FRENO ELECTROMAGNETICO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FRENO ELECTROMAGNETICO"

Transcripción

1 . FRENO ELECTROMAGNETICO Fundamento teórico: El freno magnético está basado en la ley de Faraday. Ésta nos dice que cuando el flujo del campo magnético a través de una superficie cambia con el tiempo, bien porque el campo magnético cambia, porque lo hace la superficie o la posición relativa de ambos, surge una fuerza electromotriz inducida. Dicha Fuerza electromotriz hace que aparezca una corriente que se denomina corriente inducida. Cuando esta corriente inducida, no está obligada a circula por un conductor bien definido, sino que lo hace por una masa de metal de volumen no despreciable, estás corrientes reciben el nombre de corrientes parásitas o de Foucault. Por otro lado, también es conocido que, cuando una carga o un conjunto de cargas, que dan lugar a una corriente, atraviesan una zona del espacio en al que existe un campo magnético, sobre las cargas que se están moviendo aparece una fuerza magnética que comienza a actuar sobre dichas cargas. En el en el caso del freno magnético de nuestra experiencia, la masa conductora es un disco de aluminio que gira de modo que en cada instante hay una porción del disco atravesando una zona donde existe un campo magnético perpendicular al plano del disco, que en nuestro caso es generado por dos bobinas por las que circula una corriente continua que actúan como electroimanes. Como la superficie del disco que atraviesa la zona del espacio donde está actuado el campo magnético está cambiando con el tiempo, se produce la aparición de unas corrientes parásitas en el disco de aluminio. Las corrientes que aparecen se encuentran con la presencia del campo magnético generado por los electroimanes, de modo que aparece una fuerza de carácter magnético que, en esta ocasión, lo que hace es oponerse a la rotación del disco, frenándolo. Este es el principio físico en el que se basan todos los frenos electromagnéticos existentes en el mercado. Materiales y montaje Generador de corriente continua Dos bobinas de cobre Dos entrehierros para concentrar el campo Disco metálico Muelle 1-Se conecta el generador de corriente continua con las dos bobinas en cuyo interior se introducen unos entrehierros para concentrar el campo. 2-Se hace pasar una parte del disco metálico, al que previamente se ha unido por su parte inferior a un muelle, por el espacio que ha quedado libre ente las dos bobinas. 3-Se da vueltas al disco unido al muelle y se suelta para que pueda girar libremente. 4- Se enciende el generador de corriente siempre que se desee detener el disco. BOBINA DE TESLA Teoría Básica: Una bobina de Tesla es un tipo de transformador resonante que produce altas tensiones de elevadas frecuencias (radiofrecuencias), desarrollado en Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes

2 acoplados. La bobina Tesla funciona de la siguiente manera: El transformador T1 carga al capacitor C1 y se establece una alta tensión entre sus placas. El voltaje tan elevado es capaz de romper la resistencia del aire, y hace saltar una chispa entre las terminales del explosor EX. La chispa descarga al capacitor C1 a través de la bobina primaria L1 (con pocas espiras) y establece una corriente oscilante. Enseguida el capacitor C1 se carga nuevamente y repite el proceso. Así resulta un circuito oscilatorio de radio frecuencia al que llamaremos circuito primario. La energía que produce el circuito primario se induce en la bobina secundaria L2 (con MUCHAS vueltas). El circuito secundario se forma con la inductancia de la bobina L2 y la pequeña capacidad distribuida en ella misma, diseñado de modo que el circuito secundario oscila a la misma frecuencia que el circuito primario, entrando en resonancia. Finalmente, el circuito secundario produce ondas electromagnéticas de muy alta frecuencia y voltajes muy elevados. Estas se propagan en el medio ionizando las moléculas del aire, convirtiéndolo en trasmisor de corriente eléctrica. TRANSFORMADOR El dispositivo que permite modificar la ddp de una corriente alterna se conoce con el nombre de «transformador». Un transformador elemental está constituido por un núcleo ferromagnético con dos bobinas de n1 y n2 espiras respectivamente. Una de estos bobinas se conecta a la corriente cuya d.d.p. quiere modificarse y se denomina «primaria», mientras que la otra es la salida de la corriente transformada y se denomina «secundaria». Según sea el número de espiras de la primaria mayor o menor que el número de espiras del secundaria, el transformador actuará como reductor o elevador de la tensión. Supongamos que la bobina primaria, que posee n1 espiras, se conecta a un generador de corriente alterna que proporciona cierta f.e.m. Esta f.e.m. hace que en los extremos de la bobina, cuya resistencia es despreciable, exista una d.d.p. alterna V1 de igual valor que la f.e.m. del generador, por lo que circulará una corriente i1 por dicha bobina. Esta corriente alterna origina un campo magnético variable en el núcleo de hierro, verificándose, de acuerdo con la ley de Lenz-Faraday: 1=V1= n1 d /dt

3 siendo d /dt la variación de flujo del campo magnético con el tiempo, a través de una espira. Dicho campo magnético está prácticamente confinado al núcleo ferromagnético; podemos aceptar que todas las líneas de campo que atraviesan las n1 espiras, también atraviesan las n2 del otro arrollamiento. Por tanto, en éste se inducirá una corriente, cuya f.e.m. vendrá dada por la ley de Lenz-Faraday: 2= n2 d / dt Si la resistencia de la bobina n2 es despreciable, esta f.e.m. origina en los extremos de n2 una d.d.p V2, tal que: V2= n2 dflujo/ dt Dividiendo las expresiones obtenidas para V1 y V2, resulta: V1/V2 = n1/n2 de modo que si n1 > n2 entonces V1 > V2 y el transformador reduce la tensión. Si n1 < n2, entonces V2 > V1 y el transformador eleva la tensión. Admitiendo que prácticamente no hay pérdidas energéticas en el proceso la potencia en el primario será la misma que en el secundario; es decir: P1=i1 V1 P2=i2 V2 Igualando ambas expresiones, resulta: i1 /i2 = V2/ V1 = n2/ n1 de modo que si n1 > n2, entonces I2 > I1, y si n1 < n2, I2 < I1. Observa, por tanto, que el transformador eleva la ddp, reduciendo el valor de la intensidad y viceversa; ello permite reducir las pérdidas que se producen en el transporte de energía, tal como afirmábamos al principio. Los generadores de corriente alterna de las centrales eléctricas suelen producir corrientes eléctricas cuya d.d.p. es de algunos miles de voltios. Esta tensión se eleva, mediante transformadores, hasta que alcanza valores del orden de centenares de miles de voltios para ser transportadas por las líneas de alta tensión. Una vez en el lugar del consumo, se reduce la tensión, utilizando nuevamente transformadores, hasta que alcanza los valores que se utilizan habitualmente. AUTOINDUCCIÓN La autoinducción es una influencia que ejerce un sistema físico sobre sí mismo a través de campos electromagnéticos variables. Cuando por un circuito circula una corriente eléctrica, alrededor se crea un campo magnético. Si varía la corriente, dicho campo también varía y, según la ley de inducción electromagnética de Faraday, en el circuito se produce una fuerza electromotriz o voltaje inducido, denominado fuerza electromotriz autoinducida. LEVITACIÓN Llamamos levitación magnética al fenómeno por el cual un material puede levitar gracias a la repulsión existente entre los polos iguales de dos imanes o bien debido a lo que se conoce como Efecto Meissner, que explicaremos más adelante, que es una propiedad inherente a los superconductores.

4 La superconductividad es una característica de algunos compuestos, los cuales, por debajo de una cierta temperatura crítica, no oponen resistencia al paso de la corriente; es decir: son materiales que pueden alcanzar una resistencia nula. En estas condiciones de temperatura son capaces de transportar energía eléctrica sin ningún tipo de pérdidas, y además poseen la propiedad de rechazar las líneas de un campo magnético aplicado. Se denomina Efecto Meissner a esta capacidad. Cuando se acerca un imán a un superconductor, el superconductor se convierte en un imán de polaridad contraria de modo que sujeta al otro imán sobre él. Pero, al contrario que un imán normal (que haría que el otro imán se diera la vuelta y se quedase pegado a él), un superconductor cambia el campo magnético cuando el exterior lo hace, compensándolo, de modo que es capaz de mantener el otro imán fijo en el aire. Se genera una fuerza magnética de repulsión la cual es capaz de contrarrestar el peso del imán produciendo así la levitación del mismo. De hecho, si se aleja el imán del superconductor una vez está cerca, éste cambia de polaridad y lo atrae lo suficiente para mantenerse a la misma distancia. Por tanto un objeto estará bajo levitación magnética cuando la fuerza generada por la repulsión electromagnética es lo suficientemente fuerte para equilibrar el peso del objeto. CHISPAS TREPADORAS Experimento de gran impacto visual que muestra la ascensión de un arco de descarga entre dos varillas metálicas divergentes entre sí. Estas varillas metálicas están dentro de un cilindro de material aislante acrílico. Una de las varillas se puede ajustar horizontalmente para juntar ambas varillas lo necesario para iniciar el arco eléctrico. Para generar la alta tensión, se suministra un transformador desmontable con núcleo laminado, bobina principal de 600 vueltas conectable a 220 VCA y bobina secundaria de vueltas que es la que se conecta a las dos varillas mediante cables de seguridad incluidos.

5 MOTOR CORRIENTE CONTINUA El motor de corriente continua es un dispositivo que convierte la energía eléctrica en mecánica, provocando un movimiento rotatorio, gracias a la acción que se genera del campo magnético. Una máquina de corriente continua se compone principalmente de dos partes. El estator da soporte mecánico al aparato y contiene los polos principales de la máquina, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre un núcleo ferromagnético. El rotor es generalmente de forma cuadrada, también devanado y con núcleo, alimentado con corriente directa mediante escobillas fijas. La función del conmutador es permitir el cambio constante de polaridad de la corriente en la bobina del electroimán del rotor para que sus polos cambien constantemente. Este cambio ocurre cada vez que el electroimán gira media vuelta y pasa por la zona neutra, momento en que sus polos cambian para que se pueda mantener el rechazo que proporciona el imán permanente. Esto permitirá que el electroimán del rotor se mantenga girando constantemente durante todo el tiempo que la batería o fuente de fuerza electromotriz (F.E.M.) se mantenga conectada al circuito del motor, suministrándole corriente eléctrica. GENERADORES Un generador es un dispositivo eléctrico rotativo que transforma energía mecánica en energía eléctrica. Lo consigue gracias a la interacción de los dos elementos principales que lo componen: la parte móvil llamada rotor, y la parte estática que se denomina estátor. Cuando un generador eléctrico está en funcionamiento, una de las dos partes genera un flujo magnético (actúa como inductor) para que el otro lo transforme en electricidad (actúa como inducido). Los generadores eléctricos se diferencian según el tipo de corriente que producen. Así, nos encontramos con dos grandres grupos de máquinas eléctricas rotativas: los alternadores y las dinamos.

6 Los alternadores generan electricidad en corriente alterna. El elemento inductor es el rotor y el inducido el estátor. Las dinamos generan electricidad en corriente continua. El elemento inductor es el estátor y el inducido el rotor. Un ejemplo lo encotraríamos en la luz que tiene una bicicleta, la cual funciona a través del pedaleo. El disco de Faraday consiste en un imán en forma de U, con un disco de cobre de doce pulgadas de diámetro y 1/5 de pulgas de espesor en medio colocado sobre un eje, que está girando, dentro de un potente electroimán. Al colocar una banda conductora rozando el exterior del disco y otra banda sobre el eje, comprobó con un galvanómetro que se producía electricidad mediante imanes permanentes. Fue el comienzo de las modernas dinamos Es decir, generadores eléctricos que funcionan por medio de un campo magnético. Como se observa en el capítulo de electromagnetismo, cuando dentro de un campo magnético tenemos una espira por donde circula una corriente eléctrica aparecen un par de fuerzas que provocan que la espira gire alrededor de su eje. De esta misma manera, si dentro de un campo magnético introducimos una espira y la hacemos girar provocaremos la corriente inducida. Esta corriente inducida es la responsable de la f.e.m. y será variable en función de la posición de la espira y el campo magnético. La cantidad de corriente inducida o f.e.m. dependerá de la cantidad de flujo magnético (también llamado líneas) que la espira pueda cortar, cuanto mayor sea el número, mayor variación de flujo generara y por lo tanto mayor fuerza electromotriz.. Se observa los dos casos más extremos, cuando la espira está situada a 0º o 180º y no corta líneas, y cuando está a 90º y 270º y las corta todas Al hacer girar la espira dentro del imán conseguiremos una tensión que variará en función del tiempo. Esta tensión tendrá una forma alterna, puesto que de 180º a 360º los polos estarán invertidos y el valor de la tensión será negativo. El principio de funcionamiento del alternador y de la dinamo se basa en que el alternador mantiene la corriente alterna mientras la dinamo convierte la corriente alterna en corriente continua.

7 Producción de una corriente alterna La corriente alterna se caracteriza porque su sentido cambia alternativamente con el tiempo. Ello es debido a que el generador que la produce invierte periódicamente sus dos polos eléctricos, convirtiendo el positivo en negativo y viceversa, muchas veces por segundo. La ley de Faraday establece que se induce una fuerza electromotriz en un circuito eléctrico siempre que varíe el flujo magnético que lo atraviesa. O sea éste puede variar porque varíe el área S limitada por el conductor, porque varíe la intensidad del campo magnético B o porque varíe la orientación entre ambos dada por el ángulo omega.en las primeras experiencias de Faraday las corrientes inducidas se conseguían variando el campo magnético B ; también es posible provocar el fenómeno de la inducción sin desplazar el imán ni modificar la corriente que pasa por la bobina, haciendo girar ésta en torno a un eje dentro del campo magnético debido a un imán. En tal caso el flujo magnético FB varía porque varía el ángulo omega. Como la espira esta girando, el ángulo omega varía continuamente, lo cual hace que el flujo este cambiando, y por lo tanto aparece una fem inducida. Si se hace rotar la espira uniformemente, ese movimiento de rotación periódico da lugar a una variación también periódica del flujo magnético. Vemos a continuación otro tipo de conexión distinta de la espira con el exterior, las escobillas hacen contacto con las mitades de un conmutador de anillo partido. Durante una primera parte de la rotación el voltaje de salida de la bobina corresponde a la parte positiva de un ciclo, pero cuando el ciclo negativo va a comenzar las escobillas hacen contacto con las mitades opuestas del conmutador, invirtiendo el signo del voltaje. De esta forma el conmutador hace que el sentido del voltaje de salida permanezca igual. El generador que incorpora el conmutador para mantener el sentido de la corriente se llama generador de corriente continua.

Interacción electromagnética

Interacción electromagnética Unidad 6 Interacción electromagnética chenalc@gmail.com Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía

Más detalles

Inducción electromagnética

Inducción electromagnética Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada a una batería, otra bobina conectada a un galvanómetro.

Más detalles

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos.

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos. IMANES Un imán es toda sustancia que posee o ha adquirido la propiedad de atraer el hierro. Normalmente son barras o agujas imantadas de forma geométrica regular y alargada. Existen tres tipos de imanes:

Más detalles

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte ELECTRICIDAD IMANES LA ELECTRICIDAD Y LOS IMANES Tema 3 2ª Parte CORRIENTE ELÉCTRICA MAGNETISMO ELECTROMAGNETISMO Magnetismo Consiste en atraer objetos de hierro, cobalto o níquel Imán es el cuerpo que

Más detalles

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética 5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética Si el flujo de campo magnético que atraviesa una bobina es variable respecto al tiempo, se induce

Más detalles

Tema Fuerza electromotriz inducida

Tema Fuerza electromotriz inducida Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,

Más detalles

INDUCCION ELECTROMAGNETICA. 1.- Si hacemos girar una espira en un campo magnético, se produce:

INDUCCION ELECTROMAGNETICA. 1.- Si hacemos girar una espira en un campo magnético, se produce: INDUCCION ELECTROMAGNETICA 1.- Si hacemos girar una espira en un campo magnético, se produce: A. Calor B. Corriente alterna C. Corriente continua D. Corriente pulsante 2.- La fem inducida en una espira

Más detalles

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO 1. MOTO DE COIENTE CONTINUA Y DINAMO 1.1. OBJETIVO El propósito de esta práctica es estudiar el comportamiento de un motor DC pequeño cuando opera directamente y en reversa como generador o dinamo. En

Más detalles

Si enrollamos un cable alrededor de un hierro (un tornillo, varillas, ) tendremos una bobina mucho más potente ya que el hierro facilita la

Si enrollamos un cable alrededor de un hierro (un tornillo, varillas, ) tendremos una bobina mucho más potente ya que el hierro facilita la Generadores La obtención de energía eléctrica se puede producir de varias formas, por frotamiento, presión, luz, acción de campos magnéticos, reacciones químicas, Los métodos más utilizados son los dos

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Inducción electromagnética. M del Carmen Maldonado Susano

Inducción electromagnética. M del Carmen Maldonado Susano Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN INTERCCIÓN ELECTROMGNÉTIC INDUCCIÓN IE La Magdalena. vilés. sturias En el tema dedicado al electromagnetismo se ha visto que una corriente eléctrica crea un campo magnético. Podríamos preguntarnos si es

Más detalles

Motores de corriente directa (DC) Motores de corriente alterna (AC):

Motores de corriente directa (DC) Motores de corriente alterna (AC): De acuerdo a la fuente de tensión n que alimente al motor, podemos realizar la siguiente clasificación: Motores de corriente directa (DC) Motores de corriente alterna (AC): El Motor Asíncrono o de Inducción

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.

Más detalles

INSTITUCIÓN EDUCATIVA SUPÍA ACTIVIDADES ELECTROMAGNETISMO FISICA 11.

INSTITUCIÓN EDUCATIVA SUPÍA ACTIVIDADES ELECTROMAGNETISMO FISICA 11. INSTITUCIÓN EDUCATIVA SUPÍA ACTIVIDADES ELECTROMAGNETISMO FISICA 11. Lic. Manuel Arenas Quiceno DESARROLLO DE COMPETENCIAS INTERPRETAR INFORMACIÓN 1. A partir de la forma en que se orienta la aguja de

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 10: Máquinas de corriente continua PUNTOS OBJETO

Más detalles

Universidad del Turabo

Universidad del Turabo Universidad del Turabo School of Engineering ETRE 175 CRN : 20074 T-R 10:30am 11:59am Salón EDI 244 Ing. Egberto Hernández E-mail: prof.ehernandez@hotmail.com Website: www.tuprofehernandez.weebly.com Los

Más detalles

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ PRINCIPIOS FUNDAMENTALES DE MÁQUINAS ELÉCTRICAS

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ PRINCIPIOS FUNDAMENTALES DE MÁQUINAS ELÉCTRICAS PRINCIPIOS FUNDAMENTALES DE MÁQUINAS ELÉCTRICAS 1 CAMPO MAGNÉTICO Un imán o una corriente eléctrica dan origen a un campo magnético que les rodea. El campo magnético se expresa por la letra B. Se representa

Más detalles

Capítulo 5 Inducción Magnética

Capítulo 5 Inducción Magnética Capítulo 5 Inducción Magnética Ley de Faraday A principios de la década de 1830, Faraday en Inglaterra y J. Henry en U.S.A., descubrieron de forma independiente, que un campo magnético induce una corriente

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO Física 2º Bachillerato Campo Magnético - 1 FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO 1. Existen ciertos cuerpos llamados imanes (naturales y artificiales)

Más detalles

2012 Arrancador con anillos rozantes

2012 Arrancador con anillos rozantes Nombre: Geraldo Antonio Apellido: Donayre Correa 2012 Arrancador con anillos rozantes Universidad: san Luis Gonzaga de Ica Docente: Ing. Wilder Enrique Román Munive Materia: dibujo electrónico Geraldo

Más detalles

El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas.

El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas. EL CIRCUITO ELÉCTRICO 1.- El circuito eléctrico elemental. El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas. Circuito elemental Las cargas eléctricas que

Más detalles

E L E C T R I C I D A D. El anillo Saltador. El anillo Saltador

E L E C T R I C I D A D. El anillo Saltador. El anillo Saltador E L E C T R I C I D A D El anillo Saltador El anillo Saltador E L E C T R I C I D A D Los experimentos realizados simultánea pero independientemente por el inglés Michael Faraday y el norteamericano Joseph

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

Magnitudes eléctricas y mecánicas del inducido. Conversión de la energía en el inducido

Magnitudes eléctricas y mecánicas del inducido. Conversión de la energía en el inducido Magnitudes eléctricas y mecánicas del inducido Conversión de la energía en el inducido El inducido es la parte de la maquina de cc que transforma la energía eléctrica en mecánica y viceversa. Tanto si

Más detalles

Tema 13: Motores eléctricos de corriente continua.

Tema 13: Motores eléctricos de corriente continua. 1. Principio básico de funcionamiento. 2. Partes básicas de una máquina de CC. 3. Funcionamiento en vacío carga y cortocircuito. 4. Tipos de excitación magnética. 4.1 Independiente. 4.2 Autoexcitados:

Más detalles

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO El circuito eléctrico es la unión de varios aparatos por los que se mueven los electrones, este

Más detalles

Complemento ley de Faraday

Complemento ley de Faraday Complemento ley de Faraday 15 cm 1 cm C1.- Calcúlese la fuerza electromotriz en la espira móvil de la figura en el instante en que su posición es la indicada. Supóngase que la resistencia de la espira

Más detalles

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes:

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes: CORRIENTE ELÉCTRICA Definición: La corriente eléctrica se define como el movimiento de cargas a través de un conductor. Para que haya circulación de cargas necesitamos que exista tensión eléctrica, es

Más detalles

Electrotecnia General Tema 10 TEMA 10 INDUCCIÓN MUTUA. AUTOINDUCCIÓN

Electrotecnia General Tema 10 TEMA 10 INDUCCIÓN MUTUA. AUTOINDUCCIÓN TEMA 10 INDUCCIÓN MUTUA. AUTOINDUCCIÓN 10.1. INDUCCIÓN MUTUA. Sean dos circuitos A y B (Fig. 10.1) recorridos por corrientes de intensidades i 1 e i 2, respectivamente. Se dice que están en inducción mutua

Más detalles

TEMA 9: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA

TEMA 9: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA TEMA 9: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA.

INDUCCIÓN ELECTROMAGNÉTICA. Síntesis Física º Bach. Inducción Magnética. IM - 1 INDUCCIÓN ELECTROMAGNÉTICA. FLUJO DEL CAMPO MAGNÉTICO. Se define el flujo de un vector a través de una superficie: r r Φ = B d S s Para una superficie

Más detalles

MAGNETISMO UNIDAD DIDÁCTICA Magnetismo

MAGNETISMO UNIDAD DIDÁCTICA Magnetismo UNIDAD DIDÁCTICA 9 MAGNETISMO 1.- Magnetismo Existe en la naturaleza un mineral llamado magnetita o piedra imán que tiene la propiedad de atraer el hierro, el cobalto, el níquel y ciertas aleaciones de

Más detalles

Electrotecnia General Tema 9 FUERZA ELECTROMOTRIZ INDUCIDA 9.1 FUERZA ELECTROMOTRIZ PRODUCIDA POR EL MOVIMIENTO.

Electrotecnia General Tema 9 FUERZA ELECTROMOTRIZ INDUCIDA 9.1 FUERZA ELECTROMOTRIZ PRODUCIDA POR EL MOVIMIENTO. TEMA 9 FUERZA ELECTROMOTRIZ INDUCIDA 9.1 FUERZA ELECTROMOTRIZ PRODUCIDA POR EL MOVIMIENTO. Sea un conductor l que se mueve con una velocidad uniforme v, en dirección perpendicular a un campo magnético

Más detalles

PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS

PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS Objetivo específico: Dimensionar, verificar y medir los parámetros eléctricos de las instalaciones eléctricas. Capacidades a desarrollar: Identificar

Más detalles

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CIRCUITOS TRIFASICOS Y MAQUINAS ELECTRICAS Profesor: Francisco Valdebenito A. Circuitos Trifásicos

Más detalles

Motor de corriente continua

Motor de corriente continua Máquinas de corriente continua. 1 Motor de corriente continua El motor de corriente continua es una máquina que convierte la energía eléctrica en mecánica. Esta máquina de corriente continua es una de

Más detalles

BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 5. INDUCCIÓN ELECTROMAGNÉTICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Inducción electromagnética 2. El fenómeno de la autoinducción 3. Aplicaciones de la autoinducción

Más detalles

2.1 Estudio de la inducción electromagnética.

2.1 Estudio de la inducción electromagnética. Página7 UNIDAD 2 Funcionamiento de la máquina de corriente continua como generador. 2.1 Estudio de la inducción electromagnética. La producción de energía eléctrica, bien sea por dinamos, bien por alternadores,

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electricidad 2º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electricidad 2º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electricidad 2º E.S.O. Alumna/o :... Electricidad 1.- Introducción. La corriente eléctrica es el flujo continuo de electrones a través de un material que lo permita.

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua.

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. 1- Considere un circuito rígido por el que circula una corriente I. Naturalmente, en su entorno

Más detalles

Laboratorio de Física II

Laboratorio de Física II Laboratorio de Física II Capitulo 12: Inducción electromagnética (funcionamiento de transformadores) Ley de Faraday Ley de Lenz Transformadores OBJETIVOS [12.1] Entender en que consiste el fenómeno de

Más detalles

Ud. 4 Magnetismo y electromagnetismo. Índice del libro

Ud. 4 Magnetismo y electromagnetismo. Índice del libro Ud. 4 Magnetismo y electromagnetismo Índice del libro Ud. 4 Magnetismo y electromagnetismo 1. Magnetismo 1.1. Propiedades de los imanes Continuación 1.2 Líneas de fuerza y campo magnético 1.3. Clasificación

Más detalles

Relación de problemas

Relación de problemas Relación de problemas Cuaderno V Inducción electromagnética 1. Una bobina, compuesta por 400 espiras cuadradas de 3 cm de lado, se encuentra situada en un campo magnético uniforme de 2 T. El eje de la

Más detalles

SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C.

SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C. SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C. 1. INTRODUCCION Las máquinas de corriente contínua(cc) se clasifican en: GENERADORES (DINAMOS) MOTORES ELECTRICOS Son máquinas reversibles, el motor

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1 1. Tema: Característica estática de un sensor de inductancia variable. 2. Objetivos: a. Conocer la operación de un dispositivo de inductancia variable. b. Determinación de la característica estática tensión

Más detalles

Marco teórico. Magnetismo. Campo magnético. Ley de Faraday: Inducción electromagnética. -Los imanes.

Marco teórico. Magnetismo. Campo magnético. Ley de Faraday: Inducción electromagnética. -Los imanes. Magnetismo -Los imanes. Marco teórico Un imán es una materia capaz de producir un campo magnético exterior y atraer al hierro (también puede atraer al cobalto y al níquel). Los imanes que manifiestan sus

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de

CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de CAPITULO 1 Métodos para controlar la velocidad de un motor de inducción El desarrollo de sistemas para controlar la velocidad en motores de inducción se ha venido dando desde hace muchos años. Se da una

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

Capítulo 4: DEVANADOS

Capítulo 4: DEVANADOS Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las

Más detalles

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA Capítulo 1 SEMINARIO INDUCCIÓN ELECTROMAGNÉTICA 1. Una bobina de 50 espiras de 8 cm 2 está colocada en un campo magnético de manera que el que el flujo sea máximo. Si el campo varía de acuerdo con la función

Más detalles

LEY DE INDUCCIÓN DE FARADAY

LEY DE INDUCCIÓN DE FARADAY No 9 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar y comprobar los principios de la inducción electromagnética

Más detalles

Guía del docente. - 4º medio:

Guía del docente. - 4º medio: Guía del docente 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Circuito de corriente variable. - Palabras claves: corriente eléctrica, bobinas, brújulas,

Más detalles

UDI 2: ELECTRICIDAD 1. CORRIENTE ELÉCTRICA

UDI 2: ELECTRICIDAD 1. CORRIENTE ELÉCTRICA UDI 2: ELECTRICIDAD 1. CORRIENTE ELÉCTRICA Es el movimiento de electrones a través de un material conductor que está conectado a un generador. Los materiales conductores (metales) tienen electrones libres

Más detalles

Flujo magnético. El flujo magnético representa el número de líneas de. Para un elemento de superficie (superficie diferencial) será: dφ=

Flujo magnético. El flujo magnético representa el número de líneas de. Para un elemento de superficie (superficie diferencial) será: dφ= FJC 009 Oersted había comprobado experimentalmente que una corriente eléctrica crea a su alrededor un campo magnético. Se puede obtener el fenómeno inverso? Se puede crear una corriente eléctrica a partir

Más detalles

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electromecánica Curso: Máquinas Eléctricas para Mecatrónica Profesor: Ing. Greivin Barahona Guzmán Clase VI Máquinas de Corriente Directa: Generadores

Más detalles

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma:

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma: MOTORES DE CORRIENTE ALTERNA Los motores de corriente alterna se clasifican de la siguiente forma: Trifásicos: formados por tres bobinas iguales; son los más habituales Bifásicos: formados por dos bobinas

Más detalles

Introducción. Magnetismo e imanes

Introducción. Magnetismo e imanes Vídeo sobre electromagnetismo Introducción Hace más de 2000 años los griegos descubrieron que existían unos minerales capaces de atraerse entre sí y de atraer al hierro y que, además, se orientaban en

Más detalles

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de

Más detalles

MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES

MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES FUNDAMENTO DE LAS MÁQUINAS ELÉCTRICAS (MOTORES) En una espira cuando pasa a través de ella una corriente eléctrica, se crea en cada una de sus

Más detalles

VARIADORES DE FRECUENCIA]

VARIADORES DE FRECUENCIA] VARIADORES DE FRECUENCIA] Variador De Frecuencia Micromaster Siemens Cuando los motores Eléctricos no eran capaces de alcanzar un elevado potencial Eléctrico a reducidas y a grandes velocidades a la vez,

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 2001 1. a) Explique cualitativamente el funcionamiento de un transformador eléctrico. b) Qué ocurre si el primario del transformador está conectado a una pila? Razone la respuesta.

Más detalles

CUESTIONARIO 2 DE FISICA 4

CUESTIONARIO 2 DE FISICA 4 CUESTIONARIO 2 DE FISICA 4 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de imanes? a) por su origen: b) por su retentividad magnética: c) por su forma: 2.-

Más detalles

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente Ley de Gauss Campo Magnético 1. Calcula el flujo magnético a través de una espira de 400 cm 2 de superficie situada en un plano perpendicular a un campo magnético uniforme de 0 2 T. 2. Un solenoide, de

Más detalles

MX-902 EXPERIMENTO 2.

MX-902 EXPERIMENTO 2. TotalPag:1/6 EXPERIMENTO 1. FUNCIONAMIENTO DEL TIMBRE. Coloque dos pilas AA en el portapilas, respetando los símbolos de polaridad (+ y -) que aparecen en el portapilas. Conecte los cables como se indica

Más detalles

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. AUTOR(ES): Aurea D. Rodríguez Llerena, OBJETIVOS 1. Estudiar el fenómeno de inducción electromagnética en un transformador.

Más detalles

SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO METALMECANICO REGIONAL ANTIOQUIA CURSO VIRTUAL ELECTRÓNICA BÁSICA

SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO METALMECANICO REGIONAL ANTIOQUIA CURSO VIRTUAL ELECTRÓNICA BÁSICA SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO METALMECANICO REGIONAL ANTIOQUIA CURSO VIRTUAL ELECTRÓNICA BÁSICA MODULO 1: FUNDAMENTOS ELÉCTRICOS Y ELECTROMAGNETICOS MATERIAL DEL CURSO MAGNITUDES ELECTROMAGNÉTICAS

Más detalles

El Generador del Automóvil. Generalidades

El Generador del Automóvil. Generalidades El Generador del Automóvil. Generalidades El generador es el encargado de producir la electricidad para el consumo del automóvil y para reponer las pérdidas de carga en los acumuladores. Hasta los comienzos

Más detalles

Mantención y operación de máquinas eléctricas.

Mantención y operación de máquinas eléctricas. Mantención y operación de máquinas eléctricas. Profesor: JUAN PLAZA L. NIVEL: 4 MEDIO. electricidad mome juan plaza l 1 Máquina eléctrica Una máquina eléctrica es un dispositivo que transforma la energía

Más detalles

TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA

TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA TEMA 10: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía

Más detalles

TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA

TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA TEMA 10: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía

Más detalles

TEMA 3: CAMPO MAGNÉTICO

TEMA 3: CAMPO MAGNÉTICO 3.2 Campo magnético en medios materiales Campo magnético: creado por corrientes eléctricas Espiras: corrientes macroscópicas I Campo E m, sólo disminuye E 0 Barra magnetita: corrientes microscópicas I

Más detalles

SISTEMAS ELECTROMECÁNICOS

SISTEMAS ELECTROMECÁNICOS Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador

UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador Fuerza magnética a) Sobre una carga móvil De lo estudiado

Más detalles