Información de la práctica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Información de la práctica"

Transcripción

1 P-SLM-01 PRÁCTICA DE LABORATORIO NÚM 01 Página 1 de 8 Rev. nº 1.0 Fecha 28/10/2010 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Equation Chapter 1 Section 1 Información de la práctica Título: Asignatura: Autores: Horas: Calibración de un Modulador Espacial de Luz en Amplitud Microóptica y nanoóptica Francisco José Torcal Milla, Luis Miguel Sánchez Brea, José María Herrera Fernández 3 horas MATERIAL Material necesario: Esquema: Láser, expansor-colimador de haz, SLM, dos polarizadores lineales, cámara CCD, ordenador personal, material opto-mecánico.

2 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 2 de 8 Control de versión VERS. FECHA COMENTARIO Realización /10/2010 Inicio de la práctica Francisco José Torcal Milla Luis Miguel Sánchez Brea José María Herrera Fernández Índice INFORMACIÓN DE LA PRÁCTICA... 1 CONTROL DE VERSIÓN... 2 ÍNDICE OBJETIVOS DE LA PRÁCTICA FUNDAMENTO TEÓRICO Funcionamiento de un modulador espacial de luz REALIZACIÓN EXPERIMENTAL Montaje opto-mecánico Calibración en niveles de gris del SLM Adecuación de los elementos polarizadores Difracción producida por una red sinusoidal de amplitud REFERENCIAS... 8

3 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 3 de 8 Cuestiones previas 1. Qué ventajas supone utilizar un modulador espacial del luz frente a otros dispositivos? 2. Por qué se necesita realizar una calibración del SLM? Cuestiones finales 1. Presentar la gráfica de calibración y guardar los datos para la utilización en posteriores prácticas. 2. Se corresponde la gráfica obtenida con lo esperado?. Razone la respuesta. 3. Explique un método alternativo al mencionado en la práctica para conseguir modulación pura de fase. Advertencias: En esta práctica se emplea como fuente de luz un haz láser; debe evitarse mirar directamente la luz que emite o cualquier reflejo directo. El modulador de luz es un sistema delicado. Si tocamos el modulador con los dedos, etc. lo romperemos. Está terminantemente prohibido tocar el modulador.

4 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 4 de 8 1 Objetivos de la práctica a) Adecuación y calibración de un Modulador Espacial de Luz (SLM) para que funcione en modo amplitud y de forma lineal. 2 Fundamento teórico 2.1 Funcionamiento de un modulador espacial de luz Un Modulador Espacial de Luz tipo LCD (Liquid Crystal Display), que es el tipo que nos ocupa en esta práctica, está basado en la propiedad birrefringente que poseen las moléculas que lo conforman. El comportamiento birrefringente está presente en materiales anisótropos, en los cuales hay dos ejes principales definidos, llamados Ordinario y Extraordinario. Dichos ejes son perpendiculares entre sí. La propagación de la luz con polarización paralela a cada uno de estos ejes es diferente, ya que poseen diferente índice de refracción, n o y n e. En principio, si la polarización incidente es paralela a alguno de los dos ejes del cristal antes definidos, la polarización a la salida seguirá siendo lineal, sin sufrir alteración alguna. Si por el contrario, la polarización incidente no es paralela a ninguno de los ejes principales del SLM, la polarización a la salida será elíptica, en general. El modulador utilizado está pensado para su uso en proyección de imágenes y no para aplicaciones científicas. Para su utilización en modo amplitud es necesario incorporar un polarizador lineal que transforme las variaciones de fase en variaciones en amplitud. Para enviar una imagen al modulador se realiza en forma de niveles de grises, con un rango de 8 bits (de 0 a 255). Cuando se manda un valor 0 el modulador debería ser opaco y con 255 transparente. Esto no ocurre normalmente, por lo que hace falta una calibración que permita trabajar de forma lineal. 3 Realización experimental 3.1 Montaje opto-mecánico Para la realización experimental debe montarse en primer lugar el sistema óptico que se muestra en la Figura 1, que consiste en una fuente de luz láser, un expansor-colimador, un polarizador lineal, un SLM, un segundo polarizador lineal y una cámara conectada a un PC o una pantalla. Todos los elementos deben estar

5 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 5 de 8 alineados siguiendo el eje óptico del sistema. Por otra parte, los polarizadores lineales deben estar montados en sendos soportes rotatorios, de modo que permitan girar el eje de polarización. Figura 1: Esquema y montaje experimental para la calibración en amplitud del SLM 3.2 Adecuación de los elementos polarizadores. En primer lugar, se debe saber con anterioridad cual es la dirección del eje de polarización de ambos polarizadores lineales. Para la calibración en amplitud deben estar colocados perpendicularmente. El primer polarizador lineal puede o no ser necesario, dependiendo de la calidad de la polarización del haz láser. Este primer polarizador sirve para asegurar que el haz que incide sobre el SLM es polarizado lineal. Además, no solo es necesario que el haz incidente este linealmente polarizado sino que debe ser linealmente polarizado formando un ángulo de 45º con los ejes principales del SLM. Si se conocieran a priori las direcciones de los ejes principales del SLM, la calibración en amplitud sería inmediata. Desgraciadamente, esto no es habitual. Aquí vamos a describir un método de calibración en amplitud partiendo del desconocimiento de dichos ejes principales.

6 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 6 de 8 Método operativo: a) Colocar el primer polarizador lineal en una posición conocida de partida. El eje de polarización podrá ser paralelo al del láser para aprovechar la mayor cantidad de luz, para ello, girar posteriormente el láser hasta conseguirlo. b) Enviar mediante el PC una imagen con todos los pixeles con valor 0 al SLM. De esta forma el modulador no debería actuar y la intensidad de luz final sería nula. c) Girar el segundo polarizador lineal hasta que la luz tras él sea nula. De este modo aseguramos que ambos polarizadores tienen colocados sus ejes perpendiculares entre sí. d) Enviar al SLM mediante el PC la red sinusoidal descrita en el apartado 3.3. e) Observar la intensidad difractada en campo lejano. Si los polarizadores están correctamente colocados, se debe observar una figura similar a la Figura 3. De ser así pasar al punto 3.4. En caso contrario pasar al punto f). f) Girar ligeramente el primer polarizador lineal junto con el láser para conseguir un máximo de luz trasmitida y pasar al punto b). 3.3 Difracción producida por una red sinusoidal de amplitud En la Figura 2 se muestra un ejemplo de red sinusoidal de amplitud normalizada entre 0 y 1. Este patrón u otro similar será el que debamos enviar al SLM para proceder a la calibración del mismo en amplitud. Figura 2: Red sinusoidal de Amplitud normalizada entre 0 y 1 Si ahora nos centramos en el comportamiento en difracción de esta red, el patrón de difracción producido en campo lejano por una red sinusoidal puramente de amplitud seria el mostrado en la Figura 3, donde, como puede verse, sólo aparecen los órdenes difractados 0 y 1.

7 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 7 de 8 Figura 3: Ejemplo de patrón de difracción producido por una red sinusoidal puramente de amplitud Por el contrario, si el modulador está actuando a la vez sobre la fase del haz, aparecerán órdenes de difracción mayores, y su potencia dependerá de cómo de grande es dicho efecto. En la Figura 4 se muestra un ejemplo de este efecto, donde se ve la aparición de órdenes mayores. Figura 4: Ejemplo de patrón de difracción producido por una red sinusoidal modulando en amplitud y fase. 3.4 Calibración en niveles de gris del SLM. Normalmente, la respuesta de los cristales líquidos no es lineal. Por ello, si queremos que actúe linealmente con la escala de grises que pretendamos mandarle, debemos realizar una calibración previa y una posterior corrección de los niveles enviados al SLM para dar los niveles deseados realmente. Esto debe hacerse después de ajustar los elementos polarizadores para que funcione correctamente en modo amplitud. Vamos a utilizar un sistema de 256 niveles de gris, donde 0 corresponde a negro y 256 corresponde a blanco. Método operativo: a) Enviar al SLM un nivel 255 (blanco). Normalmente, el sensor de la cámara aparecerá saturado. Debemos primero variar las propiedades de la cámara (tiempo de exposición, etc.) hasta que la imagen no aparezca saturada. b) Seguidamente se lanza un programa en Matlab que consiste en lo siguiente:

8 P-SLM-01 CALIBRACIÓN DE UN MODULADOR ESPACIAL DE LUZ EN AMPLITUD Pág. 8 de 8 i. Envía al SLM un nivel de gris e integra la luz total que llega a la cámara. ii. Repite este proceso para los 256 niveles de gris. c) Terminado el programa, nos devuelve un gráfico (Figura 5) y tabla que hace corresponder los niveles de gris enviados con los niveles de gris realmente obtenidos y normalizados a 256 niveles. Si el SLM funcionara linealmente obtendríamos una correspondencia lineal pero como ya hemos comentado, normalmente no es el caso. d) Una vez obtenida esta tabla, debemos corregir los niveles de gris enviados y volver al apartado a) para comprobar que la calibración se ha realizado correctamente. Figura 5: Ejemplo de curva de calibración en Amplitud. 4 Referencias 1. A. Hermerschmidt, "OptiXplorer: Laboratory Tutorials, Hardware Operating Instructions, Software Operating Instructions", HOLOEYE, Pioneers in Photonic Technology. 2. A. Marquez Ruiz, "Accurate predictive model for twisted nematic liquid crystal devices. Application for generating programmable apodizers and Fresnel lenses", Memoria presentada para optar al grado de Doctor en Ciencias Físicas, Bellaterra, Junio J. W. Goodman "Introducción a la Óptica de Fourier" Editorial de la UNED, 1º Ed. (2008)

Información de la práctica

Información de la práctica P-SLM-3 PRÁCTICA DE LABORATORIO NÚM 3 Página 1 de 14 Rev. nº 1. Fecha 7/7/1 DIFRACCIÓN EN CAMPO CERCANO CON UN SLM Equation Chapter 1 Section 1 Información de la práctica Título: Asignatura: Autores: Horas:

Más detalles

INFORMACIÓN DE LA PRÁCTICA

INFORMACIÓN DE LA PRÁCTICA PRÁCTICA DE LABORATORIO NÚM 7 P-SLM-07 Página 1 de 12 Rev. nº 1.0 Fecha 31/10/2010 FILTRADO ÓPTICO DE IMÁGENES CON UN SLM INFORMACIÓN DE LA PRÁCTICA Título. Asignatura. Autores. Horas. Conocimientos. MATERIAL

Más detalles

Información de la práctica

Información de la práctica P-SLM-00 PRÁCTICA DE LABORATORIO NÚM 0 Página 1 de 10 Rev. nº 1.0 Fecha 28/10/2010 SOFTWARE DE SIMULACIÓN BASADO EN RAYLEIGH-SOMMERFELD Equation Chapter 1 Section 1 Información de la práctica Título: Asignatura:

Más detalles

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4)

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) 1. OBJETIVO - Estudiar cómo varía la intensidad de la luz, al atravesar dos polarizadores, en función del ángulo existente entre sus ejes de transmisión.

Más detalles

Summer School CEFOP. Asticio Vargas Laboratorio de Procesamiento de Imágenes Departamento de Ciencias Físicas Universidad de La Frontera

Summer School CEFOP. Asticio Vargas Laboratorio de Procesamiento de Imágenes Departamento de Ciencias Físicas Universidad de La Frontera Summer School 2010. CEFOP Asticio Vargas Laboratorio de Procesamiento de Imágenes Departamento de Ciencias Físicas Universidad de La Frontera Summer School 2010. CEFOP Moduladores espaciales de luz de

Más detalles

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener Física Experimental III 1 1. Objetivos EXPERIMENTO 7 POLARIZACIÓN DE LA LUZ Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

Física II clase 18 (03/06) Energía que transporta una OEM

Física II clase 18 (03/06) Energía que transporta una OEM Física II clase 18 (03/06) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Energía que transporta

Más detalles

2.- Polarización. Retardadores.

2.- Polarización. Retardadores. Prácticas de Física Avanzada. Curso 24-25 2.- Polarización. Retardadores. Objetivos: Familiarizarse con los polarizadores lineales dicroicos y las láminas retardadoras. Verificar cuantitativamente la ley

Más detalles

Polarización: ejercicio adicional

Polarización: ejercicio adicional Polarización: ejercicio adicional Física, 1er Cuatrimestre 013, FCEyN-UBA. Por Luciano A. Masullo Se tiene una fuente que emite un haz de luz no polarizada, con intensidad I o y longitud de onda λ = 600nm

Más detalles

Física Experimental 1: Práctica #2

Física Experimental 1: Práctica #2 Física Experimental 1: Práctica #2 Polarización y Parámetros de Stokes Fecha de entrega: Martes 10 de Febrero, 2015 (Enero-Mayo 2015) Dr. Raúl Hernández 1 Contenido Objetivos de la práctica 3 Material

Más detalles

PRÁCTICA 4. POLARIZACIÓN DE LA LUZ

PRÁCTICA 4. POLARIZACIÓN DE LA LUZ PRÁCTCA 4. POLARZACÓN DE LA LUZ Escuela A, Numero B, Turno C. Física 1 o Temas Selectos de Física 1. Alumno NUNO Grupo: N Numero de Lista Profesor: Profe de Física. Fecha. Resumen Utilizando dos polarizadores

Más detalles

RESUMEN_POLARIZACIÓN

RESUMEN_POLARIZACIÓN RESUMEN_POLARIZACIÓN Polarización La polarización es una característica de todas las ondas transversales onda transversal linealmente polarizada en la dirección y onda transversal linealmente polarizada

Más detalles

ÓPTICA DE CRISTALES:

ÓPTICA DE CRISTALES: Página 1 de 5 FACULTAD: CIENCIAS BASICAS DEPARTAMENTO DE: FISICA Y GEOLOGIA ASIGNATURA: AREA: ÓPTICA DE CRISTALES: FISICA CODIGO: REQUISITOS: CORREQUISITO: CREDITOS: 4 TIPO DE ASIGNATURA: Electiva JUSTIFICACION

Más detalles

Medida de antenas en campo abierto Estudio de la antena Yagi-Uda

Medida de antenas en campo abierto Estudio de la antena Yagi-Uda Medida de antenas en campo abierto Estudio de la antena Yagi-Uda 1. INTRODUCCIÓN En este documento se describe la práctica de laboratorio correspondiente a la medida de antenas en campo abierto y al estudio

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción UNIVERSIDAD NACIONAL DEL SANTA Práctica N 01 Interferencia y Difracción Objetivos.- Estudio de los fenómenos de interferencia y difracción usando un láser como fuente de luz coherente y monocromática.

Más detalles

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica

Más detalles

CRISTALOFÍSICA TEMA 17 PROPIEDADES ÓPTICAS DE LOS CRISTALES Y MINERALES OPACOS. Estudio sistemático con el microscopio polarizante de reflexión

CRISTALOFÍSICA TEMA 17 PROPIEDADES ÓPTICAS DE LOS CRISTALES Y MINERALES OPACOS. Estudio sistemático con el microscopio polarizante de reflexión CRISTALOFÍSICA TEMA 17 PROPIEDADES ÓPTICAS DE LOS CRISTALES Y MINERALES OPACOS Estudio sistemático con el microscopio polarizante de reflexión ÍNDICE Disposición ortoscópica del microscopio 17.1 Observaciones

Más detalles

Animaciones: Luz Polarizada

Animaciones:  Luz Polarizada Luz Polarizada Animaciones: http://cddemo.szialab.org/ Luz Polarizada Filtros Polarizadores Polarizadores: es como bloquear las Ondas en una soga ondas en una soga Luz: Como en la soga: Polarizadores En

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Universidad de Cantabria Tesis Doctoral FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fernández Canales Capítulo CALIBRADO DEL DISPOSITIVO A pesar de su evidente utilidad, existen escasos sistemas de

Más detalles

Luz polarizada y el microscopio de polarización. Prof. Martin Reich

Luz polarizada y el microscopio de polarización. Prof. Martin Reich Luz polarizada y el microscopio de polarización Prof. Martin Reich Componentes de la radiación electromagnética Ondas transversales direcciones de vibración Vector de Poynting (flujo de energía) Longitudes

Más detalles

EXPERIENCIAS CON MICROONDAS

EXPERIENCIAS CON MICROONDAS EXPERIENCIAS CON MICROONDAS OBJETIVOS 1)Generales 1 1) Comprender en la práctica, algunas de las propiedades generales de las ondas electromagnéticas. 1 2) Estudiar las propiedades y fenómenos relacionados

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

POLARIZACIÓN. ÁNGULO DE BREWSTER

POLARIZACIÓN. ÁNGULO DE BREWSTER POLARIZACIÓN. ÁNGULO DE BREWSTER 1. OBJETIVO - Estudiar la ley de Brewster y determinar el valor del ángulo para el cual la luz emergente reflejada está totalmente polarizada. - Determinar a partir de

Más detalles

CAPÍTULO 3 DISPOSITIVOS ELECTRO-ÓPTICOS

CAPÍTULO 3 DISPOSITIVOS ELECTRO-ÓPTICOS CAPÍTULO 3 3.1 Sensores optoelectrónicos Una gran ventaja de los dispositivos electro-ópticos es que presentan mayores velocidades de operaciones y menores voltajes ya que la configuración es transversal

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

7. Difracción n de la luz

7. Difracción n de la luz 7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación

Más detalles

Físico Química II. Trabajo Expositivo. Polarización de la luz. Integrantes: Pérez Viviana. Raimondo Diana. Esparza Fabiana

Físico Química II. Trabajo Expositivo. Polarización de la luz. Integrantes: Pérez Viviana. Raimondo Diana. Esparza Fabiana Físico Química II Trabajo Expositivo Polarización de la luz Integrantes: Pérez Viviana. Raimondo Diana. Esparza Fabiana Universidad Nacional de Río Negro POLARIZACIÓN DE LA LUZ Para mucha gente, hablar

Más detalles

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA ÓPTICA FÍSICA Si no considerásemos la luz como una onda electromagnética, nos sería imposible explicar los fenómenos de interferencia, dispersión, difracción y la polarización de la luz. La parte de la

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

Física Experimental 1: Práctica #6

Física Experimental 1: Práctica #6 Física Experimental 1: Práctica #6 Interferómetro de Mach-Zehnder Fecha de entrega: Martes 17 de marzo, 2015 (Enero-Mayo 2015) Dr. Raúl Hernández 1 Contenido Objetivos de la práctica 3 Material a utilizar

Más detalles

Experiencia P34: Polarización Verificación de la Ley de Malus Sensor de Luz. Vea al final de la experiencia

Experiencia P34: Polarización Verificación de la Ley de Malus Sensor de Luz. Vea al final de la experiencia Sensor de Luz Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Polarización P34 Malus Law.DS Vea al final de la experiencia Vea al final de la experiencia Equipo necesario Cant. Equipo necesario

Más detalles

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS MICROONDAS Libro de texto: Francis W. Sears, Mark W. Zemansky, et al., Física Universitaria, Tomo 2, 11ª edición, Pearson Educación, Mexico (2004), Capítulos: 32-6 El espectro electromagnético (páginas

Más detalles

10. ESTUDIO ÓPTICO POR MICROSCOPÍA DE REFLEXIÓN

10. ESTUDIO ÓPTICO POR MICROSCOPÍA DE REFLEXIÓN 10. ESTUDIO ÓPTICO POR MICROSCOPÍA DE REFLEXIÓN Tal como se discutió al inicio del capítulo anterior, los minerales absorbentes se caracterizan porque su estudio óptico no puede llevarse a cabo mediante

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 01 DE JULIO DEL 2013 COMPROMISO

Más detalles

Optica de Fourier y filtrado espacial

Optica de Fourier y filtrado espacial Optica de Fourier y filtrado espacial Objetivo Estudiar la óptica de Fourier y la formación de imágenes con luz coherente. Difracción de Fraunhofer Sea una onda plana de luz coherente que incide sobre

Más detalles

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS 1. OBJETIVO - Estudiar el cumplimiento de las leyes de la reflexión y de la ley de Snell en ondas electromagnéticas - Estudiar cómo varía la intensidad

Más detalles

Tema 2: Propiedades de las ondas. Tema 2: Propiedades de las ondas

Tema 2: Propiedades de las ondas. Tema 2: Propiedades de las ondas El tema de las ondas suele resultar dificultoso porque los fenómenos ondulatorios más comunes lo constituyen el sonido y la luz y en ninguno de ellos es posible visualizar las ondas mismas. En los laboratorios

Más detalles

Información de la práctica

Información de la práctica P-SLM-6 PRÁCTICA DE LABORATORIO NÚM 6 Página 1 de 18 Rev. nº 1. Fecha 3/1/1 GENERACIÓN DE HACES CON UN SLM Equation Chapter 1 Section 1 Información de la práctica Título: Asignatura: Autores: Horas: Conocimientos

Más detalles

Montaje y Calibración de drivers de potencia Pololu/Stepstick

Montaje y Calibración de drivers de potencia Pololu/Stepstick Montaje y Calibración de drivers de potencia Pololu/Stepstick Autor: Jon Goitia Hernández Introducción La electrónica es una de las partes más delicadas a la hora de construir una impresora 3D. Se pueden

Más detalles

CUESTIONARIO DE ÓPTICA.

CUESTIONARIO DE ÓPTICA. CUESTIONARIO DE ÓPTICA. 1.- Qué es la luz, onda o partícula? 2.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Huygens: Young: Newton:

Más detalles

RADIACIÓN DE CUERPO NEGRO

RADIACIÓN DE CUERPO NEGRO RADIACIÓN DE CUERPO NEGRO OBJETIVOS a) Obtener las curvas características para la Radiación de Cuerpo Negro correspondientes a una fuente de luz incandescente (Filamento de Tugsteno). b) Verificar la variación

Más detalles

LCD ING. DIEGO CHACON MDHD

LCD ING. DIEGO CHACON MDHD LCD ING. DIEGO CHACON MDHD LCD: Display de Cristal Líquido (Liquid Crystal Display) Los Display LCD son visualizadores pasivos, esto significa que no emiten luz como el visualizador o display alfanumérico

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO CONSTRUCCIÓN DE UN CÍRCULO CON UNA SEÑAL SENO Y UNA COSENO IMAGEN EN LA PRESENTACIÓN X - Y FUNCIONES

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

CUADERNO DE PRÁCTICAS DE ÓPTICA FÍSICA

CUADERNO DE PRÁCTICAS DE ÓPTICA FÍSICA CUADERNO DE PRÁCTICAS DE ÓPTICA FÍSICA Curso 2007/08 Nombre: Tutor: ÓPTICA FÍSICA NORMAS DE PRÁCTICAS CURSO 2007-08 Es imprescindible aprobar las prácticas para aprobar la asignatura. La asistencia a las

Más detalles

Medición del índice de refracción de líquidos.

Medición del índice de refracción de líquidos. Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II Proyecto Experimental: Medición del índice de refracción de líquidos.

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA II TERMINO ACADEMICO 2013-2014 TERCERA EVALUACIÓN DE FISICA D 26 DE FEBRERO DEL 2014 COMPROMISO

Más detalles

Capítulo 5 Lentes multiplexadas

Capítulo 5 Lentes multiplexadas Capítulo 5 Lentes multiplexadas Otra aproximación diferente de la mostrada en el capítulo anterior para modificar el perfil de intensidad a lo largo del eje óptico consiste en la implementación simultánea

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

Tipler Mosca: 31 Alonso Finn: 32

Tipler Mosca: 31 Alonso Finn: 32 Tema 5: Reflexión y refracción de ondas * Propagación de la luz * Reflexión y refracción * Polarización * Deducción de las leyes de reflexión y refracción Tipler Mosca: 31 Alonso Finn: 32 Propagación de

Más detalles

DISPOSITIVOS DE VISUALIZACION

DISPOSITIVOS DE VISUALIZACION DISPOSITIVOS DE VISUALIZACION Constantino Pérez Vega Dpto. de Ingeniería de Comunicaciones Universidad de Cantabria Santander España perezvr@unican.es http://personales.unican.es/perezvr Noviembre 2009

Más detalles

Fig Sección de una celda de cristal líquido.

Fig Sección de una celda de cristal líquido. 9.3.4. ESTRUCTURA El cristal líquido es el medio activo que se usa para crear una imagen. Consta de un número muy elevado de cristales alargados suspendidos en un fluido. Este embalse se intercala entre

Más detalles

Optimización de pantallas de cristal líquido nemático helicoidal para almacenamiento holográfico de datos

Optimización de pantallas de cristal líquido nemático helicoidal para almacenamiento holográfico de datos Sección Especial: VI Reunión Española de Optoelectrónica Optoel 9 Optimización de pantallas de cristal líquido nemático helicoidal para almacenamiento holográfico de datos Optimization of twisted-nematic

Más detalles

Naturaleza electromagnética de la luz Polarización

Naturaleza electromagnética de la luz Polarización Resumen: Naturaleza electromagnética de la luz Polarización Mariana Isabel Genna y María Fernanda Romano migena57@hotmail.com Marcovalli@ciudad.com.ar Laboratorio II para Biólogos y Geólogos - Departamento

Más detalles

En qué consisten los fenómenos ondulatorios de :

En qué consisten los fenómenos ondulatorios de : Cuáles son las características de una onda? Cuáles son los tipos de ondas que existen? Cuáles son las diferencias más importantes entre las ondas mecánicas y las electromagnéticas? En qué consisten los

Más detalles

TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA

TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA GRINCEF TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA Hebert Elías Lobo Manuel Villarreal Iris Materán Jesús Rosario Autores Jesús Briceño Juan Carlos Díaz Yasmelis Rivas Juan Lobo Co-autores Experiencias

Más detalles

Fotogrametría de Objeto Cercano. Precisión estimada.

Fotogrametría de Objeto Cercano. Precisión estimada. Fotogrametría de Objeto Cercano. Precisión estimada. Apellidos, nombre Balaguer Puig, Matilde (balaguer@upv.es) Departamento Centro Ingeniería Cartográfica, Geodesia y Fotogrametría ETSIGCT 1 Resumen En

Más detalles

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS.

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 2. Instrumentación en teoría de circuitos. 2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 1) OBJETIVOS. El objetivo fundamental de esta segunda práctica es la comprobación experimental de la asociación de

Más detalles

Física 2n de Batxillerat IES El Cabanyal València

Física 2n de Batxillerat IES El Cabanyal València Dr JM yensa 07 Óptica geométrica. 0/0/07 UESTIONES ísica n de atxillerat IES El abanyal alència Tiempo de la prueba 6 min.- Un objeto de 0. cm de altura, que está situado a 0 cm de un espejo cóncavo, produce

Más detalles

En la figura se muestra la curva correspondiente V. t la figura, la medida de la tensión máxima es inmediata, mientras que la

En la figura se muestra la curva correspondiente V. t la figura, la medida de la tensión máxima es inmediata, mientras que la PRÁCTICA 3 El osciloscopio. Medida de corrientes variables Hasta este momento, hemos estado trabajando con corriente continua, esto es, una corriente eléctrica que se caracteriza por una intensidad constante

Más detalles

FICHAS COMPLEMENTARIAS. REFLEXIÓN

FICHAS COMPLEMENTARIAS. REFLEXIÓN FICHAS COMPLEMENTARIAS. REFLEXIÓN I.- DESCRIPCIÓN DE LOS COMPONENTES Para realizar las prácticas de óptica vas a usar: 1.- Banco óptico: es una base metálica sobre la que colocar los diferentes montajes.

Más detalles

FILTRO BIRREFRINGENTE EN DOS LONGITUDES DE ONDA

FILTRO BIRREFRINGENTE EN DOS LONGITUDES DE ONDA 1 FILTRO BIRREFRINGENTE EN DOS LONGITUDES DE ONDA CAMPO DE LA INVENCIÓN La invención se refiere a filtros birrefringentes de señales ópticas específicamente a un sistema de varios cristales birrefringentes

Más detalles

Práctica 5MODBUS: Bus Modbus

Práctica 5MODBUS: Bus Modbus Práctica 5MODBUS: Bus Modbus 1 Objetivos El objetivo de esta práctica es la utilización y la programación de una red Modbus. El alumno debe ser capaz de: Diferenciar los tres niveles fundamentales de la

Más detalles

ONDAS ESTACIONARIAS EN UN HILO

ONDAS ESTACIONARIAS EN UN HILO Laboratorio de Física General (Ondas mecánicas) ONDAS ESTACIONARIAS EN UN HILO Fecha: 02/10/2013 1. Objetivo de la práctica Estudio de las ondas estacionarias transversales en un hilo. Papel de la tensión

Más detalles

INSTITUTO DE CIENCIAS NUCLEARES UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO CIRCUITO EXTERIOR C.U. A. POSTAL , MEXICO D.F.

INSTITUTO DE CIENCIAS NUCLEARES UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO CIRCUITO EXTERIOR C.U. A. POSTAL , MEXICO D.F. INSTITUTO DE CIENCIAS NUCLEARES UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO CIRCUITO EXTERIOR C.U. A. POSTAL 70-543, 04510 MEXICO D.F. CARACTERIZACIÓN DE MODULADORES ACUSTICO-ÓPTICOS Gisela Noemí Ortiz León

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos como son el Goniómetro y

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

FÍSICA. 2º BACHILLERATO BLOQUE IV: ÓPTICA. Examen 1

FÍSICA. 2º BACHILLERATO BLOQUE IV: ÓPTICA. Examen 1 Examen 1 1. Un rayo de luz incide sobre una lámina de caras paralelas de vidrio de n = 3/2, formando un ángulo de 45º con la normal. A) Cuál es el ángulo de refracción? B) Cuál es el ángulo de salida al

Más detalles

Para la realización de esta práctica utilizaremos el siguiente instrumental:

Para la realización de esta práctica utilizaremos el siguiente instrumental: c Rafael R. Boix, Alberto Pérez Izquierdo y Francisco Medina 1 PRÁCTICA 10 ONDAS ELECTROMAGNÉTICAS II: POLARIZACIÓN, INTERFERENCIAS Y DIFRACCIÓN DE BRAGG 1. Objetivos En esta práctica estudiaremos en primer

Más detalles

3.1 Interferencia óptica

3.1 Interferencia óptica CAPÍTULO III 3. Interferencia óptica La interferencia es un fenómeno óptico que ocurre entre dos o más ondas ópticas que se encuentran en el espacio. Si estás ondas tienen la misma longitud de onda y se

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015

INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015 INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015 LOGRO: MOVIMIENTO CIRCULAR UNIFORME LABORATORIO DE FISICA OBJETIVO GENERAL:

Más detalles

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA G32 - Física Básica Experimental II: Ondas: Luz y Sonido Doble Grado en Física y Matemáticas Grado en Física Curso Académico 2016-2017 1. DATOS IDENTIFICATIVOS Título/s

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica.

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. 5.1 Introducción. En este capítulo se describen los resultados experimentales

Más detalles

Instalación del Equipo Para la Práctica: Frecuencia Natural de un Cuerpo Rígido y Comprobación del Teorema de Ejes Paralelos.

Instalación del Equipo Para la Práctica: Frecuencia Natural de un Cuerpo Rígido y Comprobación del Teorema de Ejes Paralelos. Instalación del Equipo Para la Práctica: Frecuencia Natural de un Cuerpo Rígido y Comprobación del Teorema de Ejes Paralelos. Mauricio Arredondo Soto, Fernando Tomás Pérez Zamudio, Ricardo Martínez Martínez

Más detalles

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º PRÁCTICA 1. 2 Contenido 1 OBJETIVOS... 4 2 CONCEPTOS TEÓRICOS... 4 2.1 Propiedades

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

MODULACIONES DIGITALES

MODULACIONES DIGITALES Práctica 4: Modulaciones digitales Pág : 1 MODULACIONES DIGITALES OBJETIVOS: Analizar las modulaciones digitales. Analizar las modulaciones digitales diferenciales. Analizar tanto los moduladores como

Más detalles

Propagación de la luz.

Propagación de la luz. Propagación de la luz. El espectro electromagnético en la vida diaria En todas las clases de ondas la velocidad de propagación depende de alguna propiedad física del medio a través del cual la onda se

Más detalles

ONDAS ESTACIONARIAS EN UN HILO

ONDAS ESTACIONARIAS EN UN HILO Laboratorio de Física General Primer Curso (Ondas mecánicas) ONDAS ESTACIONARIAS EN UN HILO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de las ondas estacionarias transversales en un hilo. Papel

Más detalles

Espace Ideal Digital

Espace Ideal Digital Espace Ideal Digital La tecnología digital y nuestros ojos Cada vez más, la tecnología digital cumple papeles muy importantes en nuestra vida diaria. Todos los días, nuestra mayor fuente de información,

Más detalles

El experimento de las dos ranuras

El experimento de las dos ranuras El experimento de las dos ranuras 1. Introducción. El experimento de las dos ranuras se llama también experimento de Young. Es uno de los dos experimentos más misteriosos, desconcertantes e inverosímiles

Más detalles

Dr. Roberto Pedro Duarte Zamorano Webpage:

Dr. Roberto Pedro Duarte Zamorano   Webpage: Magnetismo y Óptica Dr. Roberto Pedro Duarte Zamorano E-mail: roberto.duarte@didactica.fisica.uson.mx Webpage: http://rpduarte.fisica.uson.mx 2016 Departamento de Física Universidad de Sonora A. Magnetismo

Más detalles

PESACARGAS ELECTROMECÁNICO DYNATECH MODELO ECO

PESACARGAS ELECTROMECÁNICO DYNATECH MODELO ECO INSTRUCCIONES: ECO PESACARGAS ELECTROMECÁNICO DYNATECH MODELO ECO ÍNDICE 1. Introducción. 2. Características del Pesacargas. 3. Principales componentes del Pesacargas y dimensiones del mismo. 4. Situación

Más detalles

Capítulo. Procedimiento de transformación de intensidad.

Capítulo. Procedimiento de transformación de intensidad. Capítulo 6 Procedimiento de transformación de intensidad. En el presente capítulo se describe el cambio de contraste como una opción de preprocesamiento para mejorar la calidad de la imagen con lo que

Más detalles

RATÓN MECÁNICO. Los ratones mecánicos, detectan el movimiento mediante luz infrarroja (ver. figura 1

RATÓN MECÁNICO. Los ratones mecánicos, detectan el movimiento mediante luz infrarroja (ver. figura 1 RATÓN MECÁNICO Son los más utilizados, aunque se tiende a sustituirlos por los ópticos, su funcionamiento se basa en una bola de silicona que gira en la parte inferior del ratón a medida que lo desplazamos.

Más detalles

MANUAL DE INSTRUCCIONES

MANUAL DE INSTRUCCIONES Contraste de fases MANUAL DE INSTRUCCIONES Modelo B-380 B-500 B-800 B-1000 Versión: 2 Publicado: 18, 08, 2014 Introducción al contraste de fases Las preparaciones sin teñir y por lo tanto transparentes

Más detalles

CENTRO BILINGÜE SAN JOSE CALIFORNIA ACTIVIDAD DE: COMPUTACION LOS DISPOSITIVOS DE ENTRADA Y SALIDA DOCENTE: LIC. INTEGRANTES:

CENTRO BILINGÜE SAN JOSE CALIFORNIA ACTIVIDAD DE: COMPUTACION LOS DISPOSITIVOS DE ENTRADA Y SALIDA DOCENTE: LIC. INTEGRANTES: CENTRO BILINGÜE SAN JOSE CALIFORNIA ACTIVIDAD DE: COMPUTACION LOS DISPOSITIVOS DE ENTRADA Y SALIDA DOCENTE: LIC. INTEGRANTES: JESSICA KENNY HERNÁNDEZ LÚE ZULMA LISETH GONZALEZ EVA BEATRIZ INTRODUCCIÓN

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #2. Patrón de Radiación

Laboratorio de Microondas, Satélites y Antenas. Práctica #2. Patrón de Radiación Laboratorio de Microondas, Satélites y Antenas Práctica #2 Patrón de Radiación Objetivo Familiarizar al alumno con el concepto de patrón de radiación de una antena, y con su ancho de haz Medir y caracterizar

Más detalles

EXPERIMENTO 17 OPTICA V: HOLOGRAFÍA

EXPERIMENTO 17 OPTICA V: HOLOGRAFÍA Física Experimental III EXPERIMENTO 7 OPTICA V: HOLOGRAFÍA. Objetivo Comprensión del principio básico para realizar y reproducir un holograma y familiarizarse con la reproducción experimental de imágenes

Más detalles

Sistemas para la colimación de haces de luz

Sistemas para la colimación de haces de luz Sistemas para la colimación de haces de luz Día Internacional de la METROLOGÍA Luis Miguel Sánchez Brea Grupo Complutense de Óptica Aplicada Departamento de Óptica Universidad Complutense de Madrid 20

Más detalles

TÉCNICAS DE MODULACIÓN ÓPTICA CON DISPOSITIVOS

TÉCNICAS DE MODULACIÓN ÓPTICA CON DISPOSITIVOS CAPÍTULO 4 TÉCNICAS DE MODULACIÓN ÓPTICA CON DISPOSITIVOS ELECTRO-OPTICOS. 4.1 Introducción El proceso superponer información en una señal luminosa se conoce como modulación óptica, la cual se requiere

Más detalles

Curso de Windows 95/98 CTCV

Curso de Windows 95/98 CTCV TEMA 1: EL ESCRITORIO. El Escritorio es la parte del sistema operativo que el usuario ve al entrar en Windows 95/98 y que le sirve para interactuar con él. En el escritorio se pueden situar todos los objetos

Más detalles

Profr. Jonathan Torres Barrera 5 de Abril de 2017

Profr. Jonathan Torres Barrera 5 de Abril de 2017 FISICA 4. UNIDAD II: Sistemas ópticos. 51.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Hertz: Huygens: Young: Newton: Planck: Einstein:

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles