El BJT en la zona activa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El BJT en la zona activa"

Transcripción

1 El BJT en la zona activa Electrónica Analógica º Desarrollo de Productos Electrónicos Índice.- Amplificadores con BJT. 2.- Osciladores L con BJT. Electrónica Analógica El BJT en la zona activa 2

2 .- ircuitos amplificadores con BJT.- ircuitos amplificadores...- onceptos generales de los amplificadores..2.- lases de amplificación..3.- ircuitos de polarización..4.- Modelo de parámetros h..5.- Amplificador en emisor común..6.- Amplificador en colector común..7- Amplificador en base común. Electrónica Analógica El BJT en la zona activa 3..- onceptos generales de los amplificadores. R g I IN I OUT u g u IN Amplificador u OUT Z L Ganancia de tensión (A V ): cociente entre la tensión de salida y la de entrada. Ganancia de intensidad (A I ): cociente entre la intensidad de salida y la de entrada. Impedancia de entrada (Z IN ): cociente entre la tensión y la intensidad de entrada. Impedancia de salida (Z OUT ): es la impedancia equivalente de Thevenin desde los terminales de salida. Ancho de banda (BW): margen de frecuencias en el que podremos utilizar el amplificador. Electrónica Analógica El BJT en la zona activa 4 2

3 .2.- lases de amplificación. lase A lase B lase AB lase Electrónica Analógica El BJT en la zona activa lase A Trabajan durante todo el ciclo de la señal de i entrada Q v E t Electrónica Analógica El BJT en la zona activa 6 3

4 lase B Funcionan únicamente un semiperiodo de la i señal de entrada Q v E t Electrónica Analógica El BJT en la zona activa lase AB Es un caso intermedio entre la clase A y la B i Q v E t Electrónica Analógica El BJT en la zona activa 8 4

5 lase onducen menos de un semiperiodo de la i señal de entrada Q v E t Electrónica Analógica El BJT en la zona activa ircuitos de polarización ircuito básico V R B R Electrónica Analógica El BJT en la zona activa 0 5

6 .3.- ircuitos de polarización Polarización por realimentación del emisor Presenta más estabilidad que el anterior frente a cambios de temperatura y/o β R B V R Electrónica Analógica El BJT en la zona activa.3.- ircuitos de polarización Polarización por realimentación del colector Presenta buena estabilidad frente a cambios de temperatura y/o β R B V R Electrónica Analógica El BJT en la zona activa 2 6

7 .3.- ircuitos de polarización V Polarización universal También llamado: Polarización por divisor de tensión ircuito autopolarizado Es el más utilizado El más estable frente a cambios de temperatura y variaciones de β R R 2 R Electrónica Analógica El BJT en la zona activa Modelo de parámetros h i i 2 h u h 2 u 2 h 2 i h 22 u 2 Ecuaciones: u = h i + h 2 u 2 i 2 = h 2 i + h 22 u 2 Electrónica Analógica El BJT en la zona activa 4 7

8 .4.- Modelo de parámetros h También llamado: Modelo de parámetros híbridos, Modelo equivalente del transistor de pequeña señal. El parámetro h representa una resistencia. El parámetro h 2 se llama ganancia de tensión inversa, ya que representa una fuente de tensión dependiente de la tensión de salida u 2. El parámetro h 2 se llama ganancia directa de intensidad, representa una fuente de intensidad que depende de la intensidad de entrada i. El parámetro h 22 representa una admitancia, es decir, el inverso de una resistencia. Electrónica Analógica El BJT en la zona activa Modelo de parámetros h Los coeficientes h cambian de nombre y de valor según la configuración: emisor común, colector común y base común. onfiguración Entrada Salida h h 2 h 2 h 22 Emisor común Base olector h ie h re h fe h oe Base común Emisor olector h ib h rb h fb h ob olector común Base Emisor h ic h rc h fc h oc i de input, r de reverse f de forward, o de output Electrónica Analógica El BJT en la zona activa 6 8

9 .4.- Modelo de parámetros h B h ie i E u BE h re u E h fe h oe u E E Los valores típicos del modelo en emisor común son: h ie = 000 Ω, h re = h fe = 00, h oe = Ω - Electrónica Analógica El BJT en la zona activa Modelo de parámetros h Los valores típicos del modelo en colector común son: h ic = 000 Ω, h rc = h fc = 00, h oc = Ω -. Los valores típicos del modelo en base común son: h ib = 20 Ω, h rb = h fb = 0,98, h ob = 0,5 0-6 Ω - Electrónica Analógica El BJT en la zona activa 8 9

10 .5.- Amplificador en emisor común V R g R R I IN 2 u OUT I OUT u g u IN R 2 E Z L Electrónica Analógica El BJT en la zona activa Amplificador en emisor común ircuito equivalente: R g I IN B h ie I OUT 2 u g R R 2 h oe R Z L u IN h fe hre u E u E OUT E, 2 y E se pueden considerar cortocircuitos. h re y h oe se pueden despreciar. Electrónica Analógica El BJT en la zona activa 20 0

11 .5.- Amplificador en emisor común ircuito equivalente: R g I IN B I OUT u g h h fe i R B R 2 ie R Z L u IN u E OUT on estas simplificaciones obtenemos la impedancia de entrada, la impedancia de salida, la ganancia de tensión y la ganancia de intensidad. Electrónica Analógica El BJT en la zona activa Amplificador en emisor común impedancia de entrada: impedancia de salida: Z IN = R Z = + R OUT R 2 + h ie ganancia de tensión: ganancia de intensidad: A A V I u = u i = i OUT IN OUT IN R = R R = (R Z L + Z L L h h ZIN hfe + Z ) h ie fe ie Electrónica Analógica El BJT en la zona activa 22

12 .5.- Amplificador en emisor común A v : mayor que la unidad. A I : mayor que la unidad. Z IN : valor intermedio respecto a las otras configuraciones. Z OUT : valor intermedio respecto a las otras configuraciones. La configuración emisor común es la única que proporciona al mismo tiempo ganancias de tensión y de intensidad superiores a la unidad. Electrónica Analógica El BJT en la zona activa Amplificador en colector común V R R g I IN u OUT 2 I OUT u g u IN R 2 Z L Electrónica Analógica El BJT en la zona activa 24 2

13 .6.- Amplificador en colector común A V : ligeramente menor que la unidad. A I : similar a la de emisor común. Z IN : es la mayor de las tres configuraciones. Z OUT : la menor de las tres configuraciones. Electrónica Analógica El BJT en la zona activa Amplificador en base común V R u OUT OUT I IN R g I OUT R 2 IN u g Z L u IN Electrónica Analógica El BJT en la zona activa 26 3

14 .7.- Amplificador en base común A V : aproximadamente la misma que en la configuración de emisor común. A I : menor que la unidad. Z IN : la menor de las tres configuraciones. Z OUT : la mayor de las tres configuraciones. Electrónica Analógica El BJT en la zona activa Osciladores L con BJT 2..- Principio de funcionamiento Modelo general. ircuito tanque Oscilador olpitts Oscilador olpitts en emisor común Oscilador olpitts en base común Oscilador olpitts en colector común Oscilador Hartley Oscilador Hartley en emisor común Oscilador Hartley en base común. Electrónica Analógica El BJT en la zona activa 28 4

15 2..- Principio de funcionamiento. arga del condensador. 2. Descarga a través de la bobina. 3. La descarga se produce a una frecuencia a la que X L = X Esta frecuencia se llama frecuencia de resonancia. V R L f r = 2π L Electrónica Analógica El BJT en la zona activa Modelo general. ircuito tanque. Z, Z 2 y Z 3 son 3 impedancias (L ), y forman el llamado circuito tanque. Para que arranque la oscilación se debe cumplir: X h FE X 2 La frecuencia se obtiene de: X + X 2 + X 3 = 0 Z 3 Z Z 2 Electrónica Analógica El BJT en la zona activa 30 5

16 2.2.- Modelo general. ircuito tanque. Z y Z 2 deben ser del mismo tipo (L o ). Z 3 debe ser del tipo contrario. Por lo tanto hay 2 configuraciones básicas: Z y Z 2 son condensadores y Z 3 es una bobina (olpitts). Z y Z 2 son bobinas y Z 3 es un condensador (Hartley). Z 3 Z Z 2 Electrónica Analógica El BJT en la zona activa Oscilador olpitts. Z y Z 2 son condensadores y Z 3 es una bobina. Existen 3 posibilidades: olpitts en emisor común. olpitts en base común. olpitts en colector común. ondición de oscilación: h FE 2 2 Frecuencia de oscilación: f = 2 π + 2 L 2 L Electrónica Analógica El BJT en la zona activa 32 6

17 olpitts en emisor común. V R L RF V S D L R 2 D 2 Electrónica Analógica El BJT en la zona activa olpitts en base común. V L R B V S 2 3 Electrónica Analógica El BJT en la zona activa 34 7

18 olpitts en base común. Electrónica Analógica El BJT en la zona activa olpitts en colector común. V R D D L R 2 2 V S Electrónica Analógica El BJT en la zona activa 36 8

19 Ejercicios. Simular los osciladores de olpitts (V =2 V): Emisor común: R = 2 kω, R 2 = 4,7 kω, = 2,2 kω, L = 40 µh, L RF = 3 mh, = 6,8 nf, 2 = nf, D = 00 nf Base común: R B = 47 kω, = 80 Ω, L = 0 mh, = 00 nf, 2 = 00 nf, D = 00 nf olector común: R = 54 kω, R 2 = 83 kω, = 5 kω, L = 3 µh, = 33 pf, 2 = 54 pf, D = 68 nf Electrónica Analógica El BJT en la zona activa Oscilador Hartley. Z y Z 2 son bobinas y Z 3 es un condesador. Existen 3 posibilidades básicas: Hartley en emisor común. L Hartley en base común. Hartley en colector común. ondición de oscilación: Frecuencia de oscilación: L h FE L 2 f L 2 = 2 π ( L L ) + 2 Electrónica Analógica El BJT en la zona activa 38 9

20 Hartley en emisor común. V R L RF V S L D R 2 D L 2 Electrónica Analógica El BJT en la zona activa Hartley en base común. V R R V S L 2 2 D R 2 L L RF Electrónica Analógica El BJT en la zona activa 40 20

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1 Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie

Más detalles

Osciladores Senoidales. Electrónica Analógica II. Bioingeniería

Osciladores Senoidales. Electrónica Analógica II. Bioingeniería Osciladores Senoidales Electrónica Analógica II. Bioingeniería Definición Los osciladores senoidales son dispositivos electrónicos capaces de generar una tensión senoidal sin necesidad de aplicar una señal

Más detalles

4. OSCILADORES R F R A

4. OSCILADORES R F R A 4. OSIADOES F (Sep.94). En el siguiente circuito oscilador, calcular: a) a ganancia de lazo b) a frecuencia de oscilación c) a condición de oscilación Nota: el A.O. es ideal A Sol. (b) ω ο = / (c) F A

Más detalles

EL TRANSISTOR BIPOLAR

EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR POLARIZACIÓN UTILIZANDO UNA FUENTE DE CORRIENTE: EL ESPEJO DE CORRIENTE El transistor Q1 está conectado de forma que actúa como un diodo. La corriente que va a circular por el emisor

Más detalles

A.2. El transistor bipolar

A.2. El transistor bipolar A.2. El transistor bipolar A.2.1. Introducción componente de tres capas semiconductoras colocadas alternativamente principal aplicación: amplificador A.2.2. aracterización del transistor bipolar tiene

Más detalles

AMPLIFICADORES CON BJT

AMPLIFICADORES CON BJT Tema 5 1.- Introducción. AMPLIFIADORES ON BJT 2.- Modelo de pequeña señal del BJT. 21 2.1.- El cuadripolo y el modelo íbrido. 2.2.- Modelo íbrido de un transistor. 2.3.- Análisis de un circuito amplificador

Más detalles

1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V

1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha

Más detalles

El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal.

El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal. Sesión 13 El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal. Componentes y Circuitos Electrónicos José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/joseantoniogarcia

Más detalles

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4: Nociones generales Estructuras ideales CLASIFICACIÓN Salida Corriente Salida Tensión Entrada Corriente A. de Corriente Transrresistor

Más detalles

TRABAJO PRÁCTICO Nº 7 EL TRANSISTOR BIPOLAR - POLARIZACIÓN

TRABAJO PRÁCTICO Nº 7 EL TRANSISTOR BIPOLAR - POLARIZACIÓN TRBJO PRÁCTICO Nº 7 EL TRNSISTOR BIPOLR - POLRIZCIÓN 1) Introducción Teórica Polarizar un transistor de unión bipolar (en inglés Bipolar Junction Transistor, o sus siglas BJT) significa conseguir que las

Más detalles

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2. 1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.

Más detalles

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal Tema 2 TMA 2 Amplificadores con transistores: Modelos de pequeña señal 2..- Introducción La polarización de un transistor es la responsable de establecer las corrientes y tensiones que fijan su punto de

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Práctica # 5 Transistores práctica # 6

Práctica # 5 Transistores práctica # 6 Práctica # 5 Transistores práctica # 6 Objetivos Identificar los terminales de un transistor:( emisor, base, colector). Afianzar los conocimientos para polarizar adecuadamente un transistor. Determinar

Más detalles

El BJT a pequeña señal

El BJT a pequeña señal El BJT a pequeña señal J.I.Huircan Universidad de La Frontera January 4, 202 Abstract El modelo de BJT basado en parámetros h permite tratar el dispositivo como una red lineal, en la cual la corriente

Más detalles

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores bipolares

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores bipolares 1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS 3 PROBLEMAS de transistores bipolares EJERCICIOS de diodos: TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo: PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

OSCILADORES. βa = 1 (1)

OSCILADORES. βa = 1 (1) OSILADOES El uso de realimentación positiva que da por resultado un amplificador realimentado que tiene ganancia de lazo cerrado A f mayor que, y que si satisface las condiciones de fase producirá una

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO

Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO 1. Por qué se usa el acoplamiento capacitivo para conectar la fuente de señal al amplificador? 2. Cuál de las tres configuraciones

Más detalles

Transistor BJT; Respuesta en Baja y Alta Frecuencia

Transistor BJT; Respuesta en Baja y Alta Frecuencia Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

PRÁCTICA 3. Simulación de amplificadores con transistores

PRÁCTICA 3. Simulación de amplificadores con transistores PRÁCTICA 3. Simulación de amplificadores con transistores 1. Objetivo El objetivo de la práctica es recordar el uso de MicroCap, esta vez en su versión de simulador de circuitos analógicos, analizando

Más detalles

Ejercicios analógicos

Ejercicios analógicos 1. Una empresa de comunicaciones nos ha encargado el diseño de un sistema que elimine el ruido de una transmisión analógica. Los requisitos son tales que toda la componente de frecuencia superior a 10

Más detalles

CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN

CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN Muy a menudo dispositivos electrónicos tales como receptores, transmisores y una gran variedad de aparatos

Más detalles

FUNCIONAMIENTO DE LOS BJT S EN CORRIENTE ALTERNA

FUNCIONAMIENTO DE LOS BJT S EN CORRIENTE ALTERNA FUNIONAMIENTO DE LOS BJT S EN ORRIENTE ALTERNA El circuito de partida es una configuración en emisor común con transistor en polarización de emisor o de puente resistivo. En los siguientes apartados se

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA Hay varias formas de polarizar un transistor, esto es, obtener su punto de operación adecuado (valores de Vcc y de Ic). Se tiene la polarización fija,

Más detalles

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

ELECTRONICA ANALOGICA I

ELECTRONICA ANALOGICA I 1 Bibliografía de referencia Boylestad R., Nasheslsky, Electrónica: teoría de circuitos, Ed. Prentice Hall, 6ta. Edición Boylestad R.- Nashelsky L., Electrónica: Teoría de circuitos y dispositivos electrónicos,

Más detalles

TEMA 3 Respuesta en frecuencia de amplificadores

TEMA 3 Respuesta en frecuencia de amplificadores Tema 3 TEMA 3 espuesta en frecuencia de amplificadores 3..- Introducción El análisis de amplificadores hecho hasta ahora ha estado limitado en un rango de frecuencias, que normalmente permite ignorar los

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT

PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT 1. Objetivo Se pretende conocer el funcionamiento de un amplificador monoetapa basado en un transistor BJT Q2N2222. 2. Material necesario Se necesita

Más detalles

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT)

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT) LASE PRÁTIA RESUELTA. PLAN D PROBLEMAS DE POLARIZAIÓN DEL TRANSISTOR BIPOLAR (BJT) Sumario:. Introducción.. Solución de problemas. 3. onclusiones. Bibliografía:. Rashid M. H. ircuitos Microelectrónicos.

Más detalles

CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN

CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN Los amplificadores son sistemas electrónicos que tienen como función amplificar una señal de entrada de voltaje

Más detalles

FUNDAMENTOS DE CLASE 3: DIODOS

FUNDAMENTOS DE CLASE 3: DIODOS FUNDAMENTOS DE ELECTRÓNICA CLASE 3: DIODOS RECORTADORES Permiten eliminar parte de la señal de una onda En serie: RECORTADORES: EJERCICIO Ejercicio: Calcular la característica de trasferencia RECORTADORES:

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

Método simplificado de análisis de amplificadores realimentados

Método simplificado de análisis de amplificadores realimentados Método simplificado de análisis de amplificadores realimentados 1. Identificación de la topología. Determinación de las magnitudes (V ó I) a utilizar en la entrada y la salida del amplificador. Elección

Más detalles

POLARIDADES DE LOS VOLTAJES Y LAS CORRIENTES EN BJTS POLARIZADOS EN LA REGIÓN ACTIVA

POLARIDADES DE LOS VOLTAJES Y LAS CORRIENTES EN BJTS POLARIZADOS EN LA REGIÓN ACTIVA POLARIDADES DE LOS VOLTAJES Y LAS CORRIENTES EN BJTS POLARIZADOS EN LA REGIÓN ACTIVA EJEMPLO El transistor npn tiene β =100 y un voltaje VBE = 0,7 a ic = 1mA. Diseñe el circuito para que circule una corriente

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL 1) Introducción Teórica y Circuito de Ensayo Ya hemos visto cómo polarizar al TBJ de modo tal que su punto de trabajo estático (Q)

Más detalles

Cálculo de las tensiones y corrientes en un transistor

Cálculo de las tensiones y corrientes en un transistor Cálculo de las tensiones y corrientes en un transistor Analicemos el circuito de la Figura 1. FIGURA 1: Circuito a analizar Este es un circuito genérico, pensado solamente para ver como se plantean las

Más detalles

Base común: Ganancia de corriente

Base común: Ganancia de corriente Base común: de corriente La ganancia de corriente se encuentra dividiendo la corriente de salida entre la de entrada. En un circuito de base común, la primera es la corriente de colector (Ic) y la corriente

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

Práctica de Electrónica de Circuitos II.

Práctica de Electrónica de Circuitos II. Práctica de Electrónica de Circuitos II. Diseño de un Oscilador de 500Khz mediante una red Clapp. Apartado A: Caracterización del transistor Bipolar. A1.- Elección del transistor: Dadas las características

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN

CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN Está formado por dos junturas PN tal como se muestra en la figura. Una juntura está polarizada directamente y la otra está polarizada

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA

EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA 1. Es un material semiconductor que se ha sometido al proceso de dopado. a) Intrínseco b) Extrínseco c) Contaminado d) Impurificado 2. Material

Más detalles

FUNCIONAMIENTO DE LOS BJT S EN CORRIENTE ALTERNA

FUNCIONAMIENTO DE LOS BJT S EN CORRIENTE ALTERNA FUNCIONAMIENTO DE LOS BJT S EN CORRIENTE ALTERNA El circuito de partida es una configuración en emisor común con transistor en polarización de emisor o de puente resistivo. En los siguientes apartados

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA PLAN DE ESTUDIOS 2006-II SÍLABO 1.- DATOS ADMINISTRATIVOS: Curso : CIRCUITOS ELECTRÓNICOS II Código

Más detalles

PROBLEMAS DE OSCILADORES DE MICROONDAS

PROBLEMAS DE OSCILADORES DE MICROONDAS PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,

Más detalles

BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS

BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS PRÁCTICA NÚMERO 5 POLARIZACIÓN Y CONFIGURACIONES DE UN TRANSISTOR BJT TIEMPO ESTIMADO PARA LA REALIZACIÓN

Más detalles

Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE

Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE Tema 3: Condiciones generales Todo amplificador consta de un núcleo en el que hay un transistor (Dos, si es diferencial) Se tratará

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 21: Respuesta en Frecuencia de Circuitos Amplificadores (2) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 22 de

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

Trabajo Práctico Nro. 1

Trabajo Práctico Nro. 1 Trabajo Práctico Nro. 1 TEMA: Polarización de un transistor bipolar FECHA DE NCO: 10/06/11 OBJETO: Encontrar el circuito de polarización más estable en función de la dispersión del β de los transistores

Más detalles

Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida.

Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida. Diapositiva 1 El transistor como resistencia controlada por tensión transistor bipolar NPN colector llave de control base corriente de salida emisor e b c 2N2222 corriente de entrada 6.071 Transistores

Más detalles

OSCILADORES POR ROTACIÓN DE FASE

OSCILADORES POR ROTACIÓN DE FASE OSILADOES PO OTAIÓN DE FASE Un ejemplo de un circuito oscilador que sigue el desarrollo básico de un circuito retroalimentado es el oscilador de rotación de fase. En la figura 05 se muestra una versión

Más detalles

Osciladores senoidales

Osciladores senoidales Osciladores senoidales Osciladores Senoidales Los osciladores senoidales son dispositivos electrónicos capaces de generar una tensión senoidal sin necesidad de aplicar una señal a la entrada. Son ampliamente

Más detalles

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso Guía de Ejercicios Parte III. Transistores BJT 1. Para el circuito que se presenta a continuación, todos los transistores son exactamente iguales, Q1=Q2=Q3=Q4 y poseen una ganancia de corriente β=200.

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

Amplificadores de RF

Amplificadores de RF GR Capítulo 7 Amplificadores de RF Parámetros de un amplificador Respuesta lineal Función de transferencia. Banda de trabajo Ganancia Tiempo de retardo Impedancias de entrada y salida Impedancias nominales

Más detalles

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 1.0 (Mayo/2016) Autor: Unai Hernández (unai@labsland.com) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones de

Más detalles

EXP203 ARREGLO DARLINGTON

EXP203 ARREGLO DARLINGTON EXP203 ARREGLO DARLINGTON I.- OBJETIVOS. Demostrar el uso de un arreglo darlington en una configuración colectorcomún como acoplador de impedancias. Comprobar el funcionamiento de amplificadores directamente

Más detalles

TEMA 6 Amplificador diferencial

TEMA 6 Amplificador diferencial Tema 6 TEMA 6 Amplificador diferencial 6.1.- Introducción El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y comparadores y es la etapa clave de la familia

Más detalles

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura.

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura. CURSO: ELECTRÓNICA ANALÓGICA UNIDAD I: EL AMPLIFICADOR DIFERENCIAL PROFESOR: JORGE ANTONIO POLANÍA El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

EL PREMIO NOBEL DE FÍSICA 1956

EL PREMIO NOBEL DE FÍSICA 1956 EL PREMIO NOBEL DE FÍSICA 1956 EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR El transistor bipolar (BJT Bipolar Junction Transistor) fue desarrollado en los Laboratorios Bell Thelephone en 1948. El nombre

Más detalles

TEMA 3 Amplificadores Operacionales

TEMA 3 Amplificadores Operacionales TEMA 3 Amplificadores Operacionales Simbología. Características del amplificador operacional ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Fundamentos Físicos y Tecnológicos de la nformática Circuitos de Corriente Alterna - Función de transferencia. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas nformáticos

Más detalles

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos

Más detalles

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 2.0 (Octubre/2016) Autor: Unai Hernández (unai@labsland.com) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones

Más detalles

Amplificador en Emisor Seguidor con Autopolarización

Amplificador en Emisor Seguidor con Autopolarización Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal

Más detalles

Osciladores Sinusoidales

Osciladores Sinusoidales Osciladores Sinusoidales Conceptos básicos fundamentales Los osciladores son circuitos electrónicos básicos que no tienen entrada de alterna, pero proporcionan una salida alterna de una frecuencia concreta.

Más detalles

Ing. Julián Ferreira Jaimes RESPUESTA EN FRECUENCIA DE BJT Y FET

Ing. Julián Ferreira Jaimes RESPUESTA EN FRECUENCIA DE BJT Y FET RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION Hasta el momento no se han considerado los efectos de las capacitancías e inductancias en el análisis de los circuitos con transistores es decir se han

Más detalles

PRÁCTICAS DE ELECTRÓNICA II.

PRÁCTICAS DE ELECTRÓNICA II. PRÁCTICAS DE ELECTRÓNICA II. 5 o FÍSICA Juan Antonio Jiménez Tejada Índice 1. POLARIZACIÓN DEL TRANSISTOR BIPOLAR. 1 2. TRANSISTOR EN CONMUTACIÓN. FAMILIA LÓGICA TTL. 3 3. AMPLIFICADOR MONOETAPA CON TRANSISTOR

Más detalles

Una vez conseguida, tenemos que implementar un circuito electrónico cuya función de transferencia sea precisamente ésta.

Una vez conseguida, tenemos que implementar un circuito electrónico cuya función de transferencia sea precisamente ésta. Teoría de ircuitos II 3.3 El proceso de diseño de filtros consiste en encontrar una función de transferencia que cumpla las especificaciones dadas. Una vez conseguida, tenemos que implementar un circuito

Más detalles

EL TRANSISTOR BIPOLAR. BJT (Bipolar Junction Transistor)

EL TRANSISTOR BIPOLAR. BJT (Bipolar Junction Transistor) 1.- ntroducción. EL TANSSTO BPOLA. BJT (Bipolar Junction Transistor) Tema 4 2.- Componentes de las corrientes 2.1.- Corrientes en la zona activa. a 2.2.- Ecuación generalizada del transistor. 3.- Curvas

Más detalles

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS 7.1. INTRODUCCIÓN. TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS En Temas precedentes se ha puesto el énfasis en el análisis del funcionamiento interno de redes, es decir, el aspecto fundamental del análisis

Más detalles

PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS

PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS DESARROLLO Para esta práctica donde se diseño un circuito amplificador en emisor común con parámetros

Más detalles

Vce 1V Vce=0V. Ic (ma)

Vce 1V Vce=0V. Ic (ma) GUIA DE TRABAJOS PRACTICOS P31 Bibliografía de Referencia Transistores y Circuitos Amplificadores * Boylestad, R & Nashelsky, L. Electrónica -Teoría de Circuitos y Dispositivos 10ª. Ed. Pearson Educación,

Más detalles

Electrónica 2. Práctico 2 Osciladores

Electrónica 2. Práctico 2 Osciladores Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento

Más detalles

TRANSISTOR BIPOLAR: TEMA 2.2

TRANSISTOR BIPOLAR: TEMA 2.2 TRANSISTOR BIPOLAR: TEMA 2.2 Zaragoza, 12 de noviembre de 2013 ÍNDICE TRANSISTOR BIPOLAR Tema 2.2 Polarización Modelo de pequeña señal TRANSISTOR BIPOLAR Tema 2.2 Polarización Modelo de pequeña señal POLARIZACIÓN

Más detalles

EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE PEQUEÑA SEÑAL (Versión 1.0)

EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE PEQUEÑA SEÑAL (Versión 1.0) Prof : Bolaños D. (Electrónica) 1 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE PEQUEÑA SEÑAL (Versión 1.0) Si al transistor bipolar de juntura (a partir de aquí TBJ ) lo polarizamos en la zona activa, puede

Más detalles

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen

Más detalles

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA INGENIERÍA EN SISTEMAS COMPUTACIONALES ACADEMIA DE SISTEMAS DINÁMICOS NOMBRE: OPCIÓN: SISTEMAS ASIGNATURA: ELECTRÓNICA ANALÓGICA GRUPO: BOLETA: CALIFICACIÓN:

Más detalles

Práctica 1: Amplificador de audio clase AB

Práctica 1: Amplificador de audio clase AB Práctica 1: Amplificador de audio clase AB IMPORTANTE: La lectura y comprensión de este enunciado se considera como trabajo previo por parte del alumno. Dicho conocimiento será evaluado durante la sesión

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION.

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION. PRÁCTIC 6 MPLIFICDOR MULTIETP CONFIGURCION EMISOR COMUN CON UTOPOLRIZCION. DESRROLLO 1.- rme el circuito de la siguiente figura y aplique a la señal de entrada una señal sinusoidal de 1 KHz. de frecuencia,

Más detalles