenta con unos elementos especializados en las tareas de absorción o neutralización de las fuerzas, y su transmisión progresiva hacia otros componentes y, en última instancia, hacia zonas del terreno donde se asienta el edificio. La absorción y canalización de esfuerzos debe hacerse de tal manera que el edificio "no se entere", es decir, sin que sufra su estabilidad ni soporte movimientos o vibraciones que comprometan su habitabilidad o su durabilidad. Ello obliga a dotar a los componentes de la sustentación de suficiente rigidez y resistencia para que aprovechen los mecanismos de la estática y la deformabilidad y consigan una correcta disipación de esfuerzos y su conducción a los núcleos de absorción y al terreno. La estructura es, pues, el sistema que posibilita la estabilidad del edificio mediante la organización de unas condiciones de equilibrio que contraponen a toda acción o fuerza, una reacción localizada de tal manera que pueda evitarse que se produzcan movimientos substanciales, del edificio o de alguna de sus partes, capaces de alterar dicha estabilidad. Sobre el edificio y sus componentes actúan distintas fuerzas o cargas, denominadas acciones, que al ser absorbidas por los materiales de los elementos de la estructura, provocan la aparición de tensiones o solicitaciones, cuyo conjunto constituye, en definitiva, lo que comúnmente suele llamarse reacciones, de diversa naturaleza y forma de actuación dependiendo del tipo de carga y de la pieza estructural de que se trate. Dichas reacciones se traducen en unos estados de deformación de los materiales que permiten el transporte de los esfuerzos a través del sistema estructural y de éste al terreno, por lo que la deformabilidad constituye el mecanismo básico de respuesta estructural del que se sirve el edificio para controlar y disipar las cargas que constantemente recibe. Las deformaciones que soportan los materiales con que se construye una estructura deben ser suficientemente pequeñas para que no se vea afectada la estabilidad del edificio ni la de ninguno de sus componentes, aunque no pertenezcan al sistema estructural; principalmente cerramientos y acabados que, por su posición, son los que manifiestan más visiblemente las consecuencias de fallos de estabilidad, excesivas deformaciones y roturas. La existencia de un sistema estructural propio de cada edificio constituye una necesidad intrínseca, es decir, es indispensable para su propia existencia. Sin embargo, el enfoque de diseño estructural puede hacerse desde distintas ópticas: sistema estructural adaptado, a veces de manera forzada, al proyecto espacial del edificio; o utilización del sistema de sustentación como idea impulsora del diseño total, ajustando la organización de espacios a unas determinadas necesidades de la estructura. Ambas soluciones, como las intermedias, más usuales, requieren varias etapas de predimensionado y diseño antes de la final, de cálculo real sobre el edificio totalmente proyectado. El suelo y la cimentación La cimentación es aquel subsistema de sustentación encargado de posibilitar la transición y transferencia de las cargas desde la estructura al terreno. Por ello se sitúa generalmente por debajo de la cota 0 y apoya o se empotra en el suelo para constituir el anclaje o sujeción final del edificio. Es usual que los esfuerzos lleguen bastante concentrados al nivel de la cimentación debido al diseño más o menos esbelto de los elementos estructurales verticales y la elevada capacidad resistente de los materiales de que están construidos. No sucede lo mismo con la capacidad portante del terreno que sólo suele alcanzar unos pocos N/mm 2, que incluso a veces no son aprovechables. A consecuencia de lo anterior, los elementos de cimentación deben aumentar considerablemente su base en contacto con el firme para que se pueda producir una transmisión equilibrada, o bien deben ser empotrados, colgados o flotados en el terreno cuando la capacidad de carga de éste es muy baja o nula y hay que recurrir a la resistencia facilitada por el rozamiento de los paramentos del cimiento con el subsuelo. En cualquier caso es el suelo, sea cual sea su naturaleza y resistencia, el destinatario final de la suma de los esfuerzos que son canalizados hasta él por el sistema estructural. Debe analizarse éste para un correcto diseño de la sustentación, y cuando no es así, como sucedía habitualmente en el pasado, las excesivas o imprevistas deformaciones del terreno conducen a estados de deformación de la estructura, mucho más rígida que aquél, que son incompatibles con la estabilidad del edificio, produciendo inicialmente grietas y fisuras, que pueden llegar a generar el colapso o derrumbe definitivo. Las deformaciones del suelo provocadas por las cargas estructurales se denominan asientos, que serán diferenciales cuando oscilan de manera considerable de unos cimientos a otros, debiendo evitarse siempre. Menos graves son los asientos homogéneos, 1

2 siendo de pequeña dimensión, como los que inevitablemente se producen al poner inicialmente en carga el edificio para su uso. Por otro lado, en la mayoría de los edificios actuales, en que se aprovecha espacio por debajo de la rasante de calle, en plantas de sótano, existen elementos estructurales, como muros de contención y muros pantalla que, si bien suelen incluirse dentro del sistema de cimentación, tienen peculiaridades que obligan a su estudio y cálculo particularizados. En estos casos, los elementos estructurales, además de soportar cargas gravitatorias, deben tener capacidad para resistir flexiones laterales y evitar vuelcos, tendencias derivadas del empuje activo que el terreno ejerce sobre ellos. Antes de construir la cimentación, es necesario preparar el terreno, tanto para recibirla correctamente, como para adecuarlo a las nuevas condiciones tensionales a que estará sometido cuando sobre él actúe toda la carga de la construcción. Por ello es conveniente, en consonancia con el carácter del edificio, llevar a cabo un estudio geotécnico previo, con objeto de conocer la naturaleza del terreno, su capacidad resistente y los posibles fallos del subsuelo que puedan obligar a tomar medidas en consecuencia. En base a dicho informe se realiza el definitivo proyecto y cálculo de los cimientos, así como la previsión de los trabajos de refuerzo del suelo que pudieran ser necesarios para la correcta transmisión de los esfuerzos. Por fin, se procede a la preparación del terreno que debe recibir los fundamentos, mediante operaciones de demolición, desbroce, nivelación, desmonte, compactación, inyecciones u otros tratamientos consolidantes, en su caso, y excavación o apertura de huecos para acoger los elementos de la cimentación. Tipología de cimientos La clasificación de los tipos de cimentación posibles para un edificio puede hacerse de distintos modos según las variantes de transmisión de cargas, formas de los elementos o materiales de que se construyen. Un criterio de ordenación bastante general y expresivo puede ser el del tamaño de la porción del terreno a través de la cual se lleva a cabo la transferencia de esfuerzos. Esto depende tanto de la capacidad portante del suelo como de las características formales de la estructura aérea sustentante. 1- Cimentación por puntos: es la más utilizada actualmente en los edificios, dotados de estructuras porticadas y sobre terrenos con firme próximo a la superficie, lo que permite utilizar zapatas de dimensiones reducidas, con moderado volumen de excavación, y consiguiente ahorro económico. No obstante, la existencia de soportes y pilares junto a líneas de medianerías entre solares o con zonas públicas, obliga a combinar las zapatas de borde, que reciben carga excéntrica, con vigas de cimentación destinadas a transmitir los esfuerzos de flexión y la tendencia al vuelco de dichos elementos hacia otras zapatas o cimientos próximos diseñados para poder compensar los momentos adicionales transmitidos. Uno de los principales problemas de este tipo de cimentación puntual es el de los posibles asientos diferenciales, dada la cantidad de zapatas, la diferencia de cargas que reciben y la probable, aunque escasa, heterogeneidad del terreno y su capacidad resistente. Este potencial efecto suele paliarse mediante el enlace sistemático total o parcial de las zapatas mediante vigas o muretes capaces de transmitir flexiones, dentro de los cuales se incluiría el sistema de vigas centradoras. Con este artificio se busca un mayor grado de uniformidad de todo el conjunto de cimientos y, por tanto, una mayor rigidez de cada elemento por la colaboración que le prestan los inmediatos. Cuando el firme o suelo apto para resistir las cargas se encuentra a considerable profundidad, la excavación y construcción de zapatas o pozos de cimentación pueden resultar inviables desde el punto de vista técnico, o demasiado costosas. Entonces suele recurrirse a la cimentación mediante pilotes, elementos lineales muy resistentes que se construyen dentro del terreno o bien se hincan en él con objeto de que trasladen por compresión la carga de los macizos o soportes de la estructura a los planos firmes del subsuelo. Si éstos estuvieran demasiado profundos para una longitud razonable de los pilotes, puede recurrirse a la resistencia del rozamiento con el terreno, aunque carezca de capacidad portante, lo que obliga en general a incrementar el perímetro o el número de los pilotes para alcanzar la suficiente superficie de fricción que compense la totalidad de la carga vertical. 2- Cimentación por líneas: esta solución, de zapata corrida, viene impuesta por un tipo determinado de estructura vertical planar, el muro resistente, tradicional en la historia de la edificación, hoy limitado a pequeños edificios y viviendas unifamiliares. Al aumentar considerablemente el tamaño del plano de apoyo en el terreno, y por tanto disminuir la concentración de cargas a resistir, resulta más apto para cimentar en suelos de escasa capacidad resistente a nivel superficial, pues la profundidad de asiento no puede ser mucha por razones técnicas y económicas. Si la resistencia del suelo fuera nula o con riesgo de corrimientos o hundimientos, convendría el sistema de pilotes, con lo cual la cimentación volvería a ser de tipo puntual, en cuyo caso, la zanja dispuesta a lo largo del pie del muro estructural constituiría un mero estribo o encepado de las cabezas de los pilotes, verdaderos elementos de la cimentación por puntos. 2

3 Cuando la excavación abarca una o varias plantas de sótano, la cimentación perimetral suele consistir en muros de contención o en muros pantalla, respectivamente, que trabajan como elementos resistentes, en el primer caso, ante las cargas verticales y, a la vez, conteniendo permanentemente el empuje del terreno. Las pantallas cumplen la misma función a la vez que permiten el apoyo sobre ellos de los pilares o soportes de la estructura aérea. En esta solución, la cimentación es lineal y profunda, por debajo de la última cota útil, pues debe contener el empuje del terreno circundante hincándose en él, a la vez que constituye la zapata continua, enormemente rígida, que transfiere la carga de la estructura, generalmente porticada. 3- Cimentación por planos: cuando es imposible garantizar la correcta transmisión puntual o lineal de esfuerzos al terreno por ser éste inapto o incapaz de absorberlos, o cuando puede presentar excesivas deformaciones o corrimientos por su naturaleza u otros problemas del subsuelo, puede recurrirse a la cimentación por losas, es decir, por elementos rígidos planares que se extiende bajo toda la extensión del edificio a modo de balsa sobre la que se encuentra flotando. La gran extensión de superficie de transferencia de tensiones hace que en realidad el suelo esté muy poco o nada cargado, minimizándose así los asientos que, por otro lado no pueden ser dispares dado que el cimiento es un todo continuo. Las losas o placas de cimentación pueden adecuarse como cajas invertidas o cajones flotantes, cuando interesa que no se produzca ningún desplazamiento lateral de la losa por efecto de deslizamientos de capas del subsuelo. LECCIÓN 3: LAS FÁBRICAS Las estructuras de fábrica son todas aquellas basadas en la capacidad resistente de determinadas masas de albañilería denominadas fábricas, construidas aparejando piezas o elementos de diversos materiales, como piedra, cerámica y hormigón, por lo general con el concurso de una argamasa o mortero que permite ligar las piezas además de asegurar una mejor transmisión de las cargas. La principal característica de las estructuras de fábrica es la de que, por su constitución, sólo admiten y transmiten esfuerzos de compresión, pero son incapaces de soportar tracciones ni, por tanto, momentos flectores que impliquen estados tensionales de flexión. No obstante, la excentricidad de las cargas o las fuerzas horizontales ocasionales provocan la aparición de pequeños esfuerzos flectores y cortantes, que suelen ser neutralizados sin grandes problemas por las fábricas bien construidas. Las estructuras de fábrica pueden incluirse dentro del sistema estructural denominado de forma activa, que se caracteriza por su capacidad de conducir las cargas exteriores mediante simples tensiones axiles, en este caso de compresión, constituyendo, además, el funicular de las mismas. La solución resistente que proporciona este sistema estructural radica precisamente en su forma, por lo que toda posible desviación de la figura teórica adecuada podría conducir a un fallo de su estabilidad o a la adopción de mecanismos complementarios para neutralizarla. Dicha forma debe acomodarse en lo posible a la trayectoria de los esfuerzos, resultando por ello la expresión material del flujo natural de las tensiones. Actualmente se construyen fábricas estructurales armadas, en las que la introducción de armaduras de refuerzo complementa su capacidad portante a compresión con la posibilidad de resistir esfuerzos transversales y flexiones de determinada magnitud, así como las correspondientes solicitaciones de cortante. Estas soluciones constructivas se acercan más a las estructuras de masa activa, capaces de soportar momentos flectores, si bien con las formas tradicionales de las fábricas, frente a los tipos usuales de estructuras a flexión como pórticos y forjados. El muro Es el más utilizado de los sistemas estructurales a lo largo de la historia para soportar las cargas verticales. Su forma enhiesta, recta y vertical, asegura la normal transición de los esfuerzos de compresión siempre que la resultante de las fuerzas aplicadas sea vertical y se aplique lo más cerca posible de su eje. Para la correcta funcionalidad de los muros es importante dotarlos de una esbeltez adecuada, es de- 3

4 cir, que el espesor, en relación a la altura, tenga una magnitud suficiente para absorber las posibles desviaciones en la aplicación de la carga vertical, y evitar así el pandeo que induce tensiones de flexión inaceptables para la fábrica. Además, el grosor es importante como factor antivuelco si se prevé la aplicación de cargas inclinadas o francamente horizontales, como las cargas de viento o las de origen sísmico. No obstante, en dichos casos, resulta fundamental la colaboración prestada por una correcta cimentación y por el necesario arriostramiento o atirantado de las cabezas de los muros, como lo prueban las soluciones aportadas por la tradición constructiva. Por otro lado, conviene mencionar los muros resistentes de varias hojas, muy frecuentes por la necesidad de incluir capas de aislamiento, en las soluciones modernas, o por conveniencias técnicas, en las soluciones constructivas históricas, con la sistemática utilización de núcleos más o menos regulares y resistentes, chapados exteriormente por capas de fábrica de porte superior y mejor talla. Es estos casos, la prioridad radica en garantizar la correcta traba de las hojas para que en la transmisión de los esfuerzos colabore todo el espesor de los muros y no sólo las capas de mayor rigidez estructural. Un caso especial de muro es el construido en hormigón, no pudiendo considerarse como estructura de fábrica, por su particular naturaleza, aunque su mecanismo resistente, por la forma, sea idéntico en todas las circunstancias. Cabría matizar si se trata de muro de hormigón en masa, poco utilizado, salvo para contención por gravedad, y cuya limitada resistencia a flexión se asemeja más a la capacidad de los muros tradicionales. Por el contrario, los muros de hormigón armado, si bien funcionan perfectamente soportando las cargas verticales, repartidas o concentradas, habitualmente constituyen soluciones específicas para la contención de tierras, siendo su forma de trabajo característica la flexión transversal, es decir perpendicular a su plano. El arco Ancestral invento para solventar estructuralmente los vanos recurriendo exclusivamente a forma asignada a la fábrica para que reciba únicamente tensiones simples de compresión. Esta solución, no obstante, tiene el inconveniente de aportar acciones resultantes inclinadas que deben ser neutralizadas por cualquiera de los procedimientos tradicionales o modernos: macizos de estribo, atirantado, articulaciones y desplazamientos. Si se exceptúan los primitivos arcos falsos, solucionados por desplome o aproximación de las sucesivas hiladas de la fábrica, y que no requerían soportes para su construcción, pero que tampoco pueden identificarse estructuralmente como arcos, todos los adovelados, por claves o de lechos convergentes, requieren la disposición previa de un encofrado o cimbra que resista el peso propio del material, mientras se van disponiendo las dovelas hasta el cierre con la clave y el fraguado y endurecimiento del mortero, en su caso. El tercer problema técnico que presentan los arcos es el de su correcto comportamiento frente a los esfuerzos verticales, que deben transmitirse a los apoyos como compresiones. El cómo éstas discurran aprovechando la capacidad de rozamiento entre las piezas acuñadas, depende en buena medida de su diseño geométrico, pues la proporción entre flecha y luz va a determinar el desarrollo del funicular y, por tanto, el modo de trabajo de las dovelas, favoreciendo o no la aparición de esfuerzos indeseados de flexión y de posibles fallos, localizados preferentemente en la zona de los riñones del arco. El caso particular de arcos de hormigón remite a lo ya visto para los muros. El mecanismo estructural se mantiene, tratándose de elementos resistentes lineales por la forma, admitiendo exclusivamente tensiones de compresión. Sin embargo, su construcción en hormigón, por lo general armado, con capacidad resistente a flexión y cortante, puede permitirles su eventual comportamiento como vigas curvas que es, con frecuencia el verdadero destino de estos arcos. La bóveda Esta antigua solución estructural para la cubrición de espacios utiliza un mecanismo resistente similar al del arco, si bien extendido a toda la superficie del elemento. Se trata del recurso a la forma superficial para conseguir que todas las tensiones, por lo general de compresión, discurran de manera axil o rasante, a lo largo del espesor de la cáscara, sin que se generen solicitaciones ortogonales o de flexión, salvo las eventuales y localizadas, fácilmente asumibles por una fábrica bien construida y lastrada. Los principales problemas que plantearon las bóvedas de fábrica desde los albores de la historia de la arquitectura fueron, en primer lugar, la solución del problema de ejecución, para soportar enormes cargas sobre el vacío hasta llegar a cerrar las claves, resuelto con la disposición de cimbras adecuadas, o de diversos artificios cuando no se contaba con madera suficiente. En segundo lugar, el contrarresto de empujes, difícil de resolver cuando se construían bóvedas continuas, como las de cañón, obligando a fuertes espesores de sus muros de apoyo, y de más fácil solución en los casos de las bóvedas de nervaduras que localizan los empujes en lugares precisos, donde colocar los elementos de estribo, o de cúpulas que permiten un atirantado en anillo. 4

5 LECCIÓN 4: ESTRUCTURAS ENTRAMADAS Estructuras entramadas verticales Los muros entramados son armazones de madera ensamblados, susceptibles de reemplazar un muro de fábrica en una edificación. Se compone de piezas verticales ligadas a otras horizontales, estando, además, triangulado el conjunto para impedir su deformación, por medio de piezas oblicuas o riostras. En la construcción tradicional los espacios del muro comprendidos entre las piezas de madera del entramado se rellenan con distintos materiales, según variantes históricas o áreas geográficas, como el tapial, adobe, ladrillo, mampostería de piedra o de cal y canto, incluso con yesones o materiales pobres cuando el revoco exterior garantiza la protección del relleno. El sistema de entramado tradicional de la arquitectura popular española consta de una solera que se apoya en el basamento o zócalo de fábrica, en la que se apoyan los postes o pies derechos, que van ensamblados, a su vez, por la parte superior a la carrera, bien directamente o a través de una zapata. Este conjunto queda consolidado por medio de piezas oblicuas, riostras, en las que se ensamblan piezas verticales cortas o virotillos. En los ángulos se colocan postes más resistentes, de tramos de una o varias plantas y grosor superior a 25 cm., llamados cornijales. Junto a puertas y ventanas, los postes constituyen las jambas, a las que se ensamblan por encima y debajo del hueco, los dinteles y peanas, llevando a veces postes cortos entre peana y carrera o solera llamados pilarejos. Cuando el entramado ha de sostener un suelo o forjado, las viguetas se colocan entre la carrera y la sobrecarrera, pieza que viene a ser la solera del entramado correspondiente al piso superior. Los tabiques de distribución se apoyan en carreras que están cubiertas por el pavimento y colocadas perpendicularmente a las viguetas, si ello es posible. Sistemas porticados: Los tipos estructurales más frecuentes en la arquitectura actual utilizan prioritariamente el mecanismo resistente de la flexión, para recoger las cargas aportadas por los forjados, losas y placas de los edificios en altura, con varias plantas superpuestas. La disposición horizontal de las vigas obliga a desviar casi un ángulo recto la dirección de las tensiones originadas por cargas verticales, y ello es posible porque se constituye un par de solicitaciones de compresión y tracción que curvan la directriz, compensando así el par flector exterior. Como el momento flector suele variar a lo largo de la directriz de la pieza, disminuyendo hacia los apoyos, aparece un esfuerzo cortante que, por el contrario, suele decrecer hacia el centro del elemento. En las vigas es muy importante la masa, pues su deformación posibilita la transmisión de las tensiones. No obstante, puesto que aparece un par interior de compresiones y tracciones, el comportamiento mejorará cuanto mayor sea el brazo del par, es decir, el canto o anchura de la viga en el plano de flexión. Por ello no siempre es procedente aumentar la sección de la pieza sino sólo su canto, lo que garantiza un buen momento resistente y masa suficiente para resistir el cortante. No obstante, esto puede ser a veces un inconveniente, si predomina el interés por la funcionalidad de los espacios, y es preciso recurrir al empleo de vigas planas. Incluso es posible optimizar la sección disponiendo las masas resistentes a compresión y tracción lo más concentradas y alejadas que sea posible del eje, en forma de cordones o alas, que se unen mediante una mínima masa en el canto, el alma, suficiente para soportar la tensión de cortadura y el pandeo. Las vigas se construyen con distintas soluciones de apoyo, lo que hace variar sensiblemente las condiciones resistentes y, por tanto, el diseño de las piezas. La viga apoyada en más de dos puntos, conocida como viga continua, es una de las más frecuentes. También la viga con uno o dos empotramientos en sus extremos, y la que cuenta con un apoyo en dilatación, que puede desplazarse para absorber los incrementos o disminuciones de su longitud, debidos a las variaciones térmicas. El pórtico es la asociación de viga y pilares, con enlaces más o menos rígidos, para constituir una unidad estructural en que, por lo general, las vigas reciben la carga de los forjados y la transmiten a los pilares que, a su vez, actúan como mecanismos estructurales trabajando a flexión, ya que recogen no sólo los esfuerzos normales o gravitacionales de las vigas, sino que éstas al deformarse, trasladan a los nudos, y por tanto a los soportes, los correspondientes momentos flectores y esfuerzos cortantes inducidos. En los edificios con varias plantas y crujías, los pórticos son múltiples, es decir, que constan de las correspondientes alturas y vanos. Además, suelen existir otros pórticos ortogonales que colaboran en el arriostramiento transversal de los planos estructurales. El cálculo de estos sistemas ha de tener en cuenta el tipo de material, hormigón armado o acero laminado; el número de plantas; la rigidez general frente a esfuerzos horizontales y las condiciones hiperestáticas previstas. Estructuras entramadas horizontales 5

6 Son los planos estructurales funcionales de los edificios, coincidentes con los pisos o suelos, encargados de recibir la carga directa de las personas y objetos que los habitan. Su mecanismo de funcionamiento es también el de flexión, pues deben organizar la masa estructural de manera que traslade horizontalmente las cargas verticales hacia las vigas o muros, lo que conlleva la generación de momentos flectores. 1- Forjados: las estructuras horizontales por excelencia, usadas desde la antigüedad, se basan en la disposición de una serie de viguetas paralelas y próximas unas de otras, sobre las que apoyan elementos más o menos delgados y rígidos para constituir las superficies de apoyo propiamente dichas. Los pisos entramados tradicionales constan de viguetas, apoyadas en los muros o las carreras perimetrales y en muros o jácenas intermedios, cuando el vano es superior a cinco o seis metros, según la escuadría de las piezas. Las viguetas solían arriostrarse mediante palos o flejes cruzados, o bien con tablas ensambladas a los tablones que ejercen de viguetas. Cuando debe salvarse un vano para escaleras o chimeneas, las correspondientes viguetas llamadas cojas se apoyan en brochales o viguetas transversales que bordean el hueco. Mucho más utilizados en la actualidad son los forjados rígidos unidireccionales que, en colaboración con los pórticos de hormigón armado o de acero laminado, organizan de manera coherente y unitaria la sustentación de edificios de varias plantas. Dichos forjados suelen constituirse mediante viguetas o semiviguetas de hormigón armado o pretensado, empotradas en las jácenas, y una delgada capa de compresión, de hormigón armado, que se encofra sobre bovedillas aligerantes apoyadas, a su vez, sobre las viguetas. 2- Losas: se caracterizan por constituir elementos de espesor estructural constante, y por lo general más pesados que los forjados, que se apoyan en dos de sus lados opuestos. Su rigidez estructural debe permitir el trabajo a flexión no sólo en la dirección principal entre apoyos, sino en la transversal, de orden secundario, para resistir las solicitaciones causadas por fuerzas concentradas o desigualmente repartidas de una banda a otra. Se construyen sobre todo en hormigón armado o pretensado y, con frecuencia, forman parte de soluciones de edificación industrializada, con frecuencia a base de sistemas de grandes paneles. La variante conocida como losa nervada es, en realidad, un conjunto de vigas en T yuxtapuestas sin solución de continuidad. 3- Placas: suele otorgarse esta denominación a las losas apoyadas en todo su contorno, generalmente cuatro lados, por lo que aparecen sistemáticamente flexiones de magnitud similar en las dos direcciones ortogonales del elemento. Las placas suelen construirse en hormigón armado o pretensado, de rigidez suficiente para mayores cargas y vanos, si bien a costa de un peso superior al de los forjados; con la ventaja de poder cubrir superficies de contornos no regulares, e incluso, sin líneas perimetrales definidas, como sucede con los forjados reticulares, que son placas nervadas apoyadas exclusivamente en pilares o soportes no necesariamente alineados u ordenados en pórticos. Estructuras trianguladas Se caracterizan por su organización triangulada, a base de barras rectas, cortas y sólidas, como componentes estructurales lineales que, debido a su escasa sección en relación con su longitud, transmiten exclusivamente esfuerzos axiles en la dirección de ésta: de compresión y de tracción. Son, por tanto, de sistemas de elementos múltiples, cuyo mecanismo estructural consiste en el trabajo concertado de todas las piezas, comprimidas o extendidas, enlazadas mediante nudos más o menos articulados donde se efectúa el cambio de dirección y descomposición de las cargas exteriores. De este modo son capaces de dirigir las fuerzas y transmitir las cargas a grandes distancias sin soportes intermedios. Los tipos más utilizados son las vigas celosía y las cerchas, entre los sistemas planos. Las cerchas tradicionales de madera se componen de las siguientes piezas: pares, tirantes, puente o falso tirante, pendolón o péndola, tornapunta, marqueta (pieza vertical de función similar a la de la tornapunta), tirantillo (hierro redondo que sostiene al tirante). En muchas edificaciones no se construían entramados o armaduras con elementos estructurales diferenciados, como las cerchas, sino formando un conjunto unitario que se extendía en toda la longitud de la cubierta. Sus piezas constituyentes principales son: Parhilera o cumbrera, correas, cuñas o egiones (donde estriban las correas), cabrios, cabios o parecillos (viguetas o pares que forman la pendiente); listones (piezas pequeñas transversales o correas, donde se apoya el tejado); entablado con chillas o ripias, bajo tejado de teja árabe; carrera o estribo (pieza horizontal, colocada sobre el muro para recibir los cabios); limatesa y limahoya; cuadral (arriostrando a 45 los tirantes de los ángulos entrantes); aguilón (pieza que va desde el ángulo del edificio hasta el cuadral); jabalcón; cruces de San Andrés (para rigidizar paños de faldón). También se construyen soluciones a base de planos curvos triangulados de simple o doble curvatura y de 6

7 curvatura negativa. Y sistemas triangulados espaciales, constituidos por elementos planos rectos o curvos formados por retículas de vectores en las tres direcciones del espacio. Estructuras laminares Están constituidas por elementos delgados, las láminas, cuyas características principales, en las que se basa el mecanismo resistente, son la continuidad superficial y la forma específica. Por ello, se consideran tipos de sustentación de superficie activa. Todos ellos se integran también dentro de los tipos estructurales de forma activa, puesto que la disposición de los tensados o la forma de las telas hinchadas requieren es determinante para conseguir resistencia en elementos sin ninguna rigidez. Si bien los principales componentes trabajan a tracción, el sistema debe completarse con otros elementos rígidos y resistentes a compresión y flexión, que son los que reciben la tracción de los anclajes de cables y telas: tales son los tubos, postes o vástagos que reciben el peso de tiendas y telas tensadas de cubiertas, o las pilas, ménsulas o brazos que reciben la tensión de los cables en los puentes colgantes. Las láminas deben estar dotadas de rigidez estructural en las dos direcciones dentro de la superficie o plano de sustentación, que les proporciona resistencia superficial a los esfuerzos de compresión y tracción. Por otro lado, al ser elementos delgados, los esfuerzos de flexión ortogonales a la lámina, y los consiguientes cortantes son poco considerables, por lo que pueden despreciarse frente a las tensiones en el plano. No obstante, la rigidez y el armado o continuidad material deben garantizar suficiente resistencia a esfuerzos localizados o abolladuras eventuales La adecuación estructural de la forma se consigue dotando a la lámina de cierta inclinación en la dirección de las cargas, lo mismo que en arcos y bóvedas de fábrica, por medio del plegado o curvado de la superficie. De este modo es posible conciliar la contradicción entre la eficacia horizontal para cubrir espacios, propia de las placas, y la eficiencia vertical en la resistencia de los pesos, típica de las vigas con canto. Los tipos principales de láminas son: plegadas, de simple curvatura, de revolución y de curvatura negativa, en que, además de los mecanismos resistentes de placa y de laja, utilizan los de pórtico, de arco, anulares. Estructuras tensadas Se caracterizan por contener elementos que soportan exclusivamente esfuerzos de tracción, y en los que la forma que adoptan, sean elementos lineales o superficiales, es decisiva para determinar la distribución de las tensiones. Al estar tensados los elementos suelen requerir menores secciones o espesores de materiales muy resistentes, como el acero o las fibras textiles sintéticas. Entre los principales tipos se encuentran el sistema de cables, lineal del que se derivan otros dos: el sistema de tienda: telas tensadas por cables constituyendo superficies que trabajan exclusivamente a tracción. Y los sistemas neumáticos: tejidos constituyendo superficies que mantienen su forma por efecto de la presión del aire en su interior. 7

Tema 11:Vigas, pilares y pórticos

Tema 11:Vigas, pilares y pórticos Tema 11:Vigas, pilares y pórticos 1. Vigas. El trabajo a flexión: canto y rigidez. 2. Pilares. El trabajo a compresión y el Pandeo. 3. Uniones de elementos estructurales lineales: nudos. 4. El pórtico

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación Introducción DAÑOS EN ELEMENTOS NO ESTRUCTURALES (PARTE I) Las patologías en elementos estructurales suelen llevar consigo daños en los elementos no estructurales que conforman el conjunto constructivo.

Más detalles

ARRIOSTRAMIENTOS - 1 -

ARRIOSTRAMIENTOS - 1 - 1. DE EDIFICIOS INDUSTRIALES Los arriostramientos se consideran habitualmente elementos secundarios en las estructuras, sin embargo conviene no prescindir de ellos para que el comportamiento del conjunto

Más detalles

Tema 12: El contacto con el terreno.

Tema 12: El contacto con el terreno. Tema 12: El contacto con el terreno. Parte I: Cimentación:Transferencia de cargas de la estructura al terreno Parte II: Contención de tierras y mejora de suelos: Cerramientos en contacto con el terreno,

Más detalles

Objetivos docentes del Tema 10: Tema 10:Muros

Objetivos docentes del Tema 10: Tema 10:Muros Tema 10:Muros 1. La construcción masiva. 2. Comportamiento mecánico del muro. 3. Estabilidad lateral. 4. Tipos de muros. 5. Fábricas y Aparejos. 6. Muros homogéneos. 7. Paneles prefabricados. 8. Discontinuidades

Más detalles

Otros ejemplos de estructuras son: coches, mesas, bolígrafos, pizarra, lámparas, relojes,

Otros ejemplos de estructuras son: coches, mesas, bolígrafos, pizarra, lámparas, relojes, Tema 2. ESTRUCTURAS En la naturaleza podemos encontrar estructuras como los esqueletos, el caparazón de una tortuga o la concha de una ostra, pero el ser humano ha sabido construir las propias para resolver

Más detalles

Objetivos docentes del Tema 8:

Objetivos docentes del Tema 8: Tema 8:Sistemas estructurales 1. Las acciones mecánicas. Estabilidad y Resistencia. 2. Transmisión de cargas gravitatorias y horizontales. 3. Deformación de la estructura y movimientos del edificio. 4.

Más detalles

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción TIDE - ESTRUCTURAS IV 1 POLIGONO FUNICULAR Consideramos en primer término un cable estirado entre dos puntos fijos, con una sola carga aplicada en su punto medio. Bajo la acción de la carga, el cable adopta

Más detalles

Cimentación. Zapata, Cimientos Corridos y Pilotes

Cimentación. Zapata, Cimientos Corridos y Pilotes Cimentación Zapata, Cimientos Corridos y Pilotes Que es..? Cimentación Las cimentaciones o también llamadas fundaciones, es la parte de la construcción que se apoya sobre el terreno, se constituye así

Más detalles

Objetivos docentes del Tema 10:

Objetivos docentes del Tema 10: Tema 10: Muros 1. La construcción masiva 2. Tipos de muros 3. Muros de fábrica 4. Muros homogéneos 5. Muros a base de paneles prefabricados 6. Comportamiento mecánico y estabilidad de los muros 7. Estabilidad

Más detalles

Tema 12: El contacto con el terreno.

Tema 12: El contacto con el terreno. Tema 12: El contacto con el terreno. Parte I: Cimentación Transferencia de cargas de la estructura al terreno Parte II: Contención de tierras y mejora de suelos Cerramientos en contacto con el terreno,

Más detalles

UNIVERSIDAD ANTONIO NARIÑO. Fundamentación Estructural y Ambiental Arq. Jorge Luis Plazas H.

UNIVERSIDAD ANTONIO NARIÑO. Fundamentación Estructural y Ambiental Arq. Jorge Luis Plazas H. MUROS CUBIERTAS REVESTIMIENTOS Definición Los muros son los elementos constructivos que cargan, soportan, aíslan o dividen espacios. Clasificación Los muros se clasifican por su TRABAJO MECÁNICO en: Carga,

Más detalles

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO LOS MUROS DE CONTENCIÓN SON ELEMENTOS QUE SE USAN PARA CONTENER TIERRA, AGUA, GRANOS Y DIFERENTES MINERALES, CUANDO HAY DESNIVELES QUE CUBRIR.

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo

Más detalles

Cálculo y elección óptima de un depósito de agua 199

Cálculo y elección óptima de un depósito de agua 199 Cálculo y elección óptima de un depósito de agua 199 CAPÍTULO 6 CONCLUSIONES 6.1.- INTRODUCCIÓN En este capítulo se exponen las conclusiones que se derivan de los distintos estudios desarrollados a lo

Más detalles

cimentaciones especiales muros pantalla, pilotes pantalla,, micropilotes, , drenajes,, e impermeabilización y reparación visión global

cimentaciones especiales muros pantalla, pilotes pantalla,, micropilotes, , drenajes,, e impermeabilización y reparación visión global PANTALLAX S.L. es la empresa líder en el diseño, cálculo y ejecución de sótanos y parkings llave en mano mediante cimentaciones especiales; tales como: muros pantalla, fresados de muros, pilotes pantalla,

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA.

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA. VIGAS EN CELOSÍA. 1. Introducción. Cuando necesitamos salvar luces importantes (a partir de 10-15 m por ejemplo), o necesitamos tener vigas de cantos importantes, puede resultar más económico utilizar

Más detalles

PUENTES TÉRMICOS. En el Apéndice A del HE1 se clasifican los puentes térmicos más comunes en la edificación:

PUENTES TÉRMICOS. En el Apéndice A del HE1 se clasifican los puentes térmicos más comunes en la edificación: PUENTES TÉRMICOS Definición Los puentes térmicos son zonas de la envolvente térmica donde hay una variación en la uniformidad de la construcción, produciéndose una minoración de la resistencia térmica

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Estructuras Metálicas

Estructuras Metálicas Estructuras Metálicas I. Medios de unión II. Elementos compuestos III. Ejecución de nudos y apoyos IV. Estructuras reticulares (armaduras) V. Naves industriales Estructuras Metálicas I. Medios de unión

Más detalles

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional Curso: Eurocódigo 3 Módulo 4 : Eurocódigo para Estructuras de cero Desarrollo de Una Propuesta Transnacional Lección 10: Resumen: La resistencia de una pieza a tracción se obtiene suponiendo que la sección

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

PUENTE SAN SEBASTIAN

PUENTE SAN SEBASTIAN PUENTE SAN SEBASTIAN Leonardo FERNÁNDEZ TROYANO Dr. Ingeniero de Caminos Carlos Fernández Casado, S.L cfcsl@cfcsl.com Lucía FERNÁNDEZ MUÑOZ Ingeniero de Caminos Carlos Fernández Casado, S.L. luciafm@cfcsl.com

Más detalles

Artículos técnicos sobre prevención en construcción

Artículos técnicos sobre prevención en construcción Artículos técnicos sobre prevención en construcción SISTEMA V DE REDES DE SEGURIDAD SISTEMA V ETOSA bip 140 PREVENCIÓN SISTEMA V DE REDES DE SEGURIDAD SISTEMA V ETOSA. De todos es conocida la existencia

Más detalles

[ GUIA DE EVALUACION PREVIA DE DAÑOS SISMICOS ] PATRICIO LORCA P. Arquitecto P.U.C Magíster en Arquitectura P.U.C. I.C.A: 7685 pjlorca@puc.

[ GUIA DE EVALUACION PREVIA DE DAÑOS SISMICOS ] PATRICIO LORCA P. Arquitecto P.U.C Magíster en Arquitectura P.U.C. I.C.A: 7685 pjlorca@puc. 2010 PATRICIO LORCA P. Arquitecto P.U.C Magíster en Arquitectura P.U.C. I.C.A: 7685 pjlorca@puc.cl [ GUIA DE EVALUACION PREVIA DE DAÑOS SISMICOS ] Documento que guiará al interesado para realizar una autoevaluación

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Colocación Guttadytek

Colocación Guttadytek Colocación Guttadytek Encofrado areados La correcta realización de un encofrado con guttadrytek y la sucesiva colada final debe ejecutarse siguiendo los pasos siguientes: 1) Nivelar el terreno de la solera/

Más detalles

PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA

PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA Para facilitar al prescriptor el cálculo de estructuras con muros de carga de ladrillo o bloque cerámico, Hispalyt y

Más detalles

TEMA LA EDIFICACIÓN Y EL SUELO. CONSTRUCCIÓN 1. Prof. Mercedes Ponce

TEMA LA EDIFICACIÓN Y EL SUELO. CONSTRUCCIÓN 1. Prof. Mercedes Ponce TEMA LA EDIFICACIÓN Y EL SUELO. 1 Planteamiento Docente TEMA 13 El edificio y El muro TEMA 1: PLANTEAMIENTO GENERAL DEL PROBLEMA CONSTRUCTIVO TEMA 2: LA ARQUITECTURA Y EL SOL TEMA 3: LA ARQUITECTURA Y

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fs= obprbiqlp=`lk=bi=`qb= = `ìêëçë=ommtlmu=ó=ommulmv= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

Para la puesta en obra de estos cerramientos, se consideran los siguientes datos:

Para la puesta en obra de estos cerramientos, se consideran los siguientes datos: DAMIÁN SORIANO GARCÍA JOSÉ JACINTO DE CASTRO DE CASTRO Ingeniero T. / Arquitecto T. Ingeniero T. Bombero del Consorcio Cuenca 112 Jefe Bomberos Tomelloso. Introducción Los Cerramientos Prefabricados son

Más detalles

Criterios para la realización de trabajos en altura IT-PRL-02/1. Índice

Criterios para la realización de trabajos en altura IT-PRL-02/1. Índice Índice 1. Objeto 2. Ámbito de aplicación 3. Criterios 3.1. Vías de circulación 3.2. Accesos 3.3. Escaleras de mano 3.4. Vías de evacuación 3.5. Luces de emergencia 1. Objeto Esta instrucción tiene por

Más detalles

Los sistemas de aislamiento

Los sistemas de aislamiento VENTAJAS TÉCNICAS SOLUCIONES DEL SATE A LAS EXIGENCIAS DEL CTE PUENTES TÉRMICOS, CONDENSACIONES, ETC. Los sistemas de aislamiento térmico de fachadas por el exterior presentan una serie de características

Más detalles

PROYECTO DE EMPUJE DEL PUENTE SOBRE EL CANAL DE BEAUHARNOIS (MONTREAL, CANADÁ)

PROYECTO DE EMPUJE DEL PUENTE SOBRE EL CANAL DE BEAUHARNOIS (MONTREAL, CANADÁ) V CONGRESO DE 1/10 PROYECTO DE EMPUJE DEL PUENTE SOBRE EL CANAL DE BEAUHARNOIS (MONTREAL, CANADÁ) Hugo CORRES PEIRETTI Dr. Ingeniero de Caminos, Canales y Puertos FHECOR Presidente hcp@fhecor.es Javier

Más detalles

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9 Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para

Más detalles

TÉCNICAS DE MEJORA DE TERRENOS

TÉCNICAS DE MEJORA DE TERRENOS TÉCNICAS DE MEJORA DE TERRENOS Julio García-Mina Ingeniero de Caminos Director General KELLERTERRA, S.L. TÉCNICAS DE MEJORA DE TERRENOS 1. Introducción La mejora del terreno como solución a la cimentación

Más detalles

PARTE I. GENERALIDADES SOBRE LA CONSTRUCCIÓN EN ACERO.

PARTE I. GENERALIDADES SOBRE LA CONSTRUCCIÓN EN ACERO. PARTE I. GENERALIDADES SOBRE LA CONSTRUCCIÓN EN ACERO. 1. INTRODUCCIÓN 2. EL ACERO Y EL HORMIGÓN 3. ACERO LAMINADO U HORMIGÓN ARMADO. 4. NORMAS Y DISPOSICIONES SOBRE LA CONSTRUCCIÓN EN ACERO. 4.1 Ministerio

Más detalles

Estanterías Simplos para cargas ligeras

Estanterías Simplos para cargas ligeras Estanterías Simplos para cargas ligeras Estanterías Simplos Estanterías Simplos El sistema de almacenaje Simplos proporciona la mejor solución a las más diversas necesidades de almacenaje de cargas medias

Más detalles

TEMA: SISTEMAS ESTRUCTURALES VERTICALES

TEMA: SISTEMAS ESTRUCTURALES VERTICALES TEMA: SISTEMAS ESTRUCTURALES VERTICALES QUÉ ES UN SISTEMA ESTRUCTURAL VERTICAL? En que se basa el sistema de tubo? qué nos permite el sistema de tubos en paquete? qué tipo de sistema ocupa a torre Sears

Más detalles

TABLERO TECOWOB TABLERO TECOWOB. Forjados ligeros que facilitan el montaje de techos y tabiquería en seco.

TABLERO TECOWOB TABLERO TECOWOB. Forjados ligeros que facilitan el montaje de techos y tabiquería en seco. TABLERO TECOWOB TABLERO TECOWOB Forjados ligeros que facilitan el montaje de techos y tabiquería en seco. Ahorro de tiempo y reducción de costes garantizados. infor@socyr.com La edificación ha evolucionado

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

MUSEO DE SAN ISIDRO. MADRID, 1989.

MUSEO DE SAN ISIDRO. MADRID, 1989. Control gráfico de formas y superficies de transición Torre de San Isidro MUSEO DE SAN ISIDRO. MADRID, 1989. Francisco Alonso. Proyecto no construido. 249 Torre de San Isidro Control gráfico de formas

Más detalles

CAPÍTULO I. Sistemas de Control Distribuido (SCD).

CAPÍTULO I. Sistemas de Control Distribuido (SCD). 1.1 Sistemas de Control. Un sistema es un ente cuya función es la de recibir acciones externas llamadas variables de entrada que a su vez provocan una o varias reacciones como respuesta llamadas variables

Más detalles

11 knúmero de publicación: 2 150 799. 51 kint. Cl. 7 : B65G 1/02

11 knúmero de publicación: 2 150 799. 51 kint. Cl. 7 : B65G 1/02 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 799 1 kint. Cl. 7 : B6G 1/02 A47B 47/02 12 k TRADUCCION DE PATENTE EUROPEA T3 86 knúmero de solicitud europea: 98221.0 86

Más detalles

Estructuras. Estructura de un techo. A Estructura de madera ESTRUCTURAS

Estructuras. Estructura de un techo. A Estructura de madera ESTRUCTURAS Estructuras Estructura de un techo Es el elemento de sostén de la cubierta. Es la encargada de soportar además de su peso propio y el de la cubierta en sí, las cargas eventuales que pueda recibir la cubierta,

Más detalles

CAPITULO 6 LA VIVIENDA UNIFAMILIAR

CAPITULO 6 LA VIVIENDA UNIFAMILIAR CAPITULO 6 LA VIVIENDA UNIFAMILIAR 6.1 Vivienda unifamiliar. Se define como vivienda unifamiliar la edificación tipo chalet o duplex de una sola planta que se apoye directamente sobre el suelo. 6.2 Diseño

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación 31 Introducción En esta segunda parte, como ya adelantamos en la ficha anterior, haremos referencia a las técnicas de prevención y de reparación más usuales para paliar los daños que pueden producirse

Más detalles

Ingeniería Gráfica Aplicada

Ingeniería Gráfica Aplicada Acotación Ingeniería Gráfica Aplicada Curso 2010-11 Manuel I. Bahamonde García Índice Acotación 1. Principios generales de acotación 2. Método de acotación 3. Acotación de círculos, radios, arcos, cuadrados

Más detalles

1. DESCRIPCIÓN DEL SISTEMA.

1. DESCRIPCIÓN DEL SISTEMA. 1. DESCRIPCIÓN DEL SISTEMA. 1.1 INTRODUCCIÓN El sistema Steel Framing (SF), como se le conoce a nivel mundial, es un sistema constructivo de concepción racional, cuya principal característica es una estructura

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

INTRODUCCIÓN RESEÑA HISTÓRICA

INTRODUCCIÓN RESEÑA HISTÓRICA INTRODUCCIÓN RESEÑA HISTÓRICA La cimentación profunda ha sido aplicada desde tiempos prehistóricos. Hace 12,000 años los habitantes de Suiza introducían troncos de madera en los suelos blandos de lagos

Más detalles

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS 2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS En este capítulo se exponen los aspectos más relevantes para este proyecto, acerca de las placas

Más detalles

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado.

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3.1. Generalidades Las zapatas son miembros estructurales que se encargan de transmitir la carga total de columnas, pilares o

Más detalles

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES Este es un producto diseñado e impulsado en Venezuela desde hace mas de 10 años por un grupo de Ingenieros Mecánicos y Arquitectos, que junto con un equipo

Más detalles

II.7. Estructuras de soporte

II.7. Estructuras de soporte II.7. Estructuras de soporte Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 II.7. Estructuras de soporte

Más detalles

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO 1- Calcular, gráfica y analíticamente, la tensión en los cables que sostienen una lámpara de 30 Kg. de peso. El centro

Más detalles

11 Número de publicación: 1 059 420. 21 Número de solicitud: U 200500128. 51 Int. Cl. 7 : B42D 15/10. 72 Inventor/es: Roig Ayora, María

11 Número de publicación: 1 059 420. 21 Número de solicitud: U 200500128. 51 Int. Cl. 7 : B42D 15/10. 72 Inventor/es: Roig Ayora, María 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 1 09 4 21 Número de solicitud: U 000128 1 Int. Cl. 7 : B42D 1/ 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación: 13.01.0

Más detalles

Capítulo 1 Introducción y análisis de sistemas CNC

Capítulo 1 Introducción y análisis de sistemas CNC Capítulo 1 Introducción y análisis de sistemas CNC INTRODUCCIÓN La evolución del control numérico ha producido la introducción del mismo en grandes, medianas, familiares y pequeñas empresas, lo que ha

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Concreto y Acero. Refuerzos en muros

Concreto y Acero. Refuerzos en muros Refuerzos en muros Los elementos de soporte principal de la vivienda son básicamente los muros, que se construyen con mampostería, es decir, que se colocan piezas sólidas o huecas, pegadas con mortero.

Más detalles

GRIETAS EN MURO DE CARGA DE LADRILLO CARAVISTA EN UNA VIVIENDA UNIFAMILIAR EN ZARATAN

GRIETAS EN MURO DE CARGA DE LADRILLO CARAVISTA EN UNA VIVIENDA UNIFAMILIAR EN ZARATAN GRIETAS EN MURO DE CARGA DE LADRILLO CARAVISTA EN UNA VIVIENDA UNIFAMILIAR EN ZARATAN Anabel Domínguez Martín 3º Arquitectura Técnica. Grupo Tarde Información previa. Conocimiento del edificio y sus circunstancias.

Más detalles

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS Ing. Eduardo Pedoja Profesor de Hormigón Armado y Proyecto Facultad de Ingeniería, Universidad de Montevideo Una de las causas más frecuentes de la aparición

Más detalles

6 TECHOS. 6.1 Conceptos Generales

6 TECHOS. 6.1 Conceptos Generales 6 TECHOS 6.1 Conceptos Generales Al igual que para paneles y entrepisos, de acurdo con lo ya visto en los capítulos anteriores, una estructura de techos resuelta con Steel Framing tiene como concepto principal

Más detalles

Int. Cl. 7 : B28B 7/22

Int. Cl. 7 : B28B 7/22 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k Número de publicación: 2 161 621 21 k Número de solicitud: 00990196 1 k Int. Cl. 7 : B28B 7/22 B28B 7/36 k 12 SOLICITUD DE PATENTE A1 22 kfecha de

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

MECÁNICA PARA INGENIEROS. PRÁCTICAS Y PROBLEMAS RESUELTOS

MECÁNICA PARA INGENIEROS. PRÁCTICAS Y PROBLEMAS RESUELTOS MECÁNICA PARA INGENIEROS. PRÁCTICAS Y PROBLEMAS RESUELTOS Mecánica para ingenieros. Prácticas y problemas resueltos Ramón Peral Orts Abel R. Navarro Arcas José M. Marín López ISBN: 978-84-9948-113-5 Depósito

Más detalles

ESCALERAS DE HORMIGÓN ARMADO

ESCALERAS DE HORMIGÓN ARMADO ESCALERAS DE HORMIGÓN ARMADO Fuente: www.vitadelia.com Una escalera es uno de los recursos arquitectónicos que, con más frecuencia, se utiliza para comunicar espacios situados en diferentes planos. Breve

Más detalles

Fuerza Cortante y Momento Flector

Fuerza Cortante y Momento Flector TEMA VI Fuerza Cortante y Momento Flector Mecánica Racional 10 Profesora: Nayive Jaramillo S. Contenido Vigas. Pórticos. Fuerza Cortante (V). Momento Flector (M). Convenio de signos. Diagramas de fuerza

Más detalles

CYPECAD TEMARIO PARA 100 horas

CYPECAD TEMARIO PARA 100 horas CYPECAD TEMARIO PARA 100 horas MÓDULO 1: DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Contenido: Durante el desarrollo de este módulo se realizarán varios ejemplos de cálculo de menor a mayor complejidad

Más detalles

LÍNEAS DE VIDA HORIZONTALES

LÍNEAS DE VIDA HORIZONTALES LÍNEAS DE VIDA HORIZONTALES LÍNEAS DE VIDA HORIZONTALES Por líneas de vida fijas entendemos aquellos dispositivos de anclaje que podemos encontrar en lugares con riesgo de caídas de altura, teniendo por

Más detalles

ACI 318-14: Reorganizado para Diseñar. Generalidades, Notación, y Normas. Adoptado legalmente Versión oficial Inglés, libras-pulgadas

ACI 318-14: Reorganizado para Diseñar. Generalidades, Notación, y Normas. Adoptado legalmente Versión oficial Inglés, libras-pulgadas ACI 318S-14 - Generalidades, notación y normas Requisitos de Reglamento para concreto estructural ACI 318-14: Reorganizado para Diseñar Generalidades, Notación, y Normas WWW.CONCRETE.ORG/ACI318 1 Capítulo

Más detalles

Por qué es importante la planificación?

Por qué es importante la planificación? Por qué es importante la planificación? La planificación ayuda a los empresarios a mejorar las probabilidades de que la empresa logre sus objetivos. Así como también a identificar problemas claves, oportunidades

Más detalles

Organización como función administrativa Resumen para Administración y Gestión Profesor: Gonzalo V.

Organización como función administrativa Resumen para Administración y Gestión Profesor: Gonzalo V. Organización como función administrativa Introducción: Organización rganización como función administrativa En las organizaciones que se caracterizan por estar orientadas al éxito, a la eficiencia y al

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

Guía para la elaboración de Proyectos de Formación Sindical Ambiental e Investigación en Trabajo y Desarrollo Sustentable

Guía para la elaboración de Proyectos de Formación Sindical Ambiental e Investigación en Trabajo y Desarrollo Sustentable Guía para la elaboración de Proyectos de Formación Sindical Ambiental e Investigación en Trabajo y Desarrollo Sustentable 1- Denominación del Proyecto Esto se hace indicando, de manera sintética y mediante

Más detalles

BD Bacatá: Diseñando la cimentación del edificio más alto de Colombia

BD Bacatá: Diseñando la cimentación del edificio más alto de Colombia 32 diseño BD Bacatá: Diseñando la cimentación del edificio más alto de Colombia Ingeniero Alejandro Pérez Silva Proyectos y Diseños Ltda. La magnitud de las cargas, la profundidad de la excavación junto

Más detalles

CIMENTACIONES ESPECIALES PARA RECALCES DE ESTRUCTURAS

CIMENTACIONES ESPECIALES PARA RECALCES DE ESTRUCTURAS CIMENTACIONES ESPECIALES PARA RECALCES DE ESTRUCTURAS 1 Introducción Las cimentaciones especiales son el principio de toda construcción, en el que debido a causas del terreno o a las excesivas cargas a

Más detalles

Junckers Ibérica, S.A.

Junckers Ibérica, S.A. Presentación Junckers Ibérica, S.A. - 1 - SUELOS DE MADERA La madera Es un producto natural y agradable que nos conecta con la propia naturaleza. Su producción controlada no causa deterioro del medio ambiente,

Más detalles

CIUDAD HOSPITALARIA DE PANAMA DISEÑO ESTRUCTURAL CRITERIOS PARA LA ELECCIÓN DEL SISTEMA ESTRUCTURAL EMPLEADO

CIUDAD HOSPITALARIA DE PANAMA DISEÑO ESTRUCTURAL CRITERIOS PARA LA ELECCIÓN DEL SISTEMA ESTRUCTURAL EMPLEADO DISEÑO ESTRUCTURAL CRITERIOS PARA LA ELECCIÓN DEL SISTEMA ESTRUCTURAL EMPLEADO Garantizar el correcto diseño estructural con el fin de cumplir con las exigencias de la Organización Panameña de la Salud.

Más detalles

EVALUACIÓN ESTRUCTURAL DE LOS EDIFICIOS DE VILLA PRIMAVERA EN LA CIUDAD DE CON CON AFECTADAS POR EL SISMO

EVALUACIÓN ESTRUCTURAL DE LOS EDIFICIOS DE VILLA PRIMAVERA EN LA CIUDAD DE CON CON AFECTADAS POR EL SISMO SES INFORME INFORME N XXX EVALUACIÓN ESTRUCTURAL DE LOS EDIFICIOS DE VILLA PRIMAVERA EN LA CIUDAD DE CON CON AFECTADAS POR EL SISMO INFORME PRELIMINAR REVISIÓN 0 SECCION ESTRUCTURAS REF.: EJEMPLAR N :

Más detalles

MUROS DE CONTENCIÓN PAISAJÍSTICOS

MUROS DE CONTENCIÓN PAISAJÍSTICOS MUROS DE CONTENCIÓN PAISAJÍSTICOS MUROS DE CONTENCIÓN MUROS DE CONTENCIÓN PAISAJÍSTICOS ROCKWOOD La construcción modular ha sido utilizada desde la antigüedad Con este sistema, se han construido obras

Más detalles

PROCEDIMIENTOS DE ENTREGA

PROCEDIMIENTOS DE ENTREGA PROCEDIMIENTOS DE ENTREGA Prefabricados OJEFER dispone de tres modalidades o procedimientos de entrega: 1. Recogida directa por parte de cliente en las instalaciones de Prefabricados OJEFER S.L. En esta

Más detalles

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO Página 1 de 7 DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO 8.1 INTRODUCCION La cimentación es la parte de la estructura que permite la transmisión de las cargas que actúan, hacia el suelo o hacia la roca

Más detalles

Anejo: UNIONES POR TORNILLOS

Anejo: UNIONES POR TORNILLOS Anejo: UNIONES POR TORNILLOS UNIONES POR TORNILLOS 1. DEFINICIÓN Y CLASIFICACIÓN Los tornillos son piezas metálicas compuestas de una cabeza de forma exagonal, un vástago liso y una parte roscada que permite

Más detalles

EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS

EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS 1.- DEFINICIÓN. La expansión por humedad (EPH) es la característica que presentan los materiales de arcilla cocida consistente en aumentar sus dimensiones

Más detalles

Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Supongamos que se tiene que montar un pilar de referenciaa localizado en un plano de replanteo. EJEMPLOS DE SELECCIÓN DE GRÚAS TELESCÓPICAS Ejemplo 1: selección de la grúa para el montaje de pilares. Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Más detalles

1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA

1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA 1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA 1.1. MEMORIA 1.1.1. Consideraciones previas, objeto y alcance. 1.1.2. Descripción de las estructuras propuestas.

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

SECCIÓN HS 1: PROTECCION FRENTE A LA HUMEDAD

SECCIÓN HS 1: PROTECCION FRENTE A LA HUMEDAD SECCIÓN HS 1: PROTECCION FRENTE A LA HUMEDAD 1 GENERALIDADES 1.1 Ámbito de aplicación 1- Esta sección se aplica a los muros y los suelos que están en contacto con el terreno y a los cerramientos que están

Más detalles

ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO

ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO Las viguetas ISOLFORG son un sistema de forjados que se compone de una vigueta armada con celosía la cual incorpora un entrevigado aligerado de EPS

Más detalles

FACHADAS CERÁMICAS. El revestimiento de fachadas puede realizarse mediante:

FACHADAS CERÁMICAS. El revestimiento de fachadas puede realizarse mediante: Con el paso de los años, la cerámica ha dejado de ser un material exclusivo para su colocación como pavimento y ha comenzado a ganar terreno en otras ubicaciones: Fachadas, mobiliario, piscinas... La ligereza,

Más detalles

08028 BARCELONA Joaquím Molins 5-7, 6º 4ª 934 09 78 80 934 90 86 28 ifc-bcn@ifc-es.com IFC CIMENTACIONES

08028 BARCELONA Joaquím Molins 5-7, 6º 4ª 934 09 78 80 934 90 86 28 ifc-bcn@ifc-es.com IFC CIMENTACIONES COLUMNAS DE GRAVA Desde el año 2002, IFC Cimentaciones Especiales, S.A. está asociada a la empresa KellerTerra, especialista en la ejecución de múltiples técnicas relacionadas con la Mejora de Suelos.

Más detalles

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Apellidos, nombre Departamento Centro Arianna Guardiola Víllora (aguardio@mes.upv.es)

Más detalles

ES 2 230 956 A1 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA. 11 Número de publicación: 2 230 956. 21 Número de solicitud: 200202096

ES 2 230 956 A1 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA. 11 Número de publicación: 2 230 956. 21 Número de solicitud: 200202096 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 230 956 21 Número de solicitud: 200202096 51 Int. Cl. 7 : B23Q 11/00 12 SOLICITUD DE PATENTE A1 22 Fecha de presentación: 12.09.2002

Más detalles

Tel. Comercial 985 195 605 Tel. Admón. 985 195 608 Fax 985 372 433

Tel. Comercial 985 195 605 Tel. Admón. 985 195 608 Fax 985 372 433 OFICINAS Uría, 48-Entlo. 33202 GIJÓN Tel. Comercial 985 195 605 Tel. Admón. 985 195 608 Fax 985 372 433 FÁBRICA Las Quintanas, Ceares 33209 GIJÓN e-mail: Web: buzon@rubiera.com admon@rubiera.com ofitec@rubiera.com

Más detalles

SISTEMA DE LIMPIEZA POR VACÍO

SISTEMA DE LIMPIEZA POR VACÍO SISTEMA DE LIMPIEZA POR VACÍO MODELO MF PARA TANQUES RECTANGULARES Catálogo 48.1.1 Limpieza automática Adecuado incluso para grandes longitudes Mantenimiento sin riesgos Uno de los problemas que presentan

Más detalles

RESTAURACIÓN DE LA TORRE DE LA IGLESIA DE NAVASA (JACA) GRUPO ORION

RESTAURACIÓN DE LA TORRE DE LA IGLESIA DE NAVASA (JACA) GRUPO ORION RESTAURACIÓN DE LA TORRE DE LA IGLESIA DE NAVASA (JACA) GRUPO ORION Raúl Garrido Martínez. Resp. Obra Pública CONTENIDOS A.- Introducción. B.- Refuerzo estructural. C.- Recuperación de la cubierta original.

Más detalles