APLICACIONES DE LA ENERGIA SOLAR FOTOVOLTAICA: PILAS DE COMBUSTIBLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIONES DE LA ENERGIA SOLAR FOTOVOLTAICA: PILAS DE COMBUSTIBLE"

Transcripción

1 APLICACIONES DE LA ENERGIA SOLAR FOTOVOLTAICA: PILAS DE COMBUSTIBLE 1.OBJETIVO Obtención de las curvas características de una célula solar y una ceda de combustible. 2.FUNDAMENTO TEORICO Células Solares Las células solares son dispositivos que producen electricidad por un proceso de conversión directa de energía solar en energía eléctrica. Cuando la luz solar incide sobre ciertos materiales llamados semiconductores los fotones son capaces de transmitir su energía a dicho material. Las células solares están constituidas básicamente por una homo o heterounión de dos semiconductores con distinto tipo de conducción, denominados tipo p o n. Uno de los semiconductores es el encargado de absorber la radiación solar creando pares electrón-hueco que el campo eléctrico existente en la heterounión acelerara para obtener la conducción. El valor de la banda prohibida del gap del semiconductor absorbente deberá encontrarse cercana al valor de la energía donde la radiación solar o de la fuente luminosa utilizada sea máxima. Las células solares tienen una vida muy larga y se utilizan sobre todo en los aviones, como fuente de electricidad para el equipo de a bordo. El uso tanto industrial como doméstico también está bastante extendido. Pila de combustible La primera célula de combustible se fabricó en 1839 y desde 1960 se han hecho grandes esfuerzos en su desarrollo. Son dispositivos en donde mediante un mecanismo electroquímico la energía de una reacción química se convierte directamente en electricidad. A diferencia de la pila eléctrica o batería, una pila de combustible no se acaba ni necesita ser recargada; funciona mientras el combustible y el oxidante le sean suministrados. Una pila de combustible consiste en un ánodo en el que se inyecta el combustible comúnmente hidrógeno, amoníaco, hidracina o metanol y un cátodo en el que se introduce un oxidante normalmente aire u oxígeno. Los dos electrodos de una pila de combustible están separados por un electrolito iónico conductor. En el caso de una pila de combustible de hidrógeno-oxígeno con un electrolito de hidróxido de metal alcalino, la reacción del ánodo es 2H2 + 4OH- 4H2O + 4e- y la reacción del cátodo es O2 + 2H2O + 4e- 4OH-. Los electrones generados en el ánodo se mueven por un circuito externo que contiene la carga y pasan al cátodo. Los iones OH- generados en el cátodo son conducidos por el electrolito al ánodo, donde se combinan con el hidrógeno y forman agua. El voltaje de la pila de combustible en este caso es de unos 1,2 V pero disminuye conforme aumenta la carga. El agua producida en el ánodo debe ser extraída continuamente para evitar que inunde la pila. Las pilas de 1

2 combustible de hidrógeno-oxígeno que utilizan membranas de intercambio iónico o electrólitos fueron utilizadas en los programas espaciales Gemini y Apolo. La pila de metanol/aire consiste en una membrana que permite el flujo de iones de hidrógeno (protones). En una cara de la membrana se presenta metanol (CH3OH) y en la otra oxígeno. Como consecuencia de la reacción se produce un potencial eléctrico, agua y anhídrido carbónico como productos residuales. En cada lado de la célula hay una placa metálica con unos microsurcos que sirven para encauzar el combustible y como colector eléctrico. El metanol tiene una alta concentración de energía (6KW/m 3) y es barato, (0'15 euros/litro). La célula de demostración fabricada por Motorota para uso portatil por ejemplo, ha proporcionado 200mA a 0'5 voltios, con un volumen de 10 centímetros cúbicos, lo que representa una densidad de energía de 10KW/m3. Se espera conseguir una densidad de energía diez veces superior a las actuales baterías de IonLítio y la recarga de la batería se efectuará con pequeños cartuchos de metanol. Ejemplo de un sistema real. Monocelda Sistema de control de gases 2

3 CENTRAL DE H2 SOLAR EN MINIATURA El equipo denominado central solar en miniatura es que el está a disposición del estudiante para el desarrollo experimental. El funcionamiento del equipo es el siguiente: El módulo solar transforma energía luminosa en energía eléctrica, esta es utilizada en la disociación del agua en oxigeno e hidrogeno, por lo tanto es una transformación de energía eléctrica en emergía química y la combinación de ambos gases mediante los electrocatalizadores alojados en la celda de combustible es utilizada para generar energía eléctrica nuevamente. Módulo Solar Transforma luz en corriente eléctrica Disociación de H2O 3

4 Partes del equipo experimental 4

5 5

6 6

7 PROCEDIMIENTO EXPERIMENTAL Y RESULTADOS 1.Obtención de la curva característica de una célula solar Montar el sistema de acuerdo a la figura adjunta. En dicho esquema el significado de la letra A es (Amperímetro),V(Voltímetro) y R (Reostato, siendo este una resistencia variable). a) Iluminar bien el modulo solar con una lámpara, la distancia entre el módulo y la lámpara debe ser de unos 30 cm, la corriente ha de ser entre ma). b) Esperar 5 minutos hasta que el módulo alcance la temperatura constante. c) Se medirán valores de potencial e intensidad a distintas resistencias con el fin de construir la curva característica. d) Rellenar la Tabla I, potencial (V) e intensidad (I) empezando con resistencia cero (posición SHORT CIRCUIT, corto circuito) y aumentando la resistencia poco a poco (1, 3, 5, 10, 50, 100,200 Ω). La medición final se toma en posición OPEN (circuito abierto, es decir R = ). e) Repetir la experiencia colocando la lámpara a 40 cm. Del módulo solar. 7

8 TABLA I Resistencias(Ω) Distancia 30cm. Voltaje(V) Corriente (ma) Resistencias (Ω) Distancia 40 cm Voltaje ( V ) Corriente (ma) Evaluación f) Representar las gráficas IV g) Interpretar las curvas característica h) Determinar la máxima potencia representando potencia (P= VxI) frente al voltaje. i) Determinar el Fill Factor de la célula solar. (Fill Factor = Pmaxima / Icorto circuito Vcircuito abierto ) 2.Obtención de la curva característica de un electrolizador. Montar el sistema de acuerdo a la figura adjunta. En dicho esquema el significado de la letra A es (Amperímetro),V(Voltímetro) y R (Reostato, siendo este una resistencia variable), y llenar las probetas del electrolizador con agua destilada hasta la señal de 0 mls. 8

9 Ajustar la corriente del módulo solar variando la intensidad de la luz moviendo convenientemente la distancia de la lámpara al módulo solar. Ajustar distintos valores de corriente comenzando por valores pequeños del orden de 10 ma y aumentando hasta 350 ma (dependiendo del tipo de lámpara utilizada). Realizar 8 medidas de corriente y tensión durante la electrolisis y anotar los valores en la Tabla III. (El interruptor de la caja de mediciones deberá estar en la posición de cortocircuito) Tabla III Tensión (V) Corriente ( ma) Evaluación a) Dibujar la curva, Tensión frente a Intensidad (V-I) 9

10 b) Interpretar la curva característica. 3. Comprobación de las leyes de Faraday Según se indica en el diagrama adjunto, el esquema de montaje es idéntico al experimento anterior pero se sellará la probeta de almacenamiento de H2 mediante uno de los tapones de tubo. Asegúrese de que las dos probetas de almacenamiento de agua destilada están llenas hasta la señal de 0 mls. El interruptor de la caja de medida ha de estar en corto circuito. 1a Ley de Faraday Disponga el módulo solar de tal manera que la corriente que debe de llegar desde el módulo solar sea entre ma y además constante. Anótese el tiempo necesario para obtener distintos volúmenes de H2 hasta obtener 10 ml. (completar la Tabla IV) Tabla IV Tiempo ( s) Volumen ( ml) 10

11 Evaluación a) Trazar la gráfica Volumen frente a tiempo a partir de las medias. b) Estudiar la relación entre el volumen de H2 generado y la carga transportada. (1a Ley de Faraday). 2a Ley de Faraday Con el mismo montaje del apartado anterior, tomar un tiempo constante (por ejemplo 180 s). Regular la corriente, variando la distancia de la lámpara al módulo solar, de tal manera que obtenga 100, 200, 300 y 400 ma y a tiempo fijo anotar la cantidad de H2 obtenido. Tabla V Corriente(mA) Volumen ( ml) Evaluación a) Obtener la 2a Ley de Faraday. 11

12 CURVA CARACTERISTICA DE LA PILA DE COMBUSTIBLE H2/O2 Montar el esquema que se indica a continuación: a) Comprobar bien las polaridades y las conexiones de de los gases entre el electrolizador y la pila de combustible. b) Poner el interruptor de la de mediciones en OPEN (circuito abierto). c) Asegurarse de que las probetas del electrolizador están llenas de agua destilada hasta la señal de 0 ml. d) Aplicar mediante el módulo solar una corriente entre 200 y 300 ma. e) Purgar el sistema entero (compuesto por el electrolizador, la pila de combustible y los tubos) durante 5 minutos con los gases producidos. A continuación situar el interruptor de la caja de mediciones en 3Ω durante 3 minutos. El amperímetro ahora indicará una corriente. f) Purge de nuevo el sistema con el interruptor en la posición OPEN durante 3 minutos. g) Cerrar los tubos de la celda de combustible con los tapones dispuestos para ello. (Ver siguiente figura). h) Volver a conector el módulo solar al electrolizador y almacenar los gases en las probetas del electrolizador. Interrumpir el suministro de corriente cuando el lado del H2 haya alcanzado 10ml. 12

13 i) Quitar los cables del módulo y del electrolizador y utilizarlos para conectar el voltímetro de la caja de mediciones a la pila de combustible. (Ver figura adjunta) j) Trazar la curva característica de la pila de combustible variando la resistencia, comenzando en la posición OPEN ( circuito abierto), luego se reduce la resistencia poco a poco. Anotar la tensión y la corriente para cada resistencia. Esperar 30 s cada vez antes de comenzar la siguiente medida. Incluir los resultados en la tabla adjunta. Finalmente tome medicines para la lámpara y el motor eléctrico. Cuando se ha acabado de medir poner el interruptor en OPEN y retirar los tapones de la pila de combustible Tabla VI Resistencias(Ω) Voltaje(V) Corriente (ma) Evaluación a) Representar la curva caracteristica VI b) Interpretar la curva característica c) Determinar la máxima potencia representando potencia (P= VxI) frente al voltaje. d) Introduzca la corriente y tensión de la lámpara y del motor e) Calcular el consumo y potencia de la lámpara y el motor e introduzca los valores en el diagrama potencia intensidad. 13

14 4..BIBLIOGRAFIA Erhard Weidlich Constitución y funcionamiento de las pilas de combustible. Editorial Marcombo Ton Koppel. Powering the future the ballard fuel cell and the race to change the Word. Editorial John and Wiley and Sons Peter Hoffmann. Tomorrow's energy hydrogen, fuel cells, and the prospects for a cleaner planet.editorial MIT Press

REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis)

REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis) REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis) 1 2 Electrólisis Aplicando una f.e.m. adecuada se puede conseguir que tenga lugar una reacción redox en el sentido que no es espontánea. En una

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

Tema 2. Producción de hidrógeno

Tema 2. Producción de hidrógeno Tema 2. Producción de hidrógeno A) Electrolisis B) A partir de gas natural C) A partir de hidrocarburos, alcoholes y biomasa D) Otras tecnologías de producción El color del hidrógeno H 2 verde puro : raza

Más detalles

ELECTROLISIS DEL AGUA POR

ELECTROLISIS DEL AGUA POR ELECTROLISIS DEL AGUA POR TEORIA: La electrólisis del agua consiste en un proceso electroquímico en el cual el agua se divide en Hidrógeno y Oxígeno. La electrólisis consiste en pasar corriente eléctrica

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

Objetivos. Equipo y materiales

Objetivos. Equipo y materiales Laboratorio Circuitos DC Experimento 3: Fuentes de Voltaje Objetivos Conectar fuentes de voltaje fotovoltaicas en serie, paralelo y serie paralelo Medir corriente de carga en circuitos con fuentes de voltaje

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

TRABAJO PRÁCTICO N 6: ELECTRÓLISIS

TRABAJO PRÁCTICO N 6: ELECTRÓLISIS QUÍMICA GENERAL Y TECNOLÓGICA 2010 TRABAJO PRÁCTICO N 6: ELECTRÓLISIS Objetivo: Medición de la intensidad de corriente que circula por un sistema electrolítico y determinación del equivalente-gramo del

Más detalles

ELECTRICIDAD. La idea de corriente eléctrica es inseparable de la de un circuito cerrado. Si en algún lugar hay una ruptura, la corriente no circula.

ELECTRICIDAD. La idea de corriente eléctrica es inseparable de la de un circuito cerrado. Si en algún lugar hay una ruptura, la corriente no circula. ELECTRICIDAD La idea de corriente eléctrica es inseparable de la de un circuito cerrado. Si en algún lugar hay una ruptura, la corriente no circula. Un circuito muy simple: pila, bombilla y cables y su

Más detalles

CICLO CERRADO DEL MOTOR DE HIDRÓGENO

CICLO CERRADO DEL MOTOR DE HIDRÓGENO CICLO CERRADO DEL MOTOR DE HIDRÓGENO 19 de abril 2013 Antonio Arenas Vargas Rafael González López Marta Navas Camacho Coordinado por Ángel Hernando García Colegio Colón Huelva Lise Meitner ESCUELA TÉCNICA

Más detalles

fw^o=molmripfþk=v=bkbodð^=jlqlobp fw^o=molmripfþk=v=bkbodð^=jlqlobp ÍNDICE

fw^o=molmripfþk=v=bkbodð^=jlqlobp fw^o=molmripfþk=v=bkbodð^=jlqlobp ÍNDICE PILAS DE COMBUSTIBLE: ENERGÍA LIMPIA 1 ÍNDICE 1. INTRODUCCIÓN / DESCRIPCIÓN 2. ANTECEDENTES 3. CÉLULA DE COMBUSTIBLE IZAR-MTU HM-300 2 1. INTRODUCCIÓN / DESCRIPCIÓN 2. ANTECEDENTES 3. CÉLULA DE COMBUSTIBLE

Más detalles

TEMA 3 GENERADORES DE CORRIENTE CONTINUA

TEMA 3 GENERADORES DE CORRIENTE CONTINUA TEMA 3 GENERADORES DE CORRIENTE CONTINUA En todo circuito eléctrico es necesaria una fuente de energía que sea capaz de poner en movimiento a los electrones, a la cual llamamos generador. Si existen dos

Más detalles

Potencia y Energía de las Celdas de Combustible

Potencia y Energía de las Celdas de Combustible Potencia y Energía de las Celdas de Combustible Mario Mendoza Zegarra Ingeniero Mecánico mmendozaz@minpetel.com Las celdas de combustible (CDC) o también llamadas pilas de combustible o pilas de hidrógeno

Más detalles

Aplicacionesprácticas

Aplicacionesprácticas Aplicacionesprácticas JHRoerdenponeatudisposiciónunaseriedeelementos,que permitenlaexplicacióndediferentesmodelostecnológicos, cuyodenominadorcomúnsonlasenergíasrenovables. Además,facilitamosladocumentaciónnecesariapara

Más detalles

LA ELECTRÓLISIS DEL AGUA

LA ELECTRÓLISIS DEL AGUA LA ELECTRÓLISIS DEL AGUA Oxidación: 2H + +O +4e - 2 O(l) 4H (aq) 2 (g) Reducción: 2H 2 O(l) + 2e - H 2 (g) + 2OH - (aq) Reacción total en la celda 2H 2 O(l) 2H 2 (g) + O 2 (g) Nota: Obsérvese la diferencia

Más detalles

PANELES SOLARES QUE GENERAN HIDRÓGENO QUE ALIMENTA UNA PILA PEMFC PARA UN CONJUNTO DE DISPOSITIVOS DE 2 KW.

PANELES SOLARES QUE GENERAN HIDRÓGENO QUE ALIMENTA UNA PILA PEMFC PARA UN CONJUNTO DE DISPOSITIVOS DE 2 KW. PANELES SOLARES QUE GENERAN HIDRÓGENO QUE ALIMENTA UNA PILA PEMFC PARA UN CONJUNTO DE DISPOSITIVOS DE 2 KW. Autor (p)1 Antonio Creus Sole 1 Profesor titular Departament Proyectes d Enginyeria UPC Abstract!"

Más detalles

SENSOR DE OXIGENO Sensor de Oxígeno

SENSOR DE OXIGENO Sensor de Oxígeno SENSOR DE OXIGENO Otro sensor especial utilizado solamente en los Sistemas de Control de Motores es el Sensor de Oxígeno. Este componente se monta en el tubo de escape de gases residuales de la combustión

Más detalles

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía Introducción Energía Demanda creciente Fuerte uso de combustibles fósiles: f Recurso limitado Contaminación Necesidad de formas alternativas de obtener energía Introducción Energía a Solar Ventajas Fuente

Más detalles

Electrólisis. Electrólisis 12/02/2015

Electrólisis. Electrólisis 12/02/2015 Electrólisis Dr. Armando Ayala Corona Electrólisis La electrolisis es un proceso mediante el cual se logra la disociación de una sustancia llamada electrolito, en sus iones constituyentes (aniones y cationes),

Más detalles

U.T. 4.- CIRCUITOS ELÉCTRICOS

U.T. 4.- CIRCUITOS ELÉCTRICOS U.T. 4.- CIRCUITOS ELÉCTRICOS Un circuito eléctrico es un conjunto de operadores eléctricos que, conectados entre sí de forma adecuada, permite la circulación y el control de la corriente eléctrica. OPERADORES

Más detalles

TRABAJO PRÁCTICO N 10 PILAS-ELECTRÓLISIS

TRABAJO PRÁCTICO N 10 PILAS-ELECTRÓLISIS TRABAJO PRÁCTICO N 10 PILAS-ELECTRÓLISIS Las celdas galvánicas (pilas) son dispositivos armados de tal forma que, usando reacciones redox espontáneas, generan energía eléctrica Ejemplo: Pila de Daniel:

Más detalles

TEMA 1: LA ELECTRICIDAD

TEMA 1: LA ELECTRICIDAD TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no

Más detalles

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006 BATERIA AUTOMOTRIZ HECTOR CISTERNA MARTINEZ Profesor Técnico 1 Introducción La batería es un acumulador de energía que cuando se le alimenta de corriente continua, transforma energía eléctrica en energía

Más detalles

ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA.

ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA. ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA. 1.- Indica el nombre, el símbolo y la aplicación de los siguientes dispositivos eléctricos: COMPONENTE NOMBRE SÍMBOLO APLICACIÓN FUSIBLES Protege un

Más detalles

GENERADOR OXHÍDRICO PARA SOPLETE AUTOGENO COMO COMPLEMENTO PARA SOLDADORA ELECTRICA CONVENCIONAL OBJETO DE LA INVENCIÓN

GENERADOR OXHÍDRICO PARA SOPLETE AUTOGENO COMO COMPLEMENTO PARA SOLDADORA ELECTRICA CONVENCIONAL OBJETO DE LA INVENCIÓN GENERADOR OXHÍDRICO PARA SOPLETE AUTOGENO COMO COMPLEMENTO PARA SOLDADORA ELECTRICA CONVENCIONAL OBJETO DE LA INVENCIÓN El objeto de la presente invención es un generador de gas oxhídrico para soplete

Más detalles

ELECTROQUÍMICA. 1. Procesos electroquímicos (pila). 2. Potenciales normales de electrodo. 3. Ecuación de Nernst. 4. Electrolisis. 5. Leyes de Faraday.

ELECTROQUÍMICA. 1. Procesos electroquímicos (pila). 2. Potenciales normales de electrodo. 3. Ecuación de Nernst. 4. Electrolisis. 5. Leyes de Faraday. ELECTROQUÍMICA 1. Procesos electroquímicos (pila). 2. Potenciales normales de electrodo. 3. Ecuación de Nernst. 4. Electrolisis. 5. Leyes de Faraday. Química 2º bachillerato Electroquímica 1 0. CONOCIMIENTOS

Más detalles

ELECTRÓLISIS. Electrólisis de sales fundidas

ELECTRÓLISIS. Electrólisis de sales fundidas El proceso por el cual se produce una reacción química a partir de una energía eléctrica se denomina electrólisis. Y se lleva a cabo en un dispositivo que se conoce como cuba o celda electrolítica. Este

Más detalles

GRANDES BANCOS DE BATERÍAS

GRANDES BANCOS DE BATERÍAS GRANDES BANCOS DE BATERÍAS Seminario de Almacenamiento de Energía en Media Potencia Postgrado en Ingeniería Eléctrica Universidad Autónoma de San Luis Potosí 10 Noviembre del 2012 Índice Ø Objetivo del

Más detalles

ELECTROOBTENCIÓN DE ZINC UTILIZANDO CELDA DE ELECTRODIALISIS REACTIVA

ELECTROOBTENCIÓN DE ZINC UTILIZANDO CELDA DE ELECTRODIALISIS REACTIVA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA METALURGICA ELECTROOBTENCIÓN DE ZINC UTILIZANDO CELDA DE ELECTRODIALISIS REACTIVA Profesor Dr. GERARDO CIFUENTES MOLINA

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua Capítulo 4: Circuitos de corriente continua Corriente promedio: carga que pasa por A por unidad de tiempo Corriente Instantánea [ I ] = C/s = A (Ampere) J = q n v d Ley de Ohm George Simon Ohm (1789-1854)

Más detalles

Batería de Mano. Batería de Mano

Batería de Mano. Batería de Mano E L E C T R I C I D A D Y M A G N E T I S M O Batería de Mano Batería de Mano ELECTRICIDAD Y MAGNETISMO La Electroquímica es una rama de la Química que estudia las transformaciones de energía química en

Más detalles

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica.

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica. ELECTROQUÍMICA La electroquímica estudia los cambios químicos que producen una corriente eléctrica y la generación de electricidad mediante reacciones químicas. Es por ello, que el campo de la electroquímica

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO Marisol de la Fuente Mendoza IES LA CANAL DE NAVARRÉS Navarrés (Valencia) Introducción: Al hablar de los efectos de la corriente eléctrica,

Más detalles

ELECTRÓLISIS DEL AGUA FRANCISCO MORENO HUESO. 18 de noviembre de 2013

ELECTRÓLISIS DEL AGUA FRANCISCO MORENO HUESO. 18 de noviembre de 2013 18 de noviembre de 2013 Índice General 1 FUNDAMENTO TEÓRICO Índice General 1 FUNDAMENTO TEÓRICO 2 MATERIAL Y REACTIVOS Índice General 1 FUNDAMENTO TEÓRICO 2 MATERIAL Y REACTIVOS 3 PROCEDIMIENTO EXPERIMENTAL

Más detalles

Equipo de Energía Solar Fotovoltaica EESFB

Equipo de Energía Solar Fotovoltaica EESFB Equipo de Energía Solar Fotovoltaica EESFB Equipamiento Didáctico Técnico Productos Gama de productos Equipos 5.-Energía Consola electrónica DIAGRAMA DEL PROCESO Y DISPOSICIÓN DE LOS ELEMENTOS DEL EQUIPO

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

BICICLETAS ELÉCTRICAS ASISTIDAS POR PILAS DE COMBUSTIBLE DE METANOL DIRECTO.

BICICLETAS ELÉCTRICAS ASISTIDAS POR PILAS DE COMBUSTIBLE DE METANOL DIRECTO. Ánodo Metanol y agua Cátodo O 2 CO 2 H 2 O Difusores Membrana polimérica Difusores Catalizador BICICLETAS ELÉCTRICAS ASISTIDAS POR PILAS DE COMBUSTIBLE DE METANOL DIRECTO. Axel Arruti, Pedro M. Gómez,

Más detalles

El sistema de suministro de potencia de un vehículo solar

El sistema de suministro de potencia de un vehículo solar Page 1 of 6 El sistema de suministro de potencia de un vehículo solar El sistema de suministro de potencia de un vehículo solar consistente en un conjunto de células fotovoltaicas (panel solar), un grupo

Más detalles

REACCIONES DE TRANSFERENCIA DE ELECTRONES

REACCIONES DE TRANSFERENCIA DE ELECTRONES REACCIONES DE TRANSFERENCIA DE ELECTRONES REACCIONES REDOX son aquellas en las que cambian el número de oxidación de algún elemento. En estas reacciones hay intercambio de electrones por lo que no se pueden

Más detalles

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA VIII 1 PRÁCTICA 8 ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA En esta práctica estudiaremos algunos aspectos prácticos de las reacciones de oxidación reducción que no son espontáneas.

Más detalles

Quito Ecuador EXTRACTO

Quito Ecuador EXTRACTO Quito Ecuador NORMA TÉCNICA ECUATORIANA NTE INEN-ISO 22734-1 Primera edición 2014-01 GENERADORES DE HIDRÓGENO UTILIZANDO EL PROCESO DE LA ELECTROLISIS DEL AGUA. PARTE 1: APLICACIONES INDUSTRIALES Y COMERCIALES

Más detalles

1. Aplicaciones de la electricidad

1. Aplicaciones de la electricidad 1. Aplicaciones de la electricidad A lo largo de la historia, el ser humano ha ido utilizado diferentes formas de energía para la realización de las tareas cotidianas. El descubrimiento del fuego, por

Más detalles

SENSOR DE OXIGENO DISUELTO

SENSOR DE OXIGENO DISUELTO TS330 SENSOR DE OXIGENO DISUELTO MANUAL DEL USUARIO Rev.03 Tecmes Instrumentos Especiales SRL www.tecmes.com Tabla de Contenidos Descripción... 3 Consideraciones del Transductor... 4 Reemplazo de Electrolito

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

LA ENERGÍA MUEVE AL MUNDO

LA ENERGÍA MUEVE AL MUNDO LA ENERGÍA MUEVE AL MUNDO La historia del hombre siempre ha estado condicionada por la energía, pero Qué es la energía? Dónde esta? Empezando por los seres Vivos quienes son capaces de convertir los alimentos

Más detalles

ELEMENTOS DE MANIOBRA

ELEMENTOS DE MANIOBRA Circuito eléctrico. Circuito eléctrico. Circuito eléctrico Un circuito eléctrico es un conjunto de operadores o elementos que, unidos entre sí, permiten una circulación de electrones (corriente eléctrica).

Más detalles

Curso de hidrógeno y pilas de combustible. 11ª edición TEST Modulo 3

Curso de hidrógeno y pilas de combustible. 11ª edición TEST Modulo 3 TEST MODULO 3 1. Qué componente de las pilas de polímeros es polimérico? a) La membrana que actúa como electrolito. b) Los catalizadores que favorecen la reacción. c) Todos los que forman la MEA de 5 capas.

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Celdas fotovoltaicas 2. Competencias Desarrollar

Más detalles

1 Tablero Maestro 1 Tarjeta de Circuito impreso DE LORENZO 1 Multímetro 1 Osciloscopio 1 Generador de Funciones. Tabla 1.1 Material y Equipo.

1 Tablero Maestro 1 Tarjeta de Circuito impreso DE LORENZO 1 Multímetro 1 Osciloscopio 1 Generador de Funciones. Tabla 1.1 Material y Equipo. Electrónica de Potencia. Guía 3 Facultad: Estudios Tecnológicos Escuela: Electrónica y Biomédica Asignatura: Electrónica de Potencia Contenido. Curva de Operación del SCR. Objetivos específicos. Verificar

Más detalles

PRÁCTICA 21 CÁLCULO DE LA CONSTANTE DE LOS GASES: VOLUMEN MOLAR DEL HIDRÓGENO. COMPARACIÓN CON EL MÉTODO HOFFMAN

PRÁCTICA 21 CÁLCULO DE LA CONSTANTE DE LOS GASES: VOLUMEN MOLAR DEL HIDRÓGENO. COMPARACIÓN CON EL MÉTODO HOFFMAN PRÁCTICA 1 CÁLCULO DE LA CONSTANTE DE LOS GASES: VOLUMEN MOLAR DEL HIDRÓGENO. COMPARACIÓN CON EL MÉTODO HOFFMAN OBJETIVOS Discernir entre un proceso redox que es espontáneo y otro que no lo es. Obtener,

Más detalles

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar

Más detalles

HYDROSOLAR 21. FRÍO E HIDRÓGENO MEDIANTE ENERGÍAS RENOVABLES

HYDROSOLAR 21. FRÍO E HIDRÓGENO MEDIANTE ENERGÍAS RENOVABLES HYDROSOLAR 21. FRÍO E HIDRÓGENO MEDIANTE ENERGÍAS RENOVABLES Luis R. Rodríguez Cano 1 y Gabriel García Herbosa 2 I. Las energías renovables y el almacenamiento de energía. Las necesidades energéticas mundiales,

Más detalles

MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO

MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO ASIGNATURA PILAS DE COMBUSTIBLE Pilar Ocón Esteban 1 PROGRAMA Tema 1. Conversión electroquímica de la energía. Principios básicos. Elementos constitutivos

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO

MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO MASTER ENERGIAS Y COMBUSTIBLES PARA EL FUTURO ASIGNATURA PILAS DE COMBUSTIBLE Pilar Ocón Esteban PROGRAMA Tema 1. Conversión electroquímica de la energía. Principios básicos. Elementos constitutivos de

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Unidad 7. Reacciones de transferencia de electrones. Oxidación- Reducción. Ajuste de reacciones de oxidación-reducción.

Unidad 7. Reacciones de transferencia de electrones. Oxidación- Reducción. Ajuste de reacciones de oxidación-reducción. Unidad 7. Reacciones de transferencia de electrones. Oxidación- Reducción Concepto de oxidación-reducción Número de oxidación Ajuste de reacciones de oxidación-reducción. Estequiometría Electroquímica

Más detalles

JULIO 2012. FASE GENERAL QUÍMICA

JULIO 2012. FASE GENERAL QUÍMICA OPCIÓN A JULIO 2012. FASE GENERAL QUÍMICA 1. (2,5 puntos) A partir de los siguientes datos de energías de ruptura de enlaces (ED): Molécula Enlaces ED (kj mol -1 ) H 2 H H 436 N 2 N N 946 NH 3 N-H 389

Más detalles

Ingeniería electrónica FOTOVOLTAICOS SISTEMA DE CARACTERIZACIÓN N DE PANELES. Autor: Nuria Porcel García

Ingeniería electrónica FOTOVOLTAICOS SISTEMA DE CARACTERIZACIÓN N DE PANELES. Autor: Nuria Porcel García SISTEMA DE CARACTERIZACIÓN N DE PANELES FOTOVOLTAICOS Autor: Nuria Porcel García Ingeniería electrónica OBJETIVOS Obtener los parámetros característicos de un panel solar mediante: Medidas por simulación.

Más detalles

JULIO 2012. FASE ESPECÍFICA. QUÍMICA.

JULIO 2012. FASE ESPECÍFICA. QUÍMICA. JULIO 2012. FASE ESPECÍFICA. QUÍMICA. OPCIÓN A 1. (2,5 puntos) Se añaden 10 mg de carbonato de estroncio sólido, SrCO 3 (s), a 2 L de agua pura. Calcule la cantidad de SrCO 3 (s) que queda sin disolver.

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

EXPERIENCIAS EN EL DESARROLLO DE UN VEHÍCULO PROPULSADO POR PILA DE COMBUSTIBLE DE HIDRÓGENO

EXPERIENCIAS EN EL DESARROLLO DE UN VEHÍCULO PROPULSADO POR PILA DE COMBUSTIBLE DE HIDRÓGENO EXPERIENCIAS EN EL DESARROLLO DE UN VEHÍCULO PROPULSADO POR PILA DE COMBUSTIBLE DE HIDRÓGENO D. Fernando Quero Sanz y D. J.Carlos Sánchez Catalán Escuela Universitaria Politécnica La Almunia de Doña Godina.

Más detalles

Conducción eléctrica en líquidos

Conducción eléctrica en líquidos Conducción eléctrica en líquidos Objetivo El objetivo de este experimento es estudiar si los líquidos conducen o no la electricidad. Para aquellos que sí lo hacen, se propone verificar si satisfacen o

Más detalles

H-RACER C-7113. Modelo No.: FCJJ-18 (Cebekit Code: C-7113)

H-RACER C-7113. Modelo No.: FCJJ-18 (Cebekit Code: C-7113) H-RACER C-7113 Modelo No.: FCJJ-18 (Cebekit Code: C-7113) Advertencia Para evitar el riesgo de daños a la propiedad, lesiones graves o la muerte: Este equipo sólo debe ser utilizado por personas mayores

Más detalles

Figura 1. Tipos de capacitores 1

Figura 1. Tipos de capacitores 1 CAPACITOR EN CIRCUITO RC OBJETIVO: REGISTRAR GRÁFICAMENTE LA DESCARGA DE UN CAPACITOR Y DETERMINAR EXPERIMENTALMENTE LA CONSTANTE DE TIEMPO RC DEL CAPACITOR. Ficha 12 Figura 1. Tipos de capacitores 1 Se

Más detalles

Energía Solar Pablo Ayesa payesa@cener.com

Energía Solar Pablo Ayesa payesa@cener.com Energía Solar Pablo Ayesa payesa@cener.com Logroño 23 de marzo El Sol y la tierra El sol es un reactor de fusión nuclear que transforma H 2 en He y proyecta energía en forma de luz. La tierra recibe 1.400

Más detalles

BA10 CARGADOR DE BATERÍAS PARA BATERÍAS DE PLOMO-ÁCIDO

BA10 CARGADOR DE BATERÍAS PARA BATERÍAS DE PLOMO-ÁCIDO BA10 CARGADOR DE BATERÍAS PARA BATERÍAS DE PLOMO-ÁCIDO Manual de usuario y guía profesional de carga para baterías de arranque y de ciclo profundo. ESTE MANUAL CONTIENE INSTRUCCIONES DE SEGURIDAD Y USO

Más detalles

LA BATERIA DE PLOMO-ACIDO

LA BATERIA DE PLOMO-ACIDO CAPITULO 5 LA BATERIA PLOMO-ACIDO INTRODUCCION La importancia de este componente dentro del sistema FV hace necesario el conocimiento a fondo de las limitaciones intrínsecas del mismo. Sólo así podrá lograrse

Más detalles

Las fotos incluyen los siguientes items: Sistema de enseñanza de Energía Solar 948701 Herramientas 948704 Soporte 948705

Las fotos incluyen los siguientes items: Sistema de enseñanza de Energía Solar 948701 Herramientas 948704 Soporte 948705 ECOLOGIA - MEDIO AMBIENTE LMER - Laboratorio de Energía Renovable Las fotos incluyen los siguientes items: Sistema de enseñanza de Energía Solar 948701 Herramientas 948704 Soporte 948705 1. General Laboratorio

Más detalles

CONVERSIÓN FOTOVOLTAICA

CONVERSIÓN FOTOVOLTAICA Energía solar Qué se puede obtener con la energía solar? Básicamente, recogiendo de forma adecuada la radiación solar, podemos obtener calor y electricidad. El calor se logra mediante los captadores o

Más detalles

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo J.M.A. Componentes del grupo Nº : - - CURSO USO DEL POLÍMETRO DIGITAL Pantalla Selector Clavija para transistores clavija 10A DC clavija VΩmA clavija COMÚN 1. Pantalla

Más detalles

Posibilidades Generación Hidrógeno en España 23/06/15

Posibilidades Generación Hidrógeno en España 23/06/15 Posibilidades Generación Hidrógeno en España 23/06/15 Introducción Hidrógena es una empresa dedicada al desarrollo, fabricación y comercialización de Pilas de Combustible (Fuel Cells) y de generadores

Más detalles

COMPETENCIAS. Máster Interuniversitario en Electroquímica. Ciencia y Tecnología

COMPETENCIAS. Máster Interuniversitario en Electroquímica. Ciencia y Tecnología COMPETENCIAS Máster Interuniversitario en Electroquímica. Ciencia y Tecnología COMPETENCIAS GENERALES CG1. CG2. CG3. CG4. CG5. CG6. CG7. CG8. CG9. Adquiere habilidades de investigación, siendo capaz de

Más detalles

Aplicaciones industriales de la nanotecnología. Proyecto NANO-SME

Aplicaciones industriales de la nanotecnología. Proyecto NANO-SME Aplicaciones industriales de la nanotecnología Proyecto NANO-SME 10. Industria de la energía Baterías de ión-litio con ánodo basado en nanopartículas de titanato de litio Pilas de combustible Células solares

Más detalles

Seguridad de las pilas ion-litio

Seguridad de las pilas ion-litio Seguridad de las pilas ion-litio Cuando Sony presentó la primera batería de iones de litio en 1991, eran conscientes de los riesgos potenciales de seguridad. La retirada del mercado de millones de baterías

Más detalles

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica.

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica. Física y Tecnología Energética 17 - Energía Solar. Fotovoltaica. Estructura electrónica de los sólidos Átomo Sólido cristalino Los electrones en un átomo sólo pueden tener unos determinados valores de

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

RECUPERACIÓN DE METALES PRECIOSOS POR ELECTRÓLISIS, DE EFLUENTES DE LA INDUSTRIA DE CONVERTIDORES CATALITICOS

RECUPERACIÓN DE METALES PRECIOSOS POR ELECTRÓLISIS, DE EFLUENTES DE LA INDUSTRIA DE CONVERTIDORES CATALITICOS RECUPERACIÓN DE METALES PRECIOSOS POR ELECTRÓLISIS, DE EFLUENTES DE LA INDUSTRIA DE CONVERTIDORES CATALITICOS Velázquez López Mariana 1, Dr. Alatorre Ordaz Martin Alejandro 2 1 Universidad de Guanajuato,

Más detalles

La energía solar es la que se aprovecha directamente de la radiación solar.

La energía solar es la que se aprovecha directamente de la radiación solar. ENERGIA SOLAR La energía solar es la que se aprovecha directamente de la radiación solar. Algunos datos de interés: Potencia del Sol = 4 10 26 W Energía del Sol que llega a la Tierra = 5,5 10 24 J/año

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

PILAS DE COMBUSTIBLE. www.pilasde.com. Actualizado a SEPTIEMBRE 2008

PILAS DE COMBUSTIBLE. www.pilasde.com. Actualizado a SEPTIEMBRE 2008 CATÁLOGO HIDRÓGENO Y PILAS DE COMBUSTIBLE SEPTIEMBRE 2008 Índice: 1. Sistemas completos básicos 2. Sistemas completos intermedios. 3. Sistemas completos avanzados. 4. Pilas de combustible. 5. Electrolizadores.

Más detalles

Composición Física y Fabricación de Dispositivos Fotovoltaicos

Composición Física y Fabricación de Dispositivos Fotovoltaicos Composición Física y Fabricación de Dispositivos Fotovoltaicos 1.1 Efecto fotovoltaico Los módulos están compuestos de celdas solares de silicio (o fotovoltaicas). Estas son semiconductoras eléctricas

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

Pilas de Combustible. Pilas de Combustible

Pilas de Combustible. Pilas de Combustible Pilas de Combustible Pilas de Combustible Evolución histórica de las baterías Esquema de electrolizador Pilas de Combustible e - Fuente de corriente e - Reacción global: H 2 O H 2 + ½ O 2 ánodo Electrolito

Más detalles

Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante

Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante Objetivos: Los estudiantes serán capaces de Entender que la luz está compuesta de objetos discretos llamados fotones Calcular

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

Luces para aprender. Ficha 3

Luces para aprender. Ficha 3 Ficha 3 El Sol se formó hace 4 650 millones de años y es la principal estrella del Sistema solar, su gran masa genera fuerza de gravedad suficiente para mantener a todos los planetas girando a su alrededor.

Más detalles

http://grupoorion.unex.es

http://grupoorion.unex.es Laboratorio Virtual de Placas Solares Fotovoltaicas Práctica 3. Estudio del máximo rendimiento de los paneles solares. Práctica 3. Estudio del máximo rendimiento de los paneles solares. 1.1.1. Objetivo.

Más detalles

ASPECTOS QUE DEBE TOMAR EN CUENTA AL MOMENTO DE ADQUIRIR BATERIAS PARA LOS SISTEMAS DE ENERGIA DE RESPALDO EN SU CENTRO DE DATOS

ASPECTOS QUE DEBE TOMAR EN CUENTA AL MOMENTO DE ADQUIRIR BATERIAS PARA LOS SISTEMAS DE ENERGIA DE RESPALDO EN SU CENTRO DE DATOS ASPECTOS QUE DEBE TOMAR EN CUENTA AL MOMENTO DE ADQUIRIR BATERIAS PARA LOS SISTEMAS DE ENERGIA DE RESPALDO EN SU CENTRO DE DATOS Qué es una Batería? El concepto de una batería puede definirse como la de

Más detalles

LOS CIRCUITOS ELÉCTRICOS

LOS CIRCUITOS ELÉCTRICOS LOS CIRCUITOS ELÉCTRICOS La electricidad está presente en casi todos los momentos de la vida cotidiana; bombillas, frigoríficos, estufas, electrodomésticos, aparatos de música, maquinas, ordenadores y

Más detalles

Fabricación de celdas fotoeletroquímicas

Fabricación de celdas fotoeletroquímicas Leonardo Basile Departamento de Física leonardo.basile@epn.edu.ec Resumen La fabricación de celdas solares por métodos baratos y relativamente simples es de interés científico y tecnológico por las importantes

Más detalles

PEMFC Pila de combustible de membrana polimérica. Protón Exchange Membrane Fuel Cell

PEMFC Pila de combustible de membrana polimérica. Protón Exchange Membrane Fuel Cell PEMFC Pila de combustible de membrana polimérica Protón Exchange Membrane Fuel Cell A finales de los años cincuenta Leonard Niedrach y Tom Grubb idearon un sistema de pila de combustible utilizando una

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

INVESTIGA I+D+i 2015/2016 VEHICULO A HIDROGENO. UNA DECISION ESTRATEGICA

INVESTIGA I+D+i 2015/2016 VEHICULO A HIDROGENO. UNA DECISION ESTRATEGICA INVESTIGA I+D+i 2015/2016 GUÍA ESPECÍFICA DE TRABAJO SOBRE VEHICULO ELECTRICO O VEHICULO A HIDROGENO. UNA DECISION ESTRATEGICA Texto de D. Enrique Soria Lascorz Octubre de 2015 Introducción El transporte

Más detalles

Tecnología de las baterías

Tecnología de las baterías Tecnología de las baterías Definición y Clasificación La batería es un dispositivo que almacena energía en forma electroquímica y es el más ampliamente usado para almacenar energía en una variedad de aplicaciones.

Más detalles

Horizon Soporte técnico

Horizon Soporte técnico Horizon Soporte técnico 1. Fuel Cell Car Science Kit Número del modelo: FCJJ-11 1. Los niveles de agua no bajan al desconectar los tubos de salida del gas de ambos lados de la célula de combustible. Comprueba

Más detalles

Generadores de ozono electrolíticos

Generadores de ozono electrolíticos Generadores de ozono electrolíticos Tecnología PEM A V electrocatalizador ánodos con poros abiertos espesor de la membrana 00 µm cátodos con poros abiertos 09/005 Se mantiene el derecho de proceder a cambios!

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

Desulfatación para Baterías de Plomo-Ácido y NiCd

Desulfatación para Baterías de Plomo-Ácido y NiCd Tecnología de Regeneración de Baterías *Según el BCI (Battery Council International) 80% de los fallos en las baterías ocurren por la sulfatación Desulfatación para Baterías de Plomo-Ácido y NiCd Tl:(34)

Más detalles